文档库 最新最全的文档下载
当前位置:文档库 › 三相三电平电压型逆变器仿真建模与特性分析

三相三电平电压型逆变器仿真建模与特性分析

三相三电平电压型逆变器仿真建模与特性分析
三相三电平电压型逆变器仿真建模与特性分析

三相三电平电压型逆变器仿真建模与特性分析

黄绍平,杨 青,浣喜明Ξ

(湖南工程学院电气与信息工程系,湖南湘潭411101)

摘 要:利用MA TLAB软件中的电力系统模块库(PSB),为三相三电平电压型逆变器建立了仿真模型,对其输出特性进行了仿真分析,并利用快速傅里叶变换(FF T)分析工具对逆变器的输出电压进行了谐波分析.仿真实例表明了此模型和仿真方法的正确性.

关键词:三电平逆变器;脉宽调制(PWM);快速傅里叶变换(FF T);谐波;MA TLAB

中图分类号:TM921 文献标识码:A 文章编号:1671-119X(2005)01-0001-04

0 引 言

随着大功率全控型电力电子器件(如GTO、IG2 B T、MOSFET、IGCT等)的开发成功和应用技术的不断成熟,近年来电能变换技术出现了突破性进展,各种新型逆变器已开始在各类直流电源、U PS、交流电机变频调速、高压直流输电系统等领域中得到应用,并使得有源电力滤波器(APF)、静止无功发生器(SV G)以及各种灵活交流输电系统(FACTS)和配电系统FACTS(DFACTS)中各种装置的研制成为可能.

由于大功率电力电子装置的结构非常复杂,若直接对装置进行试验,代价高且费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性、控制方法的有效性进行验证,以预测并解决问题,缩短研制时间.

MA TLAB软件具有强大的数值计算功能,方便直观的Simulink建模环境,其PSB(电力系统模块库)中有丰富的各类电气元件模块,尤其是MA T2 LAB6.5版的推出,PSB中包括了常用的电力电子器件模型、三相桥电路模型、PWM脉冲发生器模块、FF T(快速傅里叶变换)模块以及各种离散测量与控制算法模块,使复杂电力电子装置的建模与仿真成为可能.

本文利用MA TLAB/PSB为一个三相三电平PWM(脉宽调制)逆变器建立系统仿真模型,并对其输出特性进行仿真分析.

1 三电平电压型逆变器的基本原理

图1是一个三电平电压型单相桥逆变器原理电路[1].直流侧为储能电容;V T1~V T4为主功率开关器件GTO;各主功率开关器件旁反并联有续流二极管,为感性负载电流提供反馈能量至直流侧的无功通路;另外,接有中点钳位二极管.中点钳位二极管与续流二极管一起将输出端电位钳至直流电源中点电位.这是一个三电平逆变器电路,通过控制V T1、V T2、V T3、V T4的开通与关断,可以使桥臂中点输出有三个电平,即+E/2、0、-E/2.多电平技术(如三电平、五电平、七电平)就是由使逆变器输出几个电平台阶合成阶梯波,以逼近正弦波输出,这样可以有效地减少输出电压中的谐波含量,改善输出特性,同时降低了功率开关器件的电压定额

.

图1 三电平电压源型单相桥逆变器原理电路

第15卷第1期2005年3月 湖南工程学院学报

Journal of Hunan Institute of Engineering

Vo1.15.No.1

Mar.2005

Ξ收稿日期:2004-06-04

作者简介:黄绍平(1964-),男,教授,研究方向:电力系统无功补偿、电力系统数字仿真.

在各种应用中,对逆变器的输出特性有严格要

求,除要求频率可变、电压可调外,还要求电压基波尽可能大,谐波含量尽可能小.上述的多电平结构就是改善逆变器输出特性的一种方法.改善逆变器输出特性更有效的方法是采用脉宽调制(PWM )技术.PWM 型逆变器是使用自关断器件作高频通断的开关控制,将逆变器的台阶电压输出变为等幅不等宽的脉冲电压输出,并通过调制控制消除输出电压的较低次谐波,只剩幅值很小、易于抑制的较高次谐波.PWM 有各种调制方法,按照输出电压脉冲宽度变化规律有等脉宽调制和正弦脉宽调制(SPWM ).SPWM 又有同步调制与异步调制,同步调制是使三

角形载波频率随正弦调制波频率成比例变化,在任何输出频率下都保持每半个周期内的输出脉冲数不变.

2 三相三电平电压型逆变器建模

图2是利用MA TLAB/PSB 中的各种元件模块所建立的一个三相三电平电压型逆变器的系统仿真模型

[2]

.

这一系统由两个结构完全一样的三相三电平电压型PWM 逆变器构成.逆变器的输出通过一台三

相变压器供电给一个交流负载(1kW ,500var ,60Hz ,208V ).变压器的漏抗(8%)和负载电容(500var )可对逆变器输出电压进行滤波,以消除交流电压中的谐波成分.图2中各元件模块的功能与参数设置阐述如下:

(1)三相三电平桥本系统使用两个完全相同的三相三电平桥.在PS B 中有通用桥模块、三电平桥模块等电力电子电路模块可供使用.三电平桥模块的桥臂数可选为1、2、3,功率开关器件有GTO 和IG BT 可供选择,图2中选用的是三相桥,器件为GTO.每个桥臂除开关器件外,还有4个与开关器件反并联的续流二极管和两个中

点钳位二极管.开关器件内阻R on =0.1m

Ω,正向压降U f =1V ,二极管正向压降U f =1V.

(2)三相线性变压器

逆变器输出通过变压器给一个三相交流负载供电.这一变压器使用PSB 中的三相线性变压器(12端子)模块,它是三个单相双绕组变压器构成的,有12个端子.有关参数设置为:三相额定功率为1000VA ,f =60Hz ,一次绕组线电压为240V ,二次绕组线电压为208V ,Rm =200p.u (标么值),Xm =200p.

u.

图2 三相三电平电压源型逆变器的系统仿真模型

(3)三相PWM 发生器

采用MA TLAB/PSB /Extras/Discrete Control

Blocks library 中的三相离散PWM 发生器模块.这

一PWM 发生器能为三相两电平或三电平逆变器

2 湖南工程学院学报 2005年

(单桥或双桥)产生触发脉冲.在本模型中,PWM 脉

冲发生器的输出端口(P1、P2)产生两组12脉冲序

列,每个三电平桥1组.这一PWM 脉冲发生器能运行在同步或异步方式.当运行在同步方式时,三角载

波信号与PLL (相同步逻辑,锁相环)输入端“ωt ”的给定角保持同步.在同步方式,载波频率由开关速度

确定,它是输出频率的倍数.当选择“external ”输入作为调制信号源,连接到输入端“Ust ”的3个调制信号被使用,这3个调制信号由三相可编程电源提供.如果选择“Internal ”内部信号输入作为调制信号源,载波就不同步.在这种情况下,输出信号的大小(调制系数)、频率和相位角均可在模块菜单中设置.

在本模型中,直流母线电压设为400V (±200V );载波频率设为1080Hz (18×60Hz );3个调制信号(三相可编程电源提供)的频率设为60Hz ,信号幅值

为0.85,即调制系数m =0.85.

(4)虚拟PLL 模块

采用MATLAB /PS B /Extras/Discrete C ontrol Blocks library 中的离散虚拟PLL 模块.它没有输入信号,通过参数设定,模拟一个实际的PLL.它有3个输出端,分别输出频率、频率向量sin (ωt )与cos (ωt )、电

角度ωt (0~2π

).3 三相三电平电压型逆变器输出特性的仿

真分析

设置仿真参数,启动仿真,在示波器上可观察到

3个电压波形(如图3所示):①三电平桥I 输出的A 相对中性点的电压u an ;②由两个三电平桥输出的

A

图3 三相三电平电压源型逆变器输出电压波形

相电压u aa ;③加在负载上的线电压u ab .

从波形图可以看出:u an 有三个电平:+200V 、0V 、-200V ;u aa 有5个电平:±400V 、±200V 、0V.而负载电压非常接近正弦波,这是由于变压器漏感和负载电容所组成的滤波回路大大地减少了逆变器

输出电压中的谐波.

为了对输出特性进行分析,在仿真结束后,打开MA TLAB/PSB 中的快速傅里叶变换(FF T )功能,对上述3个电压波形的谐波成份进行分析,3个电压波形中各次谐波含量如图4所示

.

(a )u an

中各次谐波含量

(b )u aa

中各次谐波含量

(b )u ab 中各次谐波含量

图4 输出电压中的谐波

3

第1期 黄绍平等:三相三电平电压型逆变器仿真建模与特性分析

4 结束语

仿真实例结果表明了仿真模型的正确性,此模型可用于定量地分析计算逆变器的输出特性.本仿真模型和仿真方法适应于对采用不同电力电子器件、不同控制方法的三相电压型逆变器的仿真.

参 考 文 献

[1] 姜齐荣,谢小荣,陈建业.电力系统并联补偿———结构、

原理、控制与应用[M].北京:机械工业出版社,2004. [2] 吴天明,谢小竹,彭 彬.MA TLAB电力系统设计与分

析[M].北京:国防工业出版社,2004.

Simulation Modeling and Characteristic Analysis

of Three2phase Three2level V oltage Type Inverter

HUAN G Shao-ping,YAN G Qing,HUAN Xi-ming

(Dept.of Elect.and Information Eng.,Hunan Institute of Engineering,Xiangtan411101,China)

Abstract:Using the power system blockset(PSB),a simulating model for the three2phase three2level voltage type inverter is built.The ouput characteristics of this inverter are simulated and the harmonics in output voltage are analysed by the Fast Fourier Transform Algorithm(FF T)tool.The simulating instance confirms the correct2 ness of this model and the simulating method.

K ey w ords:three2level inverter;Pulse2Width Modulation(PWM);Fast Fourier Transform Algorithm;har2 monic;MA TLAB

《湖南工程学院学报》对论文摘要的编写要求

摘要是科技论文的重要组成部分,是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。其基本要素包括研究的目的、方法、结果和结论。

摘要大致可分为报道性摘要、指示性摘要和报道———指示性摘要3种类型。

《湖南工程学院学报》要求写报道性摘要。

报道性摘要是指明一次文献的主题范围及内容梗概的简明摘要,相当于简介。报道性摘要一般用来反映科技论文的目的、方法及主要结果与结论,在有限的字数内向读者提供尽可能多的定性或定量的信息,充分反映该研究的创新之处。

4 湖南工程学院学报 2005年

电源逆变器工作原理

电源逆变器工作原理直流至直流切换式转换器典型直流至直流转换器系统的构造如图1所示,其输入通常为由线电压整流而得到非调节直流电压,然后再利用切换式直流至直流转换器将此变动的直流电压转换成一调节的直流电压。图1 直流至直流切换式转换器典型直流至直流转换器系统的构造1.降压式(step-downbuck)转换器。2.升压式(step-upboost)转换器。3.升降压式(step-down/step-u 电源逆变器工作原理 直流至直流切换式转换器典型直流至直流转换器系统的构造如图1所示,其输入通常为由线电压整流而得到非调节直流电压,然后再利用切换式直流至直流转换器将此变动的直流电压转换成一调节的直流电压。 图1 直流至直流切换式转换器典型直流至直流转换器系统的构造 1.降压式(step-downbuck)转换器。 2.升压式(step-upboost)转换器。 3.升降压式(step-down/step-upbuck-boost)转换器。 4.全桥式转换器。 上述四种转换器中,只有降压式及升压式是最基本的转换器电路结构,升降压式转换器是此二基本转换器的结合,而全桥式转换器则是由降压式转换器衍生而来。

直流至直流转换器的控制直流至直流转换器的作用即是在输入电压与输出负载变动的情况下能够调节输出电压为所设定的位准。电压位准转换之原理可以图2(a)所示之简单电路来说明,由开关导通与截止可得图2(b)之波形,其中输出电压Vo平均值大小Vo与开关之导通及截止时间(ton及toff)有关。平均输出电压大小调整之最典型的方式是采用脉波宽度调变法(Pulse-WidthModulation,PWM),其切换周期Ts(=ton+toff)为固定,由调整导通时间之大小来改变平均输出电压之大小Vo。 A B 图2 脉波宽度调变切换控制的方块图如图3(a)所示,开关之切换控制信号由控制讯号Vcontrol与周期为Ts之锯齿波Vst比较而得,控制信号则由Vo之实际值与设定值之误差放大而得。Vcontrol与Vst比较所得之切换控制信号的波形如图3(b)所示。当控制讯号Vst 较大时,则为高准位信号,即使开关导通,反之为低准位信号即使开关截止,故开关之切换周期亦为Ts,由以上的原理可知,开关切换之责任周期(DutyRatio)为

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

三电平逆变器的主电路结构及其工作原理

所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。

单相电压源型逆变器控制系统设计

单相电压源型逆变器控制系统设计 摘要:大量UPS系统在为许多不允许供电中断的重要用电设备提供不间断供电,研发UPS的关键便是电压源型逆变器,控制输出高质量电压波形,且带非线性负载和负载突变的情况下,仍能保持电压的稳定和高质量。本文的主要内容是研究单相电压源型逆变器,采用电压电流双环瞬时值反馈控制技术,并详细讨论了基于极点配置的双环PI控制参数的整定。同时提出单环超前滞后电压瞬时值反馈控制,并做了大量仿真研究,显示这两种控制方式都具有优越的控制性能。 关键词:双环控制;极点配置;超前滞后;电压源型逆变器 The control system design of single-phase voltage source inverter Abstract:Uninterruptible Power Supply (UPS) systems are widely used for supplying critical equipment which can’t afford utility power failure. The core of a UPS system is a inverter which Control the output voltage waveform with high quality. Even connected with nonlinear load and mutational load, it still can maintain the stability of voltage and the quality. this paper is to study the single-phase voltage source inverter, adopting the instantaneous values of voltage and current double-loop feedback control technology. The dual-loop PI control parameters setting based on pole assignment is discussed in detail. At the same time single-loop instantaneous voltage value with the lead-lag control strategy. And lots of simulation have been achieved. A inverter is the core of a UPS system. To achieve nearly sinusoidal output voltage even with nonlinear loads, many waveform correction techniques have been proposed. This dissertation focuses on the research of the instantaneous feedback technology of PWM inverters. Both control methods show excellent performance. Keywords: dual-loop control;PWM inverter;CVCF;lead-lag control strategy 1 引言 能源的紧张,让人们越来越重视能源利用的高效性。电能成为生产生活使用最直接最重要的能源,在电能的生产、传输和利用过程中,高效利用电能离不开电能变换;同时高精密设备对电能稳定性和高质量的要求,也迫切需要电力电子电能变化的迅速发展。 对于逆变电源的控制策略,可以采用重复控制、无差拍控制、滑模变结构控制或者PID控制。但是现实实际应用中,现今普遍采用的电压电流双环控制,分为电感电流内环电压外环和电容电流内环电压外环两类,由于电感电流闭环没有把负载电流包括在内,导致系统对扰动敏感,所以本文重点研究了单相逆变器电容电流内环电压外环双环控制系统特性。 2 单相全桥PWM逆变器数学模型 单相全桥PWM逆变器主电路原理图如图1所示,交流输出侧由滤波电感L与滤波电容C构成低通滤波器,r 为考虑滤波电感L 的等效串联电阻、死区效应、开关管导通压降、线路电阻等逆变器中各种阻尼因素的综合等效电阻,直流母线电压Udc,逆变器输出电压ur,流过滤波电感的电流il, 负载电压电流为u0、i0. L 图1 单相全桥PWM逆变器主电路原理图 2.1 单相逆变器连续域数学模型 将输出电压uo和电感电流il作为状态变量,ur 和i0分别为输入量和扰动量,输出电压uo为输出量,可以得到逆变器输出滤波器线性双输入、单输出状态空间模型,其在连续域下的状态方程可以表示为: 00 1 1 1 1r l l u u C u i C i r i L L L ?? ?? ?? ?? ???- ?? ??? ?? =++ ?? ??????? ?? ??? ?? ?? ?--???? ?? ?? (1)根据单相全桥PWM逆变器数学模型做出系统框

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

(完整版)三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

电压型逆变器

电压型逆变电路[浏览次数:约247次] ?电压型逆变电路是指由电压型直流电源供电的逆变电路。它的直流侧为电压源,或并联有大电容,相当于电压源,直流侧电压基本无脉动,直流回路呈现低阻抗。电压型 逆变电路主要应用于各种直流电源。 目录 ?电压型逆变电路种类 ?电压型逆变电路原理 ?电压型逆变电路特点 电压型逆变电路种类 ?1、单相电压型逆变电路 (1)单相半桥电压型逆变电路 优点:简单,使用器件少 缺点:交流电压幅值Ud/2,直流侧需两电容器串联,要控制两者电压均衡 (2)单相全桥电压型逆变电路,由两个半桥电路的组合,是单相逆变电路中应用最多的。 (3)带中心抽头变压器的逆变电路 2、三相电压型逆变电路 三个单相逆变电路可组合成一个三相逆变电路,应用最广的是三相桥式逆变电路。 电压型逆变电路原理 ?以三相电压型逆变电路为例:图1是一个三相电压型逆变电路的主电路。直流电源采用相控整流电路,由普通晶闸管组成。逆变电路由6个导电臂组成,每个导电臂均由具有自关断能力的全控型器件及反并联二极管组成,所以实际上也是一种全控型逆变电路。负载为感性,星形接法,在整流电路和逆变电路之间并联大电容Cd。由于Cd的作用,逆变入端电压平滑连续,直流电源具有电压源性质。

逆变电路中各全控器件控制极电压信号的时序如图2b所示。信号脉宽为180°,每隔60°有一次脉冲电平的变化,任何时刻有3个脉冲处于高电平。相应地在主电路中也有3个导电臂处于导通状态。 依此类推,可得uAO波形如图2c所示。其他两相uBO和uCO波形分别滞后于uAO120°和240°。根据uAB=uAO-uBO,可得uAB波形如图2e所示。由图可见,逆变电路输出电压uAB、uBC和uCA是分别互差120°的交变四阶梯波。该波形不随负载而

[三电平逆变器的主电路结构及其工作原理]三电平逆变器工作原理

[三电平逆变器的主电路结构及其工作原理]三电平逆变器 工作原理 三电平逆变器的主电路结构及其原理 所谓三电平是指逆变器侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱 位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT 开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假 设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+Vdc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1

充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+Vdc/2。通常标识为所谓的“1”状态,如图所示。 “1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从O点顺序流过箱位二极管Da1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管Da2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-Vdc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-Vdc/2。通常标识为“-1”状态,如图所示。 三电平逆变器工作状态间的转换

逆变器的分类和主要技术性能评价

逆变器的分类和主要技术性能评价 逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为 50~60Hz的逆变器;中频逆变器的频率一般为 400Hz到十几KHz;高频逆变器的频率一般为十几KHz到MHz。 2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为"半控型"逆变器和"全控制"逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为"半控型"普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为"全控型",电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的主要技术性能及评价选用 一、技术性能 1、额定输出电压 在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。对输出额定电压值的稳定准确度一般有如下规定: (1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。 (2)在负载突变(额定负载 0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的± 8%或±10%。 2、输出电压的不平衡度 在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如 5%或 8%。 3、输出电压的波形失真度 当逆变器输出电压为正弦度时,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值不应超过 5%(单相输出允许 10%)。 4、额定输出频率 逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频 50Hz。正常工作条件下其偏差应在±1%以内。

电压源变流器的高压直流输电教学内容

电压源变流器的高压直流输电(VSC-HVDC ) 1.引言 晶闸管的应用领域主要是在整流(交流-直流)、逆变 (直流-交流)、变频 (交流-交流)、斩波(直流-直流)。传统的高压直流输电采用晶闸管变流器,而新型的直流输电技术(VSC-HVDC )采用IGBT 、IGCT 等全控器件组成电压源变流器(VSC)完成交流-直流-交流的变换。两个VSC 分别作整流器和逆变器,一个工作在定直流电压模式,另一个工作在定有功功率模式。两个变流器的无功功率都可以单独调节。其核心是利用由全控型电力电子器件构成并基于脉宽调制 ( P WM)技术控制的VS C 代替了常规 HVDC 中的可控硅换流器。该输电技术可向无源网络供电.不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等。 如图 1 所示,常用的两端 VSC —HVDC 的主要部件包括:电压源换流器( v s c )、绝缘栅双极晶体管( I G B T )、脉宽调制( P WM)、控制系统。 VSC —HVDC 的基本控制原理: δsin T S C X U U P = Q=)cos (S C T C U U X U —δ 其中:Uc 为换流器输出电压的基波分量,Us 为交流母线电压基波分量,δ为Uc 和 Us 之间的相角差,T X 为换流电抗器的电抗。

2. VSC-HVDC的基本控制方式及特点 定直流电压控制方式,用以控制直流母线电压和输送到交流侧的无功功率,定直流电流( 功率) 控制方式,用以控制直流电流(功率)和输送到交流侧的无功功率,定交流电压 控制方式,仅控制交流侧母线电压,适用于向无源网络供电,通常对于一个两端VSCHVDC系统,必须有一端采用定直流电压控制方式。 3. VSC-HVDC的仿真 将两个230KV,2000MVA的交流系统通过VSC-HVDC相连,进行功率传输。 图为仿真电路图:

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

两电平电压源逆变器空间矢量调制方案

任务2:两电平电压源逆变器空间矢量调制方案 周乐明 学号:S1******* 电气2班 摘要 提出了三相两电平逆变器的空间矢量调制方法,详细讨论了两 电平逆变器的工作原理及空间矢量调制的基本原理,并给出一个具体的仿真实例,通过仿真 ,可以得出实际运行中的电压、电流的波形,而且在文中给出了实例的电路原理图,使得对 于空间矢量调制的原理得以更加清楚的认识。 1. 两电平电压源逆变器空间矢量调制 1.1 结构试图 三相电压型逆变器电路原理图如图2.1所示。定义开关量a ,b ,c 和a ',b ',c '表示6个功率开关管的开关状态。当a ,b 或c 为1时,逆变桥的上桥臂开关管开通,其下桥臂开关管关断(即a ',b '或c '为0);反之,当a ,b 或c 为0时,上桥臂开关管关断而下桥臂开关管开通(即a ',b '或c '为1)。由于同一桥臂上下开关管不能同时导通,则上述的逆变器三路逆变桥的组态一共有8种。对于不同的开关状态组合(abc ),可以得到8个基本电压空间矢量。各矢量为: 22j j dc 33out 2()3 U U a be ce ππ-=++ (2-1) 则相电压V an 、V bn 、V cn ,线电压V ab 、V bc 、V ca 以及out ()U abc 的值如下表2-1所示(其中U dc 为直流母线电压)。 a c' b' a'b c U dc A B C N Z 图2.1 三相电压型逆变器原理图 表2-1 开关组态与电压的关系 a b c V an V bn V cn V ab V bc V ca out U 0 0 0 0 0 0 0 0 0 0 1 2U dc /3 -U dc /3 -U dc /3 U dc -U dc dc 23 U

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构 及其工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压 (+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压 U=+V dc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

三相电压源型SPWM逆变器的设计资料

三相电压源型S P W M 逆变器的设计

2011~2012学年第 2 学期 《电力电子技术》 课程设计报告 题目:三相电压源型SPWM逆变器的设计专业:电气工程及其自动化 班级: 09 电气工程及其自动化 姓名: 指导教师: 电气工程系 2012年5月12日

任务书

目录 摘要................................................................................................ 错误!未定义书签。 1 设计原理 (2) 1.1 SPWM控制基本原理 (2) 1.2逆变电路 (2) 1.3三相电压型桥式逆变电路 (3) 2 设计方案 (5) 2.1 逆变器主电路设计 (5) 2.2 脉宽控制电路的设计 (6) 2.2.1 SG3524芯片 (6) 2.2.2 利用SG3524生成SPWM信号 (7) 2.3 驱动电路的设计 (9) 2.3.1 IR2110芯片 (9) 2.3.2 驱动电路 (9) 3 软件仿真 (10) 3.1 Matlab软件 (10) 3.2 建模仿真 (11) 4 心得体会 (12) 参考文献 (15) 附录 (16)

摘要 本次课程设计题目要求为三相电压源型SPWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个部分电路以及元器件的取舍,比如驱动电路、抗干扰电路、正弦信号产生电路等,其中部分电路的绘制采用了Protel软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相电压源型逆变电路 Matlab 仿真

相关文档
相关文档 最新文档