文档库 最新最全的文档下载
当前位置:文档库 › 配位化合物合成方法以及应用的研究

配位化合物合成方法以及应用的研究

配位化合物合成方法以及应用的研究
配位化合物合成方法以及应用的研究

配位化合物合成方法以及应用的研究

摘要:近年来,配位化合物已成为化学的一个研究热点,主要在于其在好多方面能够体现

出不同的结构性质,广泛应用于日常生活、工业生产及生命科学中。它不仅与无机化合物、有机金属化合物相关连,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。本文就其的结构、合成方法进行总结以及提出现代合成技术,对其在相关领域应用进行了论述以及发展前景进行了展望。

关键词:配合物;构型;合成方法;催化性能

0前言

配位化合物简称配合物,又称络合物,是一类非常广泛和重要的化合物. 随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的意义,配合物不仅在化学领域里得到广泛的应用,并且对生命现象也具有重要的意义.[1]显然, 配位化合物研究的对象已不再局限于传统的配体和中心原子之间形成的配位化合物。形成了主客体化学和超分子化学, 大大地拓展了配位化合物的研究范围。一些有重要应用价值的配合物将会实现工业化生产, 配合物的应用会更加广泛, 特别是在开发多功能的绿色催化剂方面, 配合物的进展前景十分美好。配位化合物的合成成为了目前最大的研究课题,目前各种新型配合物不断涌现,它既包括一些经典配合物,同时也出现一些特殊配合物,要想用统一的模式总结各类配合物的制备和分离方法是不可能的,只能通过各种配合物结构的不同特点针对性地归纳出某些配合物的制备方法,为同类型的配合物合成提供方法鉴见.[2]

1 配合物结构和性质[3]

配位化合物的构型由配位数所决定,也就是化合物中心原子周围的配位原子个数。配位数与金属离子和配体的半径、电荷数和电子构型有关,一般在2-9之间,镧系元素和锕系元素的配合物中常会出现10以上的配位数。五配位中,常常涉及到三角双锥和四方锥两种构型的互变,因此,很大一部分五配位化合物的结构是介于这两个结构之间的一种中间结构。更高配位数的化合物中,八配位的可以是四方反棱柱体、十二面体、立方体、双帽三角棱柱体或六角双锥结构;九配位的可以是三帽三角棱柱体或单帽四方反棱柱体结构;十配位的可以是双帽四方反棱柱体或双帽十二面体结构;十一配位的化合物很少,可能是单帽五角棱柱体或单帽五角反棱柱体。异构现象和结构异构是配合物具有的重要性质。它不仅影响配合物的物理和化学性质,而且与其稳定性、反应性和生物活性也有密切关系。

2 合成方法

配位化合物包括经典配合物和特殊配合物。经典配位化合物是指由一定数目的离子或分子和原子或离子(中心原子) 以配位键相结合,按一定的组成和空间构型所形成的化合物。[4]通常要想形成稳定的配位化合物必须符合中心原子M 通常是过渡金属元素的原子(或离子) ,具有空的价轨道。配位体L 则有一对或一对以上孤对电子。从理论上看,形成配合物它必须是路易斯酸和路易斯碱之间发生反应。而特殊配合物又包括金属羰基配合物、分子氮配合物、烯和炔类配合物、金属簇状配合物和王冠类化合物。

2.1直接法

2.1.1水溶液中的直接配位反应

在直接配位合成中,首先必须考虑各种因素对配位合成的影响,考虑到它应易于与配体发生化学反应而且容易使生成物易与反应底物进行分离。配体在选择时应考虑到它在溶剂中必须有一定的溶解度且不与水发生溶剂化反应等. 例如,由三氯化铬与乙酰丙酮在水溶液中合成[ Cr (C5 H7O2 ) 3 ]时,由于反应物和产物都易溶于水,使反应无法进行到底,如果在该反应体系中加入尿素,由于尿素在水中分解产生氨而控制了溶液的PH 值使产物很快地结晶而析出.[5 ]

CO(NH2 ) 2 + H2O 2NH3 + CO2CrCl3 + 3C5 H8O2 + 3NH3 [ Cr ( C5 H7O2 ) 3 ]+ 3NH4Cl 2.1.2组分化合法合成新的配位化合物

所谓的组分化合法就是把要合成的配合物的组成成分按适当的分量和次序混合,在一定的条件下直接合成配合物。对于此类合成方法特别适用于制备那些不稳定的配位化合物,因为此类合成中对于此类合成方法特别适用于制备那些不稳定的配位化合物,避免了制备、分离配体的步骤。如将二水合醋酸锌的吡啶饱和溶液经过分子筛脱水后与吡咯、吡啶醛、分子筛一起装人高压瓶中混合用油浴加热至130~150 ℃,保温48 小时后冷却、过滤、无水乙醇洗涤结晶、风干即得到大环合锌紫色晶体。[6]

2.2组分交换合成法

2. 2. 1金属交换反应

这类方法主要是指金属配合物和过渡金属盐之间发生金属离子的交换,其反应通式可以写成下式: MLn + M′n + M′Ln + (n - m)L

金属的置换有一定的规律性,对于不同的配体有不同的金属置换次序。[7]该方法的特点是操作

简单,可以从一种金属配合物出发,制备出一系列不同过渡金属的取代物。

2. 2. 2 配体取代反应

这类方法主要是指在一定条件下,新配体可以置换原配合物中的一个、几个或全部配体,从而得到新的配合物。对于该类反应要求所选择的新配体与中心原子的配位能力要远高于原配合物中中心原子与配体的配位能力且易于分离和提纯。在有些情况下新配体只能部分取代旧配体,这时往往会得到混和配体配合物. 还有些情况是原配合物中的配体具有很高的活性,当加入某些物质时会与配体发生反应从而导致新物质的生成。

2. 3氧化还原反应法[8]

在许多金属配合物的制备过程中,往往会发生氧化还原反应。例如:在钴配合物制备中,

可以先由二价的钴盐制成二价钴的配合物,再将该配合物在一定的条件下进行氧化而得到三价钴的配合物在氧化还原法制备配合物时有时将金属单质溶解在酸的水溶液中制备某些金属水合。物同时在非水溶液中也可以由金属单质进行氧化而得到配合物。

2.4固相反应法

通过固相反应合成新的配合物可以由配合物与相应的金属化合物反应来制备也可以从已知的配合物来制备新的配合物。主要有制备由配体与金属化合物反应法,这种方法中通常配体的熔点较低,在反应条件下配体呈熔融状态,因此配体与金属化合物之间的反应成为配体与金属之间的复相反应。[9]另外固相反应还包括在固相条件下把已知的配合物通过分解而得到新的配合物,也有在固相条件下通过形成金属—金属键或在固相时通过配体的取代来形成新的配合物。

2.5大环配合物的模板合成

某些含氮配合物与天然的血红朊、细胞色素C、酞花青及叶绿素等十分相似,所以合成大环配合物并弄清其结构和性能进而实现人工模拟生命过程的想法一直受到人们的关注。随着研究的深入,人们发现用金属离子可以促进大环配体生成并能直接合成大环配合物。究其原因是由于金属离子的配位作用可以将反应基团固定在适当的位置而使环化反应容易进行。例如:将邻氨基苯甲醛和铜盐混合后,则氨基和醛基将将聚合于铜离子的周围而发生缩合反应制得含铜离子的大环配合物。[10]

2.6 现代合成法

2.6.1超声合成法[11]

超声合成法能够利用其能量的高效能性提高反应的产率,控制反应的过程,使产物能够快速的结晶,调控配位聚合物的形貌和尺寸等。

2.6.2离子液体法

离子液体法主要是利用具有高极性的有机溶剂作为离子液体,利用其溶解性强的特点进行反应, 由于在反应过程中所需的蒸汽压较低、热稳定性比较高, 在配位聚合物的合成方法中也占据着相当重要的地位。

3配位物的实际应用

配合物在许多方面有广泛的应用。在实验研究中,常用形成配合物的方法来检验金属离子,分离物质,定量测定物质的组成。在生产中,配合物被广泛应用于染色,电镀,硬水软化,金属冶炼领域。在许多尖端领域如激光材料,超导材料,抗癌药物的研究,催化剂的研制等方面,配合物发挥着越来越大的作用。

3. 1配合物在元素分离和鉴定中的应用

在分析化学中应用十分广泛. 它通常用作显色剂、金属指示剂、掩蔽剂和解蔽剂等,来鉴定、分离某些离子或对溶液进行比色分析以测定有关离子浓度等。例如,用丁二酮肟与Ni2 +在氨溶液生成鲜红色的螯合物沉淀,用来鉴定溶液中Ni2 +的存在是相当灵敏的。

3.2在沉淀分离中的应用

配位剂在元素分离中的应用,最早是将它作为沉淀剂使用。这是由于一些性质相近的元素在形成配合物后它们的溶解度相差巨大,因而有利于元素的分离。例如Zr ( Ⅳ) 和Hf ( Ⅳ) 它们两者半径相似和性质非常相似,用一般的方法很难将它们完全分离。但Zr ( Ⅳ) 和Hf ( Ⅳ) 可以形成K2 ZrF6和K2 Hf F6配合物,它们在溶解度上具有很大的差距,据此可以使它们得到很好的分离。[12]

3.3在离子交换中的应用

离子交换是利用离子交换树脂来分离和提纯物质的一种方法,也是现代技术领域中的一种重要的分离方法。例如:铀的提取和分离,天然铀形成配合物的能力很强,能与一些阴离子形成配阴离子,若用苏打水浸取,则在浸取液中形成[UO2 (CO3 ) 3 ]4 -配离子,用硫酸溶液浸取则得到[UO2 (SO4 ) 3 ]4 -配离子,而其它金属具有这种配位能力的极少,因此就可以通过阴离子交换树脂,则配阴离子会被吸附而与其它金属离子分离,再通过淋洗剂脱附就可以得到金属配合物。

3.4配位催化作用

当配位催化作用进行时,反应物与过渡金属形成配合物,使反应物围绕在过渡金属原子的周围,使反应物处于活化状态而发生特定的反应。这些配位催化中的特殊反应主要有:1、与中心原子配位的某些配体插入到相邻的金属—碳、金属—氢键中去形成插入反应。2、当由σ键合的有机金属配合物,其β—碳位上的C - H 键容易断裂生成金属氢化物,有机体则在端基形成双键而离开配合物形成插入反应的逆过程。[13]3、当某些配位不饱和的过渡金属配合物,将一个中性分子分解为两个离子加成到金属配合物的配位空位上形成氧化加成和还原消除反应。

4展望

配位化合物结合了配体和金属离子两者的特点,通过运用分子设计和晶体工程进行功能的复合和组装,人们可以合理的设计具有特定性质和功能的材料,为开发新型功能材料提供了丰富的研究素材。随着配位化学研究的不断发展和深入,配合物将在人类的生产和生活中各方面起更加重要的作用。

参考文献

[1]F Basolo , R Johnson. Coordination Chemistry[M] . New York :W A Benjamin inc ,1964.

[2]刘丹萍,王海燕. 配位化合物的制备及应用[J]. 郧阳师范高等专科学校学报,2008,03:41-45.

[3]秦超. 由非对称配体构筑的新型配位化合物的合成、结构和性质研究[D]. 东北师范大学, 2006.

[4] J.-W. Cheng, S.-T. Zheng, G.-Y. Yang. Diversity of crystal structure with different lanthanide ions nvolving in situ oxidation-hydrolysis reaction [J]. Dalton Trans., 2007, 36, 4059-4066.

[5]F Basolo , R Johnson. Coordination Chemistry[M] . New York :W A Benjamin inc ,1964.

[6]徐如人,庞文琴. 无机合成与制备化学[M] . 北京:高等教育出版社,2002.

[7]J E Huheey. Inorganic chemistry (2nd edition) [M] . New York :Harper &Row publisher ,1978.

[8]王献科, 魏黎明. 用铁(Ⅱ)—邻菲罗啉络合物和氧化还原滴定法测定亚铁[J]. 冶金分析, 2005, (4).

[9]徐如人,庞文琴. 无机合成与制备化学[M] . 北京:高等教育出版社,2002.

[10]G. Accorsi, A. Listorti, K. Yoosaf, N. Armaroli. 1,10-Phenanthrolines: versatile building blocks

for luminescent molecules, materials and metal complexes [J]. Chem. Soc. Rev., 2009, 38(6), 1690-1700. [11]H. Gudbjartson,K. Biradha,K. M. Poirier,M. J. Zaworotko. Novel Nanoporous Coordination

Polymer Sustained by Self-Assembly of T-Shaped Moieties [J]. J. Am. Chem. Soc., 2010, 121(11), 2599-2600.

[12]罗宗铭. 三元络合物及其在分析化学中的应用[M] . 北京:人民教育出版社,2005.

[13]R.Vaidhyanathan,D.Bradshaw,JN.Rebilly,J.P.Barrio,J.A.Gould,N.G.Berry,M.J.Rosseinsky,AFamilyofNanoPor

ousMaterialsBasedonanAminoAcidBackbone,Aw.Chem.,Int.Ed,2006,6495

配合物在医学中的应用

配位化合物在医学中的应用 配位化合物是一类广泛存在、组成较为复杂、在 理论和应用上都十分重要的化合物。目前对配位化 合物的研究已远远超出了无机化学的范畴。它涉及 有机化学、分析化学、生物化学、催化动力学、电化学、量子化学等一系列学科。随着科学的发展,在生物学和无机化学的边缘已形成了一门新兴的学科生物无机化学。新学科的发展表明,配位化合物在生命过程中起着重要的作用。除此之外,配位化合物广泛应用于生化检验、药物分析、环境监测等方面。本文对配位化 合物理论的发展及其在医学、药学中的重要作用和应用作简单的论述。 1 配位化合物及其理论的发展 1. 1 配位化合物的组成配位化合物( coordination compound, 简称配合物, 旧称络合物) 是指独立存在的稳定化合物进一步结合而成的复杂化合物。从组成上看,配位化合物是由可以给出孤对电子对或多个不定域电子的一定数目的离子或分子(统称为配位体)和具有接受孤电子对或多个不定域电子空位的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。 中心原子大多是位于周期表中部的过渡元素。配位体中可作为配原子的总共约有14种元素,它们主要是位 于周期表的A、A、A族及H - 和有机配体中的C原子,这些元素是: H、C、O、F、P、S、Cl、As、Se、 Br、Sb、Te 、I[ 1]。 1. 2 配位化合物理论的发展配位化合物理论的发展经历了一个漫长的过程。国外最早的文献记载是在1704年,普鲁士染料厂的工人迪巴赫( Dies-bach) 把兽皮或牛血、Na2CO3在铁锅中煮, 得到一种兰色染料普鲁士蓝( Fe4[ Fe( CN)6]3)[ 2]。虽然如此,人们通常还是认为配位化合物始自1798年法

2020高中化学 合成有机高分子化合物的基本方法(基础)知识讲解学案 新人教版选修5

合成有机高分子化合物的基本方法 【学习目标】 1、认识合成高分子的组成与结构特点,能依据简单高分子的结构分析其链节和单体; 2、掌握加聚反应和缩聚反应的特点,能用常见的单体写出聚合反应的方程式或聚合物的结构简式或从聚合物的结构式推导出合成它的单体; 【要点梳理】 要点一、高分子化合物概述 1.高分子化合物的概念。 高分子化合物是指由许多小分子化合物以共价键结合成的,相对分子质量很高(通常为104~106)的一类化 合物,常简称为高分子,也称为聚合物或高聚物。 2.高分子化合物的分类。 3.高分子化合物的表示方法(以聚乙烯为例)。 (1)高聚物的结构简式: 。 (2)链节:—CH 2—CH 2—(重复的结构单元)。 (3)聚合度(n ):表示每个高分子链节的重复次数n 叫聚合度,值得注意的是高分子材料都是混合物,通常从实验中测得的高分子材料的相对分子质量只是一个平均值。 (4)单体:能合成高分子化合物的小分子化合物称为单体。 如CH 2=CH 2是合成 (聚乙烯)的单体。 4.有机高分子化合物的结构特点。 (1)有机高分子化合物具有线型结构和体型结构。 (2)线型结构呈长链状,可以带支链(也称支链型)。也可以不带支链,高分子链之间以分子间作用力紧密结合。 (3)体型结构的高分子链之间将形成化学键,产生交联,形 成网状结构。 5.有机高分子化合物的基本性质。 由于有机高分子化合物的相对分子质量较大及其结构上的特点,因而具有与小分子化合物明显不同的一些性质。 (1)溶解性。 (2)热塑性和热固性。 (3)强度:高分子材料的强度一般比较大。 (4)电绝缘性:通常是很好的电绝缘材料。 要点二、合成高分子化合物的基本方法 CH 2-CH 2 n CH 2-CH 2 n 按照高分子化合物的工艺性质和使用分类:塑料、橡胶、纤维、涂料、黏合剂与密封材料 天然高分子化合物 合成高分子化合物 按照高分子化合物的来源分类 线型高分子 支链型高分子 体型高分子 按照高分子化合物分子链的连接形式分类 热塑性高分子 热固性高分子 按照高分子化合物受热时的不同行为分类 高分子化合物 线型结构:能溶解在适当的溶剂里(如有机玻璃) 体型结构:不容易溶解,只是胀大(如橡胶) 有机高分子 线型结构:热塑性(如聚乙烯塑料) 体型结构:热固性(如酚醛树脂) 有机高分子

配位化合物的合成化学

配位化合物的合成化学 自从1893年瑞士化学家维尔纳(W erner)在德国《Journal of Inorganic Chemistry》上发表了题为“对于无机化合物结构的贡献”的配位化学方面的第一篇经典著作之后,原本作为无机化学分支的配位化学发展极为迅速, 并始终处于无机化学研究的主流。配位化学的发展打破了传统的有机化学和无机化学之间的界限, 在众多配合物中金属离子和有机配体形成的配合物以其花样繁多的价键形式和空间结构, 在化学键理论发展、配合物性能等多样性方面引起了人们广泛的研究兴趣。 目前, 聚合物的研究主要集中在合成具有新颖结构的配位聚合物, 并通过对其结构特点的分析, 探讨其结构及其功能的关系, 进而开发它们潜在的功能, 并最终使其功能化。影响配位聚合物结构的因素有很多, 其中最主要的影响是配体和金属离子(或叫受体和底物), 总体结构可由配体分子的几何形状和金属离子的配位性质加以预测, 其它影响因素会对配合物的结构起着细微的影响。从这一点出发, 选择合适的配体作为合成材料就显得尤为重要,不同的有机分子结构、化学和物理性能直接影响到目标产物的结构和性质。多功能复合材料的设计和开发领域具有巨大的发展潜力以及诱人的发展前景, 因而带动了相关领域研究的迅速发展。 本文将从直接合成法、组分交换法、氧化还原反应法、固相反应法、包结化合物合成和大环配体模板配合物合成等六个方面介绍配合物的合成途径和化学。 1、直接法 通过配体和金属离子直接进行配位反应,从而合成配合物的方法,称为直接法,包括溶液中的直接配位反应、金属蒸气法和基底分离等。 1.1 溶液中的直接配位作用 在直接配位合成中,作为中心原子最常用的金属化合物是无机盐(如卤化物、醋酸盐、硫酸盐等),氧化物和氢氧化物等。选择过渡金属化合物时要兼顾易(与配体)发生反应和易与反应产物分离两方面。 直接法合成配合物时,溶剂的选择也很重要,一种好的溶剂应该是反应物在其中有较大的溶解度而且不发生分解(水解、醇解等),并有利于产物的分离等特点。 水是重要的溶剂之一。乙酰丙酮、氨、氰和胺类的许多配合物的合成是在水溶液中进行的。例如由硫酸铜和草酸钾直接合成二草酸合铜(Ⅱ)酸钾是在水溶液中进行的。 溶液的酸度对反应产率和产物分离有很大影响,控制溶液的pH是合成某些配合物的关键。例如,由三氯化铬与乙酰丙酮水溶液合成[ Cr(C5H7O2)3]时,由于反应物和产物都溶于水,使反应无法进行到底。所以在反应液中加入尿素,由尿素水解生成氨控制溶液的pH,使产物很快地结晶出来。 对于卤素、砷、磷酸酯、膦、胺、β-二酮等配体的配合物可在非水溶液中合成,常用的溶剂有醇、乙醚、苯、甲苯、丙酮、四氯化碳等。例如把二酮 CF3COCH2COCF3直接加到ZrCl4的CCl4悬浊液中,加热回流混合物直至无HCl放出,可得到锆的鳌合物: 有些配体(例如乙醛、吡啶、乙二胺等)本身就是良好的溶剂。例如:Cu2O+2HPF6+8CH3CN→2[Cu(CH3CN)4]PF6+H2O 直接在乙氰溶液中进行。

有机高分子化合物简介例子

高二(下)化学39(杭州学军中学陈进前编制) 8-1-1 有机高分子化合物简介 [教学目标] 1.知识目标 (1)初步了解有机高分子化合物的结构特点和基本性质. (2)常识性介绍高分子材料在国民经济发展和现代科学技术中的重要作用。 (3)了解烃、烃的衍生物等有机化合物跟天然有机高分子化合物、合成有机高分子化合物的主要差别。 (4)理解“结构单元”“链节”“聚合度”“单体”等基本概念。 2.能力和方法目标 通过有机高分子化合物的学习,学会判断跟有机高分子化合物有关的“结构单元”“链节”“聚合度”“单体”等方法。 通过有机高分子化合物的结构特点、基本性质的学习,提高解决某些实际问题的能力。 3.情感和价值观目标 通过有机高分子化合物的学习,进一步强化“结构决定性质、性质决定用途”的观点.通过有机高分子化合物的学习,了解有机高分子化合物在社会生产和日常生活中的应用,增强学生对化学为提高人类生活质量作出重大贡献的认识,提高化学学习的兴趣.[重点与难点] 教学难点是乙酸的酯化反应。 [教学过程] 由教师质疑,师生共同释疑讨论。 教师提问: 1.什么叫高分子化合物?你学过哪些高分子化合物?能否说出这些实物的主要组成成份,并写出它们的分子式? 要求学生答出:相对分子质量很大(至少在10000以上)的化合物叫高分子化合物,简称高分子。 要求学生写出:聚乙烯(食品袋)、聚氯乙烯(服装袋)、酚醛树脂(电木)、聚异戊二烯(硬橡皮或橡皮筋)的分子式,并能说出它们的名称。 2.判断上述高分子化合物中哪些是天然高分子?哪些是人工合成高分子? 要求学生答出:天然高分子有淀粉、纤维素、蛋白质。合成高分子有电木、聚乙烯、聚氯乙烯、人工合成橡胶等。 3.天然的或人工合成的高分子化合物它们有哪些主要的共同特征呢?(学生回答或教师自问自答) (1)组成上:高分子是以一定数量的结构单元重复组成,例如:聚乙烯

配位化合物的历史

摘要主要阐述了配合物在医药方面的研究及其广泛的应用情况 关键词配合物药物应用贵金属抗癌药物 人类每天除了需要摄入大量的空气、水、糖类、蛋白质及脂肪等物质以外,还需要一定的“生命金属”,它们是构成酶和蛋白的活性中心的重要组成部分。当“生命金属”过量或缺少,或污染金属元素在人体大量积累,均会引起生理功能的紊乱而致病,甚至导致死亡。因此配位化学在医药方面,越来越越显示出其重要作用。 铂类配合物作为抗癌药物的应用 20世纪70年代以来,铂配合物抗癌功能的研究在国内外引起了极大地重视。铂配合物的抗癌活性是基于其对癌细胞的毒性。现已确定具有顺式结构的[PtA2X2](A为胺类,X为酸根)均显示抑瘤活性,其中顺式二氯、二胺合铂抗癌活性最高。它不仅能强烈抑制实验动物肿瘤,而且对人体生殖泌尿系统、头颈部及其他软组织的恶性肿瘤有显著疗效,和其他抗癌药联合使用时具有明显的协同作用。目前,我国已生产“顺铂”供应市场。由于“顺铂”尚有缓解期短、毒性较大、水溶性较小等缺点,经过化学家们的不懈努力,现已制出了与顺铂抗癌活性相近而毒副作用较小的第二代、第三代抗癌金属配合物药物。除铂外,其它金属如Ti、Rh、Pd、Ir、Cu、NI、Fe等地某些配合物亦有大小不同的抗癌活性。可见,金属配合物在探索抗癌新药方面无疑是一个值得大力开拓的领域。 金配合物 金作为药物加以研究是从19世纪末期关于氰化金、硫代硫酸金钠、硫代葡萄糖金等地药效研究开始的,但真正应用于临床却还是近几十年的事。目前,应用最广泛的是金的硫醇类化合物和含磷的金的口服药物用于治疗风湿性关节炎,它还可望作为潜在的杀菌剂被用于治疗牛皮鲜和支气管炎。介入法把金作为放射性治疗药物,埋入或局部注射到肿瘤组织内,以达到杀伤肿瘤细胞的目的,但其安全性及有效性还有待于进一步证实。最新研究表明金的化合物具有抗癌和抗艾滋病的活性:[Au(damp)X2]显示出抗癌活性,[Au(I)(CN)2-]抑制HIV病毒的增值等。同时也在开发双磷金(I)类和金(III)新药,前者的抗癌机理是以能破坏线粒体的膜电位为靶体的,这与顺铂的抗癌机理不同,而金(III)配合物与Pt(II)的配合物是等电子体,分子构型相似,易与DNA成键,抗癌活性与顺铂相当,交叉抗药性较强。但在血清蛋白中,金(III)配合物克迅速水解为金(I)配合物,因此很少有金(III)配合物直接与DNA成键,这些势必成为今后最具有吸引力的领域。另外,从含有AuS基团药物的分子结构式可知,金原子以三价形式参与合成,此基团决定着药物的活性。对于金药物的详细作用机理还不十分清楚,普遍认为金在体内分布较分散,体内缺乏与金亲和力很强大的作用靶点。也有学者认为金配合物抗关节炎的机理是金的硫代苹果酸钠抑制关节炎液中蛋白质的变性,降低溶酶体酶的活性,稳定溶酶体酶,防止酶的漏出。

第09讲 络合物(配位化合物)化学基础

高中化学奥林匹克竞赛辅导讲座 第9讲络合物(配位化合物)化学基础 【竞赛要求】 配位键。重要而常见的配合物的中心离子(原子)和重要而常见的配位(水、羟离子、卤离子、拟卤离子、氨分子、酸根离子、不饱和烃等)。螯合物及螯合效应。重要而常见的络合剂及其重要而常见的配合反应。配合反应与酸碱反应、沉淀反应、氧化还原反应的联系(定性说明)。配合物几何构型和异构现 的颜色。路易斯酸碱的概念。象基本概念。配合物的杂化轨道理论。八面体配合物的晶体场理论。Ti(H2O)+3 6 【知识梳理】 一、配合物基本知识 1、配合物的定义 由中心离子(或原子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单元的化合物都称作配位化合物,简称配合物,也叫络合物。 [Co(NH3)6]3+,[Cr(CN)6]3–,Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。 [Co(NH3)6]Cl3、K3[Cr(CN)6]、Ni(CO)4都是配位化合物。[Co(NH3)6]、[Cr(CN)6] 也是配位化合物。判断的关键在于是否含有配位单元。 思考:下列化合物中哪个是配合物 ①CuSO4·5H2O②K2P t Cl6 ③KCl·CuCl2 ④Cu(NH2CH2COO)2 ⑤KCl·MgCl2·6H2O ⑥Cu(CH3COO)2 注意:①配合物和配离子的区别 ②配合物和复盐的区别 2、配合物的组成 中心离子 内界单齿配体 配位体多齿配体 配合物螯合配体 外界 (1)配合物的内界和外界 以[Cu(NH3)4]SO4为例: [Cu(NH3)4]2+ SO-2 4 内界外界 内界是配位单元,外界是简单离子。又如K3[Cr(CN)6] 之中,内界是[Cr(CN)6]3–,外界是K+。可以无外界,如Ni(CO)4。但不能没有内界,内外界之间是完全电离的。 (2)中心离子和配位体 中心离子:又称配合物的形成体,多为金属(过渡金属)离子,也可以是原子。如Fe3+、Fe2+、Co2+、Ni2+、Cu2+、Co等,只要能提供接纳孤对电子的空轨道即可。 配位体:含有孤对电子的阴离子或分子。如NH3、H2O、Cl-、Br-、I-、CN-、CNS-等。

第十一章配位化合物

第十一章 配位化合物 一. 是非题: 1. 因[Ni(NH3)6]2+ 的K s=5.5×108, [Ag(NH3)2]+ 的K s=1.1×107, 前者大于后者,故溶液中 [Ni(NH3)6]2+比[Ag(NH3)2]+稳定() 2. H[Ag(CN)2]- 为酸,它的酸性比HCN强() 3. 因CN-为强场配体,故[30Zn(CN)4]2-为内轨型化合物() 二. 选择题: 1. 在[Co(en)(C2O4)2]-中,Co3+的配位数是() A.3 B.4 C.5 D.6 E.8 2. 下列配离子中属于高自旋(单电子数多)的是() A. [24Cr(NH3)6]3+ B. [26FeF6]3- C. [26Fe(CN)6]3- D. [30Zn(NH3)4]2+ E. [47Ag(NH3)2]+ 3. 下列分子或离子能做螯合剂的是() A.H2N-NH2 B.CH3COO- C.HO-OH D.H2N-CH2-NH2 E.H2NCH2CH2NH2 4. 已知[25Mn(SCN)6]4-的μ=6.1×AJ?T-1,该配离子属于() A.外轨 B.外轨 C.内轨 D.内轨 E.无法判断 5. 已知H2O和Cl-作配体时,Ni2+的八面体配合物水溶液难导电,则该配合物的化学式为 () A. [NiCl2(H2O)4] B. [Ni (H2O)6] Cl2 C. [NiCl(H2O)5]Cl D. K[NiCl3(H2O)3] E. H4[NiCl6] 三. 填充题: 1. 配合物[Cr(H2O)(en)(C2O4)(OH)]的名称为,配位数为。 2. 配合物“硝酸氯?硝基?二(乙二胺)合钴(III)”的化学,它的 外层是。 3. 价键理论认为,中心原子与配体间的结合力是。 四. 问答题:

配位化合物在配位催化中的应用

配位化合物在催化领域中的应用 摘要:简单的介绍了配位催化反应的概念、特点,并列举了两种特殊的配位催化 剂,及Ziergler-Natta催化剂、MgCl 2载体高效催化剂、SiO 2 载体催化剂。 关键词:配位;催化;配位催化剂 The application of coordination compounds in catalyst Abstract:The essay give a brief introduction to the definition and traits of coordinated catalystor reaction, and present two special coordinated catalystors, and the Ziergler-Natta catalystor. Catalystor carried with SiO 2, and MgCl 2, the latter have high effective catalyst. Key words:coordinate; catalyst; coordinated catalystor 1. 前言 1963年K. Ziegler博士和G. Natta教授因为其对乙烯在低压下的聚合反应所做出的贡献而获得了诺贝尔化学奖。以他两的名字而命名的Ziergler-Natta催化剂是金属铝和钛的配合物[1]。经过40多年不断研究发展,用Ziergler -Natta催化剂和配位聚合方法合成的各种聚烯烃树脂已成为当前世界上比例最大的高分子产品。随着对Ziergler-Natta催化剂催化剂和配位聚合的不断深入研究,烯烃配位聚合及Ziergler-Natta催化剂催化剂研究日益成为高分子学科中一个重要的研究领域;而且催化剂性能、制备技术和聚合工艺的不断改进,使聚烯烃工业也得到迅速发展[2]。 2. 配位催化 2.1. 配位催化的定义 在化学反应过程中[3],反应物的分子发生电子云的重新排布,导致化学键的形成和断裂,而转化为反应产物。要使反应物分子实现这种化学键的变换,就需要一定的活化能Ea。在一般温度下,对一个化学反应,如果活化能比较大,根据Boltzmann分布,反应物分子中仅有少数的分子能获得足够的能量,成为活化分子而起反应,此时,这个化学反应的速率是非常缓慢的。 配位催化一词是1957年Natta在讨论Ziegler-Natta催化剂性质时提出来

配位化合物合成方法以及应用的研究

配位化合物合成方法以及应用的研究 摘要:近年来,配位化合物已成为化学的一个研究热点,主要在于其在好多方面能够体现 出不同的结构性质,广泛应用于日常生活、工业生产及生命科学中。它不仅与无机化合物、有机金属化合物相关连,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。本文就其的结构、合成方法进行总结以及提出现代合成技术,对其在相关领域应用进行了论述以及发展前景进行了展望。 关键词:配合物;构型;合成方法;催化性能 0前言 配位化合物简称配合物,又称络合物,是一类非常广泛和重要的化合物. 随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的意义,配合物不仅在化学领域里得到广泛的应用,并且对生命现象也具有重要的意义.[1]显然, 配位化合物研究的对象已不再局限于传统的配体和中心原子之间形成的配位化合物。形成了主客体化学和超分子化学, 大大地拓展了配位化合物的研究范围。一些有重要应用价值的配合物将会实现工业化生产, 配合物的应用会更加广泛, 特别是在开发多功能的绿色催化剂方面, 配合物的进展前景十分美好。配位化合物的合成成为了目前最大的研究课题,目前各种新型配合物不断涌现,它既包括一些经典配合物,同时也出现一些特殊配合物,要想用统一的模式总结各类配合物的制备和分离方法是不可能的,只能通过各种配合物结构的不同特点针对性地归纳出某些配合物的制备方法,为同类型的配合物合成提供方法鉴见.[2] 1 配合物结构和性质[3] 配位化合物的构型由配位数所决定,也就是化合物中心原子周围的配位原子个数。配位数与金属离子和配体的半径、电荷数和电子构型有关,一般在2-9之间,镧系元素和锕系元素的配合物中常会出现10以上的配位数。五配位中,常常涉及到三角双锥和四方锥两种构型的互变,因此,很大一部分五配位化合物的结构是介于这两个结构之间的一种中间结构。更高配位数的化合物中,八配位的可以是四方反棱柱体、十二面体、立方体、双帽三角棱柱体或六角双锥结构;九配位的可以是三帽三角棱柱体或单帽四方反棱柱体结构;十配位的可以是双帽四方反棱柱体或双帽十二面体结构;十一配位的化合物很少,可能是单帽五角棱柱体或单帽五角反棱柱体。异构现象和结构异构是配合物具有的重要性质。它不仅影响配合物的物理和化学性质,而且与其稳定性、反应性和生物活性也有密切关系。

配位化合物

1. 填空题:(1.0分) 对于配体个数相同的配位个体,其越大,配位个体就越稳定。错 (填“对”或“错”) 2. 填空题:(1.0分) 当中心原子的(n-1)d轨道全充满(d10)时,没有可利用的(n-1)d空轨道,只能形成___外___轨配合物 3. 问答题:(1.0分) 简要叙述外轨配合物与内轨配合物的区别。 4. 填空题:(1.0分) 配合物[Pt(NO2)2(NH3)4]Cl2命名为______,内界是______,外界是______,中心原子是______,配体是______,配位原子是______,配位数是______。 空1 空2 空3 空4 空5 空6

空7 5. 填空题:(1.0分) 如果配体均为单齿配体,则配体的数目______中心原子的配位数;如配体中有多齿配体,则中心原子的配位数______配体的数目。 空1 空2 6. 单选题:(1.0分) 按配合物的价键理论,配合物中心原子与配体之间的结合力为 A. 氢键 B. 离子键 C. 配位键 D. 正常共价键 7. 单选题:(1.0分) 配离子的标准稳定常数与标准不稳定常数的关系是 A. 互为相反数 B. 互为倒数 C. 乘积不等于1 D. 相等 8. 填空题:(1.0分) 在配位个体中,中心原子的配位数等于配体的数目。 (填“对”或“错”) 空1

9. 单选题:(1.0分) 配离子[CoCl2(en)2]+中,中心原子的配位数是 A. 4 B. 3 C. 6 D. 5 10. 填空题:(1.0分) 配位个体中配体的数目不一定等于中心原子的配位数。 (填“对”或“错”) 空1 11. 填空题:(1.0分) 配合物的价键理论认为中心原子与配体之间的结合力是______ 空1 12. 填空题:(1.0分) 配位化合物[Co(NH3)4(H2O)2]Cl3的内界是______,外界是______,配体是______,配位原子是-______,中心原子的氧化数是______,配位数是______。 空1: 空2: 空3:

第七章 配位化合物

第七章 配位化合物 一、单项选择题 1. 下列物质中不能作为配体的是 ( B ) A. NH 3 B. NH 4+ C. OH - D. NO 2- 2. 下列离子或化合物中,具有顺磁性的是 ( B ) A. Ni(CN)- 24 B. CoCl - 24 C. Co(NH 3)+ 36 D. Fe(CO)5 3.在配合物[Co(NH 3)4(H 2O)]2(SO 4)3中,中心离子的配位数为 ( B ) A. 4 B. 5 C. 9 D. 12 4. 配离子[Co(NH 3)6]2+的空间构型为 ( A ) A. 八面体 B. 四方锥形 C. 四面体 D. 三角双锥 5. EDTA 是四元弱酸,当其水溶液pH ≥ 12时,EDTA 的主要存在形式为 ( C ) A. H 4Y ; B. H 3Y -; C. Y 4-; D. HY 3- 6.下列关于价键理论对配合物的说法正确的是 ( C ) A. 任何中心离子与任何配体都可形成外轨型化合物; B. 任何中心离子与任何配体都可形成内轨型化合物; C. 中心离子用于形成配位键的原子轨道是经过杂化的等价轨道; D. 以sp 3d 2和d 2sp 3杂化轨道成键的配合物具有不同的空间构型。 7.下列物质中能被氨水溶解的是 ( B ) A. Al(OH)3 B. AgCl C. Fe(OH)3 D. AgI 8. 下面哪一个不属于EDTA 与金属离子形成螯合物的特点 ( B ) A. 具有环状结构 B . 稳定性差 C. 配位比一般为1:1 D. 易溶于水 9. 下列说法欠妥的是: ( C ) A. 配合物的形成体(中心原子)大多是中性原子或带正电荷的离子。 B. 螯合物以六员环、五员环较稳定。 C. 配位数就是配位体的个数。 D. 二乙二胺合铜(Ⅱ)离子比四氨合铜(Ⅱ)离子稳定。 10. AgCl 在11mol L -?氨水中比在纯水中的溶解度大,其原因是 ( B ) A. 盐效应 B. 配位效应 C. 酸效应 D. 同离子效应 11. 离子以dsp 2杂化轨道成键而形成的配合物,其空间构型是 ( A ) A. 平面正方形 B. 四面体形 C. 直线形 D. 八面体形 12. 22Cu(en)+的稳定性比234Cu(NH )+ 大得多,主要原因是前者 ( B ) A. 配体比后者大; B. 具有螯合效应; C. 配位数比后者小; D. en 的分子量比NH 3大。 13. Al 3+与EDTA 形成 ( A ) A. 鳌合物 B. 聚合物 C. 非计量化合物 D. 夹心化合物 14.下列说法中错误的是 ( D ) A. 配体的配位原子必须具有孤电子对。 B. 配离子的配位键愈稳定,其稳定常数愈大。 C. 配合物的颜色最好用晶体场或配位场理论解释。 D. 配合物的颜色最好用价键理论来解释。 15. 下列几种物质中最稳定的是 ( A ) A. [Co(en)3]Cl 3 B. [Co(NH 3)6] (NO 3)3 C. [Co(NH 3)6]Cl 2 D. Co(NO 3)3

配位化合物在医学药学方面的应用

配位化合物在医学药学方面的应用 【摘要】配位化合物组成非常的繁杂、存在非常的普遍、且在医药学理论及应用方面也是非常重要的一类化合物。随着新医药学的发展显示:配位化合物不仅在生命过程中起核心的作用,还普遍行使在生化的检验和药物的分析等方面上。接下来我们就从配位化合物理论的发展和医药学的重要应用中加以论述。 【关键词】配位化合物;医学;药学 中药有效的化学成分不单是有效成分及微量元素, 同时还是有机成分及微量元素构成的配位化合物。1配位化合物的作用1.1生物体内各种酶生物体内的锌和生物体内多种酶的组合促进生物体内的酶表现活性,目前研究出现的锌酶已超过八十个种类,如碳酸酶等,当人体的锌元素缺少时,多数酶活性的影响降低,进而引发与之有关的代谢动乱,影响到人体的发育及生体的生长,厌食及生殖也受到影响。人体中的铜含量很高,仅次于铁与锌。铜作为过氧化氢酶酪氨酸酶和单胺氧化酶、氧化氢酶和超氧化物歧化酶、抗坏血酸等的活性组成成分。其中的酪氨酸酶用来产生黑色素皮肤的染色素,由于遗传性的不足,酪氨酸酶引起的白化病钴配合物。如维生素B,又称钴胺素,基于其对医治恶性贫血的症状效果明显,因而,引发了人们的强力关注。 以金属酶的形式存在的还有铬、铁、锰、钼、钒等等,适用于各种代谢特别是近些年,人们开始特别关注硒微量,元素硒作为心肌与肝内的一类过氧化物酶的组合部分,这种酶促进氧化的还原反应,该反应使过氧化氢与不饱和脂肪酸消耗过氧化物,维护血红蛋白,使其不受过氧化氢氧化出现的缺硒红细胞,进而失去其保护的功能。关于硒的生物功能与硒浓度的结论更应值得关注.0.1ug/g的硒可作为有益元素,而多于1Oug/g将会引发癌症;反之,缺硒还可能引发以心肌变性坏死及纤维化为主要现象的克山病,使用亚硒酸钠展开治疗,发病率将会大幅度减少。1.2 生物体内的蛋白质作为血红蛋白与肌红蛋白组成的成份-铁,在人体内参与氧气的运输与贮存。同时,铁还是细胞色素的组成成份,在治疗中参与氧气的利用。进而,铁在血红蛋白、肌红蛋白及细胞色素分子中均以Fe和原卟啉环生成配合物的形式出现。血红蛋白内的亚铁血红素的构造,是血红蛋白(Hb)和氧合血红蛋白(HbO )之间具有着可逆性,血红蛋白作为氧的载体。另一类铁和含硫配体形成的蛋白是铁硫蛋白,也成为非血红素蛋白。在所有铁硫蛋白中,铁可变价,对此,其的首要功能为电子传递体,专门用来促进生物体的每一项氧化还原的作用。锰以Mn2+与Mn3+价作用在体内。Mn3+离子留存于输锰蛋白质中,大多数锰以结合状态的金属蛋白质留存在血液和肝脏、肌肉和骨骼之中,它主要在造血的过程中促进血的运输及代谢。2配位化合物的应用2.1金属配合物在药物中的应用有几类可以用于治疗的金属离子由于毒性过大、含有刺激性及不易吸收等不良因素,而无法在临床治疗上直接应用。对此,需将其转化成配合物,便于减弱毒性及刺激性,促进吸收。例如:酒石酸锑钾能够治疗糖尿病;柠檬酸铁配合物能够治疗缺铁造成的贫血;有抗菌的作用:如镁、锰的硫酸盐,钙、钙的氯化物能增大四环紊对金黄色葡萄球菌和大肠杆菌上的抗菌活性;有抗风湿炎症的作用,如阿司匹林与水扬酸衍生物等和铜一同使用,能增加

Ni基配位化合物的制备及其电化学行为研究

目录 目录 摘要 .................................................................................................................. I I ABSTRACT ........................................................................................................ I II 目录 .................................................................................................................. V 第1章绪论 (1) 1.1 前言 (1) 1.2超级电容器的结构 (2) 1.2.1电极 (3) 1.2.2电解液 (3) 1.2.3隔膜 (4) 1.3超级电容器的工作原理 (4) 1.3.1双电层电容(EDLC) (4) 1.3.2法拉第赝电容(Pseudocapacitors) (6) 1.3.3非对称超级电容器(Asymmetric Supercapacitor) (7) 1.4超级电容器的电极材料 (8) 1.4.1 碳材料 (8) 1.4.2 导电聚合物 (8) 1.4.3 过渡金属氧化物及氢氧化物 (8) 1.4.4 金属-有机骨架材料( MOFs) (9) 1.5 选题的根据及意义 (9) 第2章Ni (C7H4O5)三维网状结构的制备及其电化学行为的研究 (11) 2.1 引言 (11) 2.2 实验部分 (12) 2.2.1 主要实验材料及仪器 (12) 2.2.2 Ni (C7H4O5)的制备 (13) 2.2.3 样品的表征及性能测试 (13) 2.3 实验结果与讨论 (14) 2.3.1 XRD 分析 (14) V

配位化学在工业中的应用

配位化学在工业中的应用 配位化学又称络合物化学,配位化合物简称配合物或络合物。配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。配位化合物在化学工业和生活中起着重要的作用,1963年化学诺贝尔奖金联合授给德国M.普朗克学院的K.齐格勒博士和意大利米兰大学的G.纳塔教授。他们的研究工作是发展了乙烯的低压聚合,这使数千种聚乙烯物品成为日常用品。齐格勒-纳塔聚合催化剂是金属铝和钛的配合物。而今,配位化学的研究已经有了很大的突破,现代配位化学理论在推进工业研究中得到了应用并成为工业设计原理的一个组成部分。 1、配位化学的前期发展历程 配合物在自然界中普遍存在,历史上最早有记载的是1704 年斯巴赫(Diesbach)偶然制成的普鲁士蓝KCN·Fe(CN)2·Fe(CN) 3,其后1798 年塔斯赫特(Tassert)合成[Co(NH3)6]Cl3。十九世纪末二十世纪初,创立了配位学说,成为化学历史中重要的里程碑。 二十世纪以来,配位化学作为一门独立的学科,以其蓬勃发展之势,使传统的无机化学和有机化学的人工壁垒逐渐消融,并不断与其他学科如物理化学、材料科学及生命科学交叉、渗透,孕育出许多富有生命力的新兴边缘学科,为化学学科的发展带来新的契机[1]。 2、配位化学新的发展及应用趋势 本世纪60 年代初期,由于发现了一批具有金属- 金属化学键的配合物,配位化学的研究重点从单核配合物转向多配合物,从而开始了对多金属偶合体系的研究。在此研究过程中,发现很早已为人们熟知利用的普鲁士蓝等一类混合价配合物,不仅可以用于传统的染料工业,还可以更广泛地应用于陶瓷、矿物、材料科学、高温超导等许多领域。如可用于合成高导电率的分子金属和超导材料、磁性材料、优良的非线性光学材料以及非线性导电材料等。因此,此类配合物引起各个学科研究者,如合成化学家、固体化学家、地质学家、生物学家、物理学家 的极大兴趣,成为当前化学基础研究的前沿领域。 混价配合物的中心原子,无论相同或不同的金属离子都具有两种明显不同的氧化态。它包括了元素周期表中的大多数金属元素。但是目前人们关注的焦点,多集中在过渡金属和稀土金属元素,因为这些元素的配合物常常具有独特的光、电、磁性质,并与生命活动密切相关。如混价配合物MnIIMnIIIMnIIO(OAc)6(py)3等。研究者通过对混合价过渡金属和稀土金属配合物的研究,合成了一系列新型分子材料和与生命活动紧密相关的模型化合物,建立了较完整的理论体系[2]。 3、配位化学在化学化工工业中的应用 配位化学在许多领域都有非常广泛的应用,尤其是在化学化工方面,显示出了它的应用优越性。 天然水和废水中配合物的形成 在水处理化学领域中,天然水和废水中配合物的形成是很重要的。水体中溶解态的重金属,大部分以配合物形式存在,因为水体中存在多种无机和有机配位体。重要的无机配位体有OH-、Cl-、CO32-、HCO32-等。有机配位体情况比较复杂,有动植物组织的天然降解产物,如氨基酸、糖、腐殖酸等,由于工业及生活废水的排入使存在的配位体更为复杂,如CN-、有机洗涤剂、NTA(氮基三乙酸N(CH2CO2H)3的三钠盐,洗涤剂的组分)、EDTA(乙二胺四乙酸的钠盐)、农药和大分子环状化合物。湖水中汞大部分与腐殖酸配合,而在海水中汞则主要与Cl-配合。 改变水溶液中的金属物种

第八章 配位化合物()

第八章配位化合物 1.指出下列配离子的形成体、配体、配位原子及中心离子的配位数。 2. 命名下列配合物,并指出配离子的电荷数和形成体的氧化数。 (1) 三氯·一氨合铂(Ⅱ)酸钾 (2) 高氯酸六氨合钴(Ⅱ) (3) 二氯化六氨合镍(Ⅱ) (4) 四异硫氰酸根·二氨合铬(Ⅲ)酸铵 (5) 一羟基·一草酸根·一水·一乙二胺合铬(Ⅲ) (6) 五氰·一羰基合铁(Ⅱ)酸钠

根据上述结果,写出上列三种配合物的化学式。 5. 根据下列配离子中心离子未成对电子数及杂化类型,试绘制中心离子价层d 64 2-6 3-测这两种配离子价层d 电子分布情况及它们的几何构型。 7.在50.0mL0.20mol ·L -1 AgNO 3 溶液中加入等体积的1.00mol ·L -1 的NH 3 ·H 2 O ,计算达平衡时溶液中Ag + ,[Ag(NH 3 )2 ]+ 和NH 3 的浓度。 8.10mLO.10mol ·L -1 CuSO 4 溶液与lOmL6.Omol ·L -1 NH 3 ·H 2 O 混合并达平衡,计算溶液中Cu 2+ 、NH 3 及[Cu(NH 3 )4 ]2+ 的浓度各是多少? 若向此混合溶液中加入0.010molNaOH 固体,问是否有Cu(OH)2沉淀生成? 9.通过计算比较1L 6.0mol ·L -1 氨水与1L 1.0mol ·L -1KCN 溶液,哪一个可溶解较多的AgI? 10.0.10g AgBr 固体能否完全溶解于100mL 1.00mol ·L -1 氨水中? 11.在50.0 mL 0.100mol ·L -1 AgNO 3 溶液中加入密度为0.932g ·cm -3 含NH 3 18.2%的氨水30.0mL 后,再加水冲稀到100mL 。 (1)求算溶液中Ag + 、[Ag(NH 3 )2 ]+ 和NH 3 的浓度。 (2)向此溶液中加入0.0745g 固体KCl ,有无AgCl 沉淀析出? 如欲阻止AgCl 沉淀生成,在原来AgNO 3 和NH 3 水的混合溶液中,NH 3 的最低浓度应是多少? (3)如加入0.120g 固体KBr ,有无AgBr 沉淀生成? 如欲阻止AgBr 沉淀生成,在原来AgNO 3 和NH 3 水的混合溶液中,NH 3 的最低浓度应是多少? 根据(2)、(3)的计算结果,可得出什么结论? 12.计算下列反应的平衡常数,并判断反应进行的方向。 (1) [HgCl 4 ]2- +4I - [Hgl 4 ]2- + 4Cl - 已知:([HgCl 4 ]2-) = 1.17×1015 ;([HgI 4 ]2- = 6.76×1029 (2) [Cu(CN) 2 ]- + 2NH 3 [Cu(NH 3 )2 ]+ + 2CN - 已知: {[Cu(CN)2 ]-}=1.0×1024 {[Cu(NH 3 )2 ]+ } =7.24×1010 (3) [Fe(NCS) 2 ]+ + 6F - [FeF 6 ]3- + 2SCN - 巳知: {[Fe(NCS)2 ]+ }= 2.29×103 [(FeF 6 ]3-= 2.04×1014 13. 已知:E θ(Ni 2+ /Ni)= -0.257V ,E θ(Hg 2+ /Hg)= 0.8538V , 计算下列电极反应的E θ值。 (1) [Ni(CN)4]2- + 2e -Ni + 4CN - (2) [HgI 4 ]2- + 2e - Hg + 4I - *14. 已知: E θ(Cu2+/Cu)=0.340 V, 计算出电对[Cu(NH3)4]2+/Cu 的E θ值。

第七章配位化合物汇总

第七章配位化合物(计划学时数:3) [教学目的]通过本章讲解使学生掌握配合物的一些基本概念,并了解使配离子电离平衡发生移动的因素。 [教学要求] 1.掌握配位化合物的定义、组成、结构特征和系统命名。 2.理解配位化合物稳定常数的意义,理解酸度等因素对配位平衡的影响。 3.掌握螯合物的结构特征和特性。 4.了解配位化合物在生物、医药等方面的应用。 [总学时] 3学时 [学时分配]第一节配合物的基本概念1学时 第三节配位平衡1学时 第四节螯合物0.5学时 第五节配合物在生命科学中的应用0.5学时 [重点内容] 配合物的基本概念和配位平衡 [难点内容] 配位平衡的移动] [使用教具] 挂图 [教学方法] 讲解、启发、提问 [作业] 90页1、2、3、4

第一节配合物的基本概念 (本节是重点内容,从配合物的组成入手,重点介绍配离子的结构特点及其命名) [讲解] CuSO4 + NaOH →↓ CuSO4 + NH3→深兰色溶液→无沉淀 (CuSO4可以电离出Cu2+,与OH-结合生成沉淀;而深兰色溶液中加NaOH无沉淀,说明其中没有Cu2+,其结构非常特殊。) 一、配合物的定义 1.配离子(或配分子):由简单阳离子或中性原子和一定数目的中性分子或负离子以配 位键结合形成的、具有一定特征的的复杂离子或分子叫配离子 或配分子; 2.配位化合物:由配离子或配分子所组成的复杂化合物叫配位化合物。习惯上配离子也叫配合物。 明矾KAl(SO4)2·12H2O、铬钾矾KCr(SO4)2·12H2O的晶体和水溶液都不含 复杂离子,是复盐。 二、配合物的组成 [讲解] 以上述实验中深兰色溶液中的物质为例,介绍配合物的结构组成。 配合物一般由内界和外界两部分组成。配离子是内界,它是配合物的特征部分,其性质、结构与一般离子不同,因此,常将配离子用方括号括起来。方括号内是配合物的内界,不在内界的其它离子是配合物的外界。内界与外界以离子键结合。 [CoCl3(NH3)3]没有外界. [Cu (NH3) 4 ]2+SO42-K2+ [ Hg I 4 ]2- 1. 中心离子(或原子):是配合物的形成体,位于配离子或配分子的中心,是配合物的 核心部分,它们都是具有空的价电子轨道的离子或原子,其半径小电荷多 是较强的配合物的形成体。常见的是过度金属离子或分子如:大、电荷 多不易形成,原子也可形成配合物。 2. 配位体:在配离子或配分子内与中心离子或原子结合的负离子或中性分子叫配位 体。如NH3CN- 配位原子:配位体中具有孤对电子的直接与中心离子结合的原子叫配位原子。常见的配位原子有N、O、S 根据一个配位体中所含配位原子的数目配位体可分为:

金属络合物的制备及应用进展

高分子金属络合物的制备及应用进展 摘要:高分子金属络合物是当今化学和材料科学中最为活跃的研究领域之一。本文综述讨论了它们的合成方法以及其作为催化剂的应用进展。 关键词:高分子金属络合物合成方法催化剂催化作用 Polymer metal complex preparation and application progress Abstract : Polymeric Metal Complex is one of the most active research fields of the chemical and materials science. This paper discussed the synthesis methods and the progress of the application of as a. Catalyst. Key words: Polymeric Metal Complex Synthesis methods catalyst catalytic action 一.高分子金属络合物的研究概况 高分子金属络合物(PMC)是以高分子化的配位基为配体的金属络合物。以其受到高分子链的影响,具有与低分子络合物不同的配位结构和电子状态,PMC具有良好的催化活性,是常用的高分子催化剂。 高分子金属络合物的分类:从化学的角度考察金属化合物与合适的高分子配体或多功能团配体的“结合方式”,可将PMC主要分成三类: 1.高分子配体与金属离子络合,包括侧基络合物和分子间或分子内桥联络合物 2.双功能团配体与金属离子络合 3.低分子金属络合物的聚合 二 .高分子金属络合物的合成

第11章配位化合物

第11章配位化合物 一.是非题(判断下列各项叙述是否正确,对的在括号中填“√ ”,错的填“×”)。 1.1 复盐和配合物就象离子键和共价键一样,没有严格的界限。() 1.2 Ni(NH3)2Cl2无异构现象,[Co(en)3]Cl3有异构体。() 1.3 配离子AlF63-的稳定性大于AlCl63-。() 1.4 已知[CaY]2-的Kθ为6.3×1018,要比[Cu(en)2]2+的Kθ= 4.0×1019小,所以后者更难离解。 ()1.5 MX2Y2Z2类型的化合物有6 种立体异构体。() 1.6 内轨配合物一定比外轨配合物稳定。() 1.7 当CO作为配体与过渡金属配位时,证明存在“反馈π键”的证据之一是CO 的键长介于单键和双键之间。()1.8 Fe3+和X-配合物的稳定性随X-离子半径的增加而降低。() 1.9 HgX4-的稳定性按F-??→I-的顺序降低。() 1.10 CuX2-的稳定性按的Cl-??→Br-??→I-??→CN-顺序增加。() 二.选择题(选择正确答案的题号填入) 2. 1 根据晶体场理论,在一个八面体强场中,中心离子d 电子数为()时,晶体场稳定 化能最大。 a. 9 b. 6 c. 5 d. 3 2. 2 下列各配离子中,既不显蓝色有不显紫色的是() a. Cu(H2O)24+ b. Cu(NH3)24+

c. CuCl24+ d. Cu(OH)24+ 2. 3 下列化合物中,没有反馈π 键的是() a. [Pt(C2H4)Cl3]- b. [Co(CN)6]4- c. Fe(CO)5 d. [FeF6]3- 2. 4 在下列锰的化合物中,锰的氧化数最低的化合物是() a. HMn(CO)5 b. Mn(NO)3(CO) c. Mn2(CO)10 d. CH3Mn(CO)5 2. 5 下列离子中配位能力最差的是() a. ClO4 - b. SO 2 4 - c. PO 3 4 - d. NO3 - 2. 6 M位中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是() a. Ma2bd(平面四方) b. Ma3b c. Ma2bd(四面体) d. Ma2b(平面三角形) 2. 7 Ag(EDT A)3-中银的配位数是() a. 1

相关文档
相关文档 最新文档