文档库 最新最全的文档下载
当前位置:文档库 › 有关ZEMAX零基础知识必备

有关ZEMAX零基础知识必备

有关ZEMAX零基础知识必备
有关ZEMAX零基础知识必备

单透镜设计

我们先为我们的系统输入波长,选择“系统(System)”菜单下的“波长(Wavelengths)”。

486,这是氢(Hydrogen)F谱线的波长,单位为微米。

波长用来计算近轴参数,如焦距,放大率等等。

“权重(Weight)”这一列用在优化上,以及计算波长权重数据如RMS点尺寸和STREHL率。

定义一个孔径。这可以使ZEMAX在处理其他的事情上,知道每一个镜片该被定为多大。由于我们需要一个F/4镜头,我们需要一个25mm的孔径

(100mm的焦距除F/4)。设置这个孔径值,选择“系统”中的“通常(General)”

菜单项,出现“通常数据(General Data)”对话框,单击“孔径值(Aper Value)”

一格,输入一个值:25。注意孔径类型缺省时为“入瞳直径(Entrance Pupil Diameter)”,也可选择其他类型的孔径设置。

在LDE中显示的有三个面。物平面,在左边以OBJ表示;光阑面,以STO 表示;还有像平面,以IMA表示。对于我们的单透镜来说,我们共需要四个面:物平面,前镜面(同时也是光阑面),后镜面,和像平面。要插入第四个面,只需移动光标到像平面(最后一个面)的“无穷(Infinity)”之上,按INSERT键。这将会在那一行插入一个新的面,并将像平面往下移。新的面被标为第2面。注意物体所在面为第0面,然后才是第1(标上STO是因为它是光阑面),第2和第3面(标作IMA)。

如果曲率中心在镜片的右边为正,在左边为负。这些符号(+100,-100)会产生一个等凸的镜片。

我们还需要在镜片焦点处设置像平面的位置,所以要输入一个100的值,作为第2面的厚度。

“光线像差(Ray Aberration)”,图形以光瞳坐标的函数形式表示了横向的光线像差(指的是以主光线为基准)。左边的图形中以“EY”代替εY。这是Y 方向的像差,有时也叫做子午的,或YZ面的。右图以“EX”代替εX,有时也叫做弧矢的,或XZ面的。此光学特性曲线表示出了一个明显的设计错误,光线特性曲线通过原点的倾斜表示有离焦现象存在。

为了纠正离焦,我们用在镜片的后面的Solve来进行。为了将像平面设置在

近轴焦点上,在第2面的厚度上双击,弹出SOLVE对话框,它只简单地显示“固定(Fixed)”。在下拉框上单击,将SOLVE类型改变为“边缘光高(Marginal Ray Height)”,然后单击OK。用这样的求解办法将会调整厚度使像面上的边缘光线高度为0 ,即是近轴焦点。离焦已消失,主要的像差是球差.

一个理想的镜头(对于一个指定的应用)它的评价函数的值应为0。从主菜单中选择“编辑(Editors)”菜单下的“评价函数(Merit Function)”,选择“工具(Tools)”菜单下的“缺省评价函数”。再在出现的对话框中,点击Reset,然后OK。

构建了一个缺省的评价函数,它由一系列的可以使得RMS波前差最小的追迹光线组成。但这并不够,因为除了使弥散斑尺寸最小外,我们还需要使镜头的焦距为100mm。

使光标移动到评价函数编辑的第一行,按下INSERT键插入新的一行。现在,在“TYPE”列下,输入“EFFL”然后按回车。此操作数控制有效焦距。移动光标到“Target”列,输入“100”然后按回车。其“权重(Weight)”输入一个值:1。这样我们就完成了评价函数的定义,你可以在窗口的左上角双击,将评价函数编辑器从屏幕中移走,评价函数不会丢失,ZEMAX会自动将它保存。

“最佳化(Optimization)”,会显示最佳化工具对话框。

最佳化的结果是使镜片弯曲。结果所得出的镜片曲率使得焦距大致100mm,并且使这个简单的系统具有了一个尽可能小的RMS波前差.最佳化的设计结果的最大的像差约为200微米,

衡量光学性能的另一个方法的是产生一个点列图Spot Diagram。此点列图的弥散大小是400微米。作为比较,艾利(Airy)衍射斑的大小粗略地约为6微米。

另一个有用的判断工具是OPD图。这是以光瞳坐标为函数的光程差(以主光线为基准)分布图,它的光瞳坐标与光学特性曲线图中相同。为了看OPD 图,选择“分析”菜单下的“图”,再选择“光程(Optical Path)”。这个系统中有大约20个波长的波像差,大部分为焦面上的球差,色球差和轴上色差。

从Ray Fan中可较明显地看出,色差(Chromatic aberration)是其主要像差。

一阶色差的大小提供了另外一种简便的工具:多色光焦点漂移图。这种图形把焦距作为一种波长的函数,它指出了近轴焦点的变化。为了得到多色光焦点漂移图,选择“分析”菜单中的“多方面(Miscella-neous)”,然后再选“多色光焦点漂移(Chromatic Focal Shift)。注意纵坐标表示波长范围,覆盖了所定义的波长段,焦距的最大变化范围约为1540微米。对于单透镜镜片来说,其曲线的单调变化类型是很典型的。

看ZEMAX玻璃目录中的其他玻璃类型,选择“Tools”,“Glass Catalogs”。

浏览完目录后单击“Exit”

双透镜设计

第1个镜片有较尖的边缘。根据图形很难说出边缘厚度是正的或负的。

为了决定实际的边缘厚度,可将光标移动到第一面的任意一列(例如,在LDE中有“BK7”字样处单击)。现在选择“Reports”,“Surface Data”,将会出现一个窗口,告诉你该面的边缘厚度。所给出的值是0.17,稍偏小。

在我们修整偏小的边缘厚度之前,我们将先将镜片放大。移动光标到第一面的半口径“Semi-Diameter”列,键入“14”替代所显示的12.5,ZEMAX 会消去12.5并显示“14.000000U”。“U”标志着这个孔径是用户自定义的。

如果“U”没有显示,表示ZEMAX允许此孔径可随要求定义。你可以键入Ctrl-Z来取消“U”标志,或在半口径上双击,并为求解类型选择“Automatic”。 还有一个更有用的保持边缘厚度为一个特定值的方法:假设我们需要保持边缘厚度在3mm,在第一面的厚度列中双击,会出现“Solve Control”屏幕,从所显示的求解列表中选择“Edge thickness”,两个值会被显示,一个是“厚度(Thickness)”,一个是“半径高(Radial Height)”。设厚度为3,半径高为0(如果半径高是0,ZEMAX使用所定义的半口径),然后单击“OK”。

在LDE中,第一面的厚度已被调整过,字母“E”显示在框中,表示此参量为一个活动的边缘厚度解。

来测试双透镜的离轴特性。从主菜单选择“System”,“Field”得到“Field Data”对话框,单击第2和第3行的“Use”选择3个视场。在下面的y视场列的第2行,输入7(即7度),在第3行输入10。使对于轴上的第1行保持为0,使x视场的值也为0,因为一个旋转对称系统,其x视场的值很小。

镜头的轴外特性是很差的,原因是我们只对轴上特性进行了优化。现在是什么像差限制了我们呢?可以来分析光学特性曲线图,判别出场曲是主要像差。此像差可以通过场曲曲线图来估计选择“Analysis”,“Miscellaneous”,“Field Curv/Dist”。左图表示出了近轴焦点的漂移为一个关于视场角的函数,而右图则表示了有以近轴光线为基准的实际光线的畸变。

场曲曲线与光学特性曲线图中的斜率成比例。

New telescope

一个1000mm F/5的望远镜,这暗指需要一个曲率半径为2000mm的镜面,和一个200mm的孔径。R=2f (旁轴光线接近光轴近似=) F=f/d

RMS半径是指你优化好的各视场聚焦后光斑大小,用它来评估像元大小。

有几个视场就有几个RMS半径,根据不同的镜头系统,评价标准不同。

一个系统对应一个艾里斑(Airy Disk),它是描述系统在无像差时能达到的最小光斑大小。

圆锥系数(conic系数):描述该行所代表的面的曲面函数中的非球面二次曲面系数,决定了该行代表的面的形状,典型值对应的形状如下:=0 球面;

-1

由于入射的光束为200mm宽,我们所需要的像平面至少要离开光轴100mm。

我们选择200mm,因此折叠镜面必须距主反射面有800mm。(1000-200)

点扩散函数(PSF)是一个可用在分析衍射极限系统上,针对成像面能量扩散的分析工具。观看PSF图,点击Analysis->PSF->FFT PSF Cross Section 即可。我们看到,由衍射效应所产生的影像并非是一个完美的像点,还是有能量的模糊。

2D图只对旋转对称系统有作用,对此系统无效。3D Layout一旦三维图形显示出来,即可用左、右、上、下、Page Up和Page Down键来控制。

注意MTF些微的扭曲,亦即PSF图表里的小波瓣所代表的能量扩散。这是遮蔽所导致的对比度降低。

课程4:带有非球面矫正器的施密特—卡塞格林系统(Schmidt-Cassegrain) 光阑被放在主面曲率半径的中心,这是为了排除视场像差(如彗差),它是Schmidt设计的特点。??

“Default Merit Function”,单击“Reset”,然后改变“Rings”选项为“5”,单击OK,RINGS选项决定光线的采样密度,此设计要求大于缺省的3。

选“Tools”,“Optimization”,选“Automatic”,评价函数很快将下降到约1.3。 OPD图显示离焦和球差,如图E4-3所示。注意大约有4个波长的像差仍然有待改正。???

单击第一面(光阑面)的“STANDARD”表面类型,从所显示的对话框选择“EVEN ASPHERE”。这种面型允许为非球面校正器指定多项式非球面系数。

不同的三个波长值有不同的数量的球差, 这就是色差.

为了矫正色球差,我们需要用轴上颜色来平衡它。这是一个常用的设计方法,即在同一种像差中,用低阶像差来平衡高阶像差。这里,色球差是一阶轴上色差的高阶分量。为了引入轴上色差,我们将改变第一面,即校正器的前面的曲率(这也使校正板Plate易于装配,其原因我们此处不作讨论)。

因为我们已改变了视场,我们必须重新创建评价函数。这是非常重要的一点!

你必须鉴别缺省的评价函数是建立在你所定义的波长和视场基础上的,如果你改变这些值,你必须重新创建评价函数。

调制传递函数(MTF)Modulation Transfer Function感兴趣,它指明了像的对比是空间频率(通常以毫米的倒数为单位)的函数。图中显示了所有已给定视场的切向和径向的响应。但是,图中仍然有些错误。设计者会认识到,所显示数据是一个圆形光瞳的自相关。真正问题所在是我们还没有说明系统中的这几个通光孔径和遮挡,存在着由辅助镜面引起的遮挡,并且在主反射面上还有一个缺口。如果我们加入这些影响,性能会减低,特别是在中间的空间频率方面。

要改正这个分析时的缺点,返回到LDE,双击第三面的第一列,从孔径类型列中选圆形“Circular Aperture”,到Min Radius中输入1.7。这表示所有的光线穿过表面时离轴距离必须要大于1.7英寸,这就是主反射面的缺口“Hole”。

课程6:折叠反射镜面和坐标断点(fold mirrors and coordinate breads)

厚度在经过一个镜面后总是会改变符号。经过奇数面的镜面后,总厚度应该是负的。此符号的约定与镜面的数量或坐标断点的存在无关。

可双击第2和4面的表面类型列,将这些面改为坐标断点,并从下拉列表中选Coordinate Break。向右滚动屏幕(用光标键或LDE底部的滚动条)直到出现参量列。在第2和4面上会有一系列的0。单击第4面的Parameter 3列,出现列头显示“Tilt About X”。在该格上双击(确信你是在第4面上),在下拉列表中选Pickup作为一种求解(Solve)类型,设From Surface为2,Scale Factor为1.0。这会使第二个坐标断点旋转始终与第一个保持同样的旋转角。

单击OK。注意在表格的值旁有个“P”,表明是从求解(pickup solve)中得到的。

注意所有的倾斜和偏心处理应在厚度改变之前。

建立优化函数(merit function),其条件为均方根(RMS) –斑点半径(Spot radius) –质量中心(Centroid)

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

ZEMAX光学设计报告

光学设计报ZEMA 一、设计目 通过对设计一个双胶合望远物镜,学zema软件的基本应用和操作 二、设计要 的双胶合望远物镜,且相对孔径1:1设计一个全视场角1.56°,焦距1000m=13.6m要求相高三、设计过 1双胶合望远物镜系统初始结构的选 1.选 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差 位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧 型双胶合透镜组,且孔径光阑与物镜框相重合 1.确定基本像差参 根据设计要求,假设像差的初级像差值为零,即球;正弦;位置色s 由此可得基本像差参量。那么按初级像差公式可F 1.冕牌玻璃在前0.0.80.0.8火石玻璃在前 0.008因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计1.选定玻璃组 鉴玻璃的性价比较好,所以选作为其中一块玻璃。查表发现0.00 0.030.008Z组合,此时对应最接近的组合。此系统选 Z组合 的折射的折射0.038311.6721.516Z 1.74.284070.0609 2.009402.4 求形状系1.

考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组 100m1/110m。选用压圈方式根据设计要,则通光口 3.m,由此可求得透镜组定透镜组,该方式所需余量由《光学仪器设计手册》查得103.m外径 对于凸透镜而言;假分别为球面矢高为折射球面曲率半径为透镜外径如图所示, 由上式可求。将所求的的结果代入下式中可求得凸透镜最小2.62.1 缘厚103.4.88.m11 利用下式可求得凸透镜的最小中心厚 m10.01.02.611.6 对于凹透镜而言:先求,再代入下式中可求得凹透镜最小边缘厚1.0.02.6103.11.6m11利用下式可求得凹透镜的最小中心厚不变的条件下进行薄透镜变换成后透镜时,应保

ZEMAX光学设计报告材料

ZEMAX 光学设计报告 一、设计目的 通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。 二、设计要求 设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。 三、设计过程 1.双胶合望远物镜系统初始结构的选定 1.1选型 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。 1.2确定基本像差参量 根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差 0'0=FC l δ。那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为 0===I ∞ ∞C W P 。 1.3求0P )(() ?? ?? ?+-+-=∞∞∞∞ 火石玻璃在前时 冕牌玻璃在前时 2 2 02.085.01.085.0W P W P P 因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。 1.4选定玻璃组合 鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。查表发现当000.0=I C ,与 0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。此系统选定9K 与

2ZF 组合。 9 K 的 折 射 率 5163 .11=n , 2 ZF 的折射率 6725 .12=n , 038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=?,44.2=A ,72.1=K 。 1.5求形状系数Q 一般情况下,先利用下式求解出两个Q 的值: A P P Q Q 00-±=∞ 再与利用下式求的Q 值相比较,取其最相近的一个值: ) (1 20 0+-+ =∞ A P W Q Q 因为 0P P ≈∞ ,所以可近似为284074.40-==Q Q ,06099.00-==∞ W W 。 1.6求归一化条件下的透镜各面的曲率 ()()?????????-=--+-==-=-+=+===-+-?=+-==77370.011 1127467 .2284074.4009404.21 61726.1284074.415163.1009404 .25163.111221233 12211111n Q n n r Q r Q n n r ?ρ?ρ?ρ 1.7求球面曲率半径 ???? ?????-=-='=-=-='==='=491.129277370.01000 624.43927467.21000330.61861726.110003322 11ρρρf r f r f r 1.8整理透镜系统结构数据 视场0136.0tan -=ω(负号表示入射光线从光轴左下方射向右下方),物距-∞=L (表示物体在透镜组左侧无穷远处),入瞳半径mm h 50=,光阑在透镜框上,即入瞳距第一折射

ZEMAX软件基础介绍

ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。 1主要特色 1.1分析 提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt。 1.2优化 表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。 1.3公差分析 表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。 报表输出 多种图形报表输出,可将结果存成图文件及文字文件。 2应用领域 含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。

Zemax 软件的界面 1 Zemax 软件的工作窗口 Figure 1 Zemax 默认的工作窗口 2 Zemax 透镜数据编辑器(LDE ) 2.1 表面类型 Zemax 在标准面型下有平面、球面和二次曲面等选项。 LDE 的Surface Type (表面类型)栏分为两列,左边一列分为OBJ 、STO 和IMA 三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。默认的表面类型是标准型,用Standard 表示。 OBJ 即物面被默认为0面。 表格 1 不同表面的二次曲面系数 菜单栏 工具栏 LDE 表面类型 曲率半径 厚度 玻璃 半口径

ZEMAX光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它 是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data, 键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第 二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength 主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形 成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源, STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO列中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO列中的thickness栏上直接键入4。 Zemax的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为 负值。再令第2面镜的thickness为100。

ZEMAX软件基础介绍教学文案

Z E M A X软件基础介绍

Zemax软件的介绍 ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。 1主要特色 1.1分析 提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt。 1.2优化 表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。 1.3公差分析 表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。 1.4报表输出 多种图形报表输出,可将结果存成图文件及文字文件。 2应用领域 含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。

Zemax 软件的界面 1 Zemax 软件的工作窗口 Figure 1 Zemax 默认的工作窗口 2 Zemax 透镜数据编辑器(LDE ) 2.1 表面类型 Zemax 在标准面型下有平面、球面和二次曲面等选项。 LDE 的Surface Type (表面类型)栏分为两列,左边一列分为OBJ 、STO 和IMA 三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。默认的表面类型是标准型,用Standard 表示。 OBJ 即物面被默认为0面。 表格 1 不同表面的二次曲面系数 菜单栏 工具 LDE 表面类型 曲率半径 厚 度 玻璃 半口径

光学系统设计zemax初级教程

光学系统设计(Zemax初学手册) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个中华卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计和测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参和「红色精灵」计划,所以改由黄晓龙同学接手进行校稿和独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)和后续更多的习作和文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet)

你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即 first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes 等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA 就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。 现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate 作图。其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane 或sagittal。 Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves 是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而描述chief ray angle solves

ZEMAX光学设计讲义资料讲解

Z E M A X光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波 长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么 是LDE呢?它是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜 片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框 wavelength data,键入你要的波长,在第一行输入0.486,它是以microns为单位, 此为氢原子的F-line光谱。在第二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学系统在近 轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由 无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比 值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选 general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击 ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发 光物,即光源,STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是点击IMA栏,选取insert,就在 STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。

Zemax操作

首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括: 表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等 曲率半径(Radius of Curvature) 表面厚度(Thickness):与下一个表面之间的距离 材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料 表面半高(Semi-Diameter):决定透镜表面的尺寸大小 以单透镜为例: 1、设置系统孔径(System->General) 注:F/#指的是光由无限远入射所形成的有效焦距F与近轴光线所对应的入瞳直径#的比值。在说明问题前,首先要了解一些光学术语:A=D/f’,A表示物镜的相对孔径,D表示入瞳直径一般就是指物镜直径,f’表示物镜焦距,另外在照相机里面为了方便常常将A的倒数即f’/D作为相机上的标示值,称为光圈F(注意此处F为光圈数,区别上面所说的有效焦距F)。现在来说明F/4的意思,即我们知道有效焦距为F,入瞳为4mm(光学里面一般以毫米为单位),假如设计时给出焦距为100mm,那么我们立即可以得到光圈数为100/4=25mm。 包括输入入瞳,选择好透镜单位等 2、设置视场角(System->Filed) ZEMAX默认的视场角是即为近轴视场角,其中「Weight」这个选项可以用来设罝各视场角之权值,并可运用于优化。 3、设置波长(Wav) 4、键入透镜资料 建立单透镜这个例子需要建立4个表面。 The object surface(OBJ):设罝光线的起始点 The front surface of the lens(STO):光线进入Lens 的位置。在这例子里,这表面的位置也决定了光阑(Stop)的位置 The back surface of the lens(2):光线从Lens 出来并进入空气中的位置。 The image surface(IMA):光线追迹最后停止的位置,不可以在IMA这个之后设罝任何的表面。这个位置上并非存真实的表面,而是一个哑的表面。 (注:游标移到「IMA」并按下按键盘上的Insert 键,即可产生「2」这个面)

用zemax设计光学显微镜 光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

ZEMAX的像差控制与优化

ZEMAX的基本像差控制与优化 公安部第一研究所许正光 ZEMAX已经成为光学设计人员最常用的工具软件了。光学设计中,描述和控制一个光学系统的初级像差结构,通常使用轴上球差、轴向色差、彗差、场曲、畸变、垂轴色差、像散等像差参数。当我们企图更为详细的描述和控制轴外指定视场、指定光束的像差结构时,常常会使用轴外宽光束球差、彗差和细光束场曲等三个像差参数。然而,ZEMAX并不能像SOD88那样直接引用相对应的像差操作数来指定像差目标大小,更没有描述高级像差数的像差操作数,这些通常都需要设计者自行分析和定义。 描述和控制系统光束结构的方法因习惯而有一定的差异,由于某些像差变量之间有某种相关性,而设置的优化权重又可以不同,因此常常都能够达到相同的效果,只是所计算的数学步骤不同而已。到底选择多少个参数来描述一个系统,虽无统一规定,但是还是要因系统像差特性不同而区别选择。经验表明,最少最准确的参数描述量,能够尽可能的提高优化的效率,并且减少掉入效果较差的局部优化的次数。经验丰富的工程师,轻车熟路,在这个环节上少走了很多的弯路,从而其设计效率和设计出来的产品品质要比通常的设计人员有些得多,成功率高的多。 笔者撰写本文的目的就是企图浅显的探讨光学设计中,ZEMAX中光学结构的描述方法以及权重选择的问题。这些都是笔者在设计当中积累的经验,可能这个文章的论断会由于经验的多寡有一定的局限性,所以希望读者当作参考,不要照搬。 一基本像差描述和控制 1、轴上球差LONA 和SPHA LONA表示的是轴上物点指定波长,指定光束尺寸(光线对)的轴上成像交点到近轴焦平面之间轴向距离。这个定义和我们定义的轴向球差相同。光瞳尺寸(光束尺寸)在0~1之间,那么将追迹实际的光束汇交点计算轴向球差。 SPHA常用于指定面产生的像差数值。若不指定特殊面(取值为0),则计算所有面产生球差总和。注意这个总合不是像差计算公式中的经过各面逐个放大之后的加权和,而是代数和(有待读者进一步验证)。 经验:当选择LONA控制不住球差时,同时加入SPHA操作数,设置合理的权重,可以将轴向球差进一步改善。 2、轴向色差AXCL 定义为两个指定波长的近轴焦平面轴向距离。若光瞳尺寸(光束尺寸)定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际的光线与轴交点位置进行色差计算。 3、垂轴色差(倍率色差) 在ZEMAX中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,

ZEMAX光学辅助设计简明教程 2

ZEMAX光学辅助设计简明教程 沈常宇 中国计量学院光电子技术研究所

目录 第一章引言 (3) 第二章ZEMAX的基本界面及文件菜单 (4) 第三章编辑菜单 (6) 第四章系统菜单 (12) 第五章分析菜单 (17) 第六章工具菜单 (29) 第七章报告菜单 (36) 第八章宏指令菜单 (38) 第九章扩展命令菜单 (39) 第十章表面类型简介 (40) 第十一章设计优化实例 (46) 第一章引言 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计软件ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function 参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件. 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量.所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础.要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成.记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了.对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失.其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等. 第二章 ZEMAX的基本界面及文件菜单 §2.1 ZEMAX的基本界面 ZEMAX的基本界面比较简单,如下图所示. 包括一系列文件菜单和工具按钮.以及一个镜头数据编辑对话框.

ZEMAX软件基础介绍

Zemax软件的介绍 ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。 1主要特色 1.1分析 提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt。 1.2优化 表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。 1.3公差分析 表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。 报表输出 多种图形报表输出,可将结果存成图文件及文字文件。 2应用领域 含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。

Zemax 软件的界面 1 Zemax 软件的工作窗口 Figure 1 Zemax 默认的工作窗口 2 Zemax 透镜数据编辑器(LDE ) 2.1 表面类型 Zemax 在标准面型下有平面、球面和二次曲面等选项。 LDE 的Surface Type (表面类型)栏分为两列,左边一列分为OBJ 、STO 和IMA 三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。默认的表面类型是标准型,用Standard 表示。 OBJ 即物面被默认为0面。 表格 1 不同表面的二次曲面系数 菜单栏 工具栏 LDE 表面类型 曲率半径 厚度 玻璃 半口径

使用ZEMAX设计的典型实例分析剖析

使用ZEMAX于设计、优化、公差和分析 武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。 大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。

zemax光学设计书汇总

广东工业大学物理与光电工程学院 ZEMAX软件和像差设计 [光学器件CAD] 应用光学和光学工程教研组 2013/9/2 1

前言 广东省的经济发展环境和产业分布特点吸引了众多的光学光电相关企业的进驻。国家的“节能减排”政策又大力促进了材料,半导体和照明产业的新一轮的改革和投入。例如,在LED节能照明,激光制版和光电子信息产业方面,无论是企业的数量还是企业对经济发展的贡献,都有可观的增长。所以,今后几年行业对专门应用型人才的旺盛需求。广东工业大学物理与光电工程学院及时地注意到行业发展的大趋势,进行了专业培养方案的调整,增设了光学工程教研组,旨在培养光学和光机电行业企业所需光学工程方面的人才。 光学工程的课程体系包含《应用光学》(2学分),《光学器件设计》(3学分)和《光学器件CAD课程设计》(2学分)。《应用光学》主要讲授高斯光学光束变换、成像原理;《光学器件设计》主要讲授像差理论和像质评价,为后续的课程设计打基础;《光学器件CAD课程设计》主要讲解光学系统设计,性能分析和优化方法。 ZEMAX光学设计软件,被广泛用于公司、研究所和高校用于产品设计,研究和教学培训。2007年被引进我校的光学设计教学当中,我们在像差教学以及课程设计教学中完全使用ZEMAX软件作为分析和优化工具。ZEMAX软件让学生得到直观和形象地感知透镜光学系统的建立,像质评价指标的物理表述,像差优化和系统成形等各个过程。 内容安排:第一章ZEMAX软件简介,讲述软件的用户界面,工具栏,透镜系统的建立的基本方法,像质评价的物理意义和相关举例。第二章ZEMAX优化操作符,介绍评价函数,操作符的定义和使用。第三章ZEMAX像差设计和优化,讲解建立像差控制的评价函数,如轴上和轴外像差的评价函数以及设计实例。第四章典型光学系统的设计。 i

ZEMAX操作说明

ZEMAX操作说明 一、参数设置 1、透镜基本参数设置 ①、Surf:Type 这一选项表示输入面的类型,例如普通球面、柱面、镜面、渐变折射率面等。 ②、Comment 这一选项表示对输入面进行注解,填不填都可以。 ③、Radius 这一选项表示输入面的曲率半径,对于第一行输入光源来说如果是Infinity表示光源为平行光,如果输入数字a表示距离透镜第一个面距离为a的点光源。 ④、Thickness 这一选项表示输入相邻两个面的距离,对于一个透镜来说是透镜的中心厚度,对于两个透镜来说是两个透镜的间距。 ⑤、Glass 这一选项表示输入相邻两个面间的材质,可以输入玻璃、镜子、接收器,不输为空气。 ⑥、Semi-Diameter 这一选项表示输入光到达通光面的半径。 ⑦、Conic 这一选项表示输入面曲率半径的非球面系数。 2、光源基本参数设置 ①、Gen Entrance Pupil Diameter表示入射光到达第 一个面时的光斑大小,适用于光源为点光 源或平行光。 Object Space NA表示入射光的数值孔径, 适用于点光源。

②、Fie 这一选项表示对输入光在入射面不同输入 高度时的情况。 ③、Wav 这一选项表示对输入光的波长。 ④、Lay和L3d 这一选项表示输入透镜的平面图和3D图 ⑤、Spt 这一选项表示输入光通过输入透镜后的弥散斑的大小,越小越好。⑥、Mtf 这一选项表示输入透镜的传递函数,与分辨率紧密相关。 ⑦、Pre 这一选项表示输入透镜的所有参数汇总表。 二、设计结果查看 在Analysis一项中查看透镜像差。 初步学习在这一项中一般查看: Image Analysis,这一项中可以直观 查看成像质量。 Miscellaneous,这一项中可以查看 输入透镜的像差。 三、透镜优化 1、双击你所需要优化的面,将其选择为Variable,须优化面后出现V

相关文档