文档库 最新最全的文档下载
当前位置:文档库 › 地磁场磁感线的分布图

地磁场磁感线的分布图

地磁场磁感线的分布图

地磁场磁感线的分布图

3.3 几种常见的磁场

高中物理选修3-1《3.3 几种常见的磁场》测试卷 一.选择题(共35小题) 1.条形磁铁内部和外部分别有一小磁针,小磁针平衡时如图所示,则() A.磁铁c端是N极B.磁铁d端是N极 C.小磁针a端是N极D.小磁针b端是S极 2.信鸽爱好者都知道如果把鸽子放飞到数百公里以外它们还会自动归巢.但有时候它们也会迷失方向如果遇到下列哪种情况会迷失方向() A.飞到大海上空B.在黑夜飞行 C.鸽子头部戴上磁性帽D.蒙上鸽子的眼睛 3.如图所示,小磁针所指方向正确的是() A.B. C.D. 4.下列四幅图中,小磁针静止时,其指向正确的是() A.B. C.D. 5.如图所示是几种常见磁场的磁感线分布示意图,下列说法正确的是() ①甲图中a端是磁铁的S极,b端是磁铁的N极 ②甲图中a端是磁铁的N极,b端是磁铁的S极 ③乙图是两异名磁极的磁感线分布图,c端是N极,d端是S极

④乙图是两异名磁极的磁感线分布图,c端是S极,d端是N极. A.①③B.①④C.②③D.②④ 6.相隔一定距离的电荷或磁体间的相互作用是怎样发生的?这是一个曾经使人感到困惑、引起猜想且有过长期争论的科学问题.19世纪以前,不少物理学家支持超距作用的观点.英国的迈克尔?法拉第于1837年提出了电场和磁场的概念,解释了电荷之间以及磁体之间相互作用的传递方式,打破了超距作用的传统观念.1838年,他用电力线(即电场线)和磁力线(即磁感线)形象地描述电场和磁场,并解释电和磁的各种现象.下列对电场和磁场的认识,正确的是() A.法拉第提出的磁场和电场以及电力线和磁力线都是客观存在的 B.在电场中由静止释放的带正电粒子,一定会沿着电场线运动 C.磁感线上某点的切线方向跟放在该点的通电导线的受力方向一致 D.通电导体与通电导体之间的相互作用是通过磁场发生的 8.关于磁场和磁感线,下列说法正确的是() A.单根磁感线可以描述各点磁场的方向和强弱 B.磁体之间的相互作用是通过磁场发生的 C.磁感线是磁场中客观真实存在的线 D.磁感线总是从磁体的北极出发,到南极终止 9.关于磁场和磁感线的描述,正确的说法是() A.磁感线可以相交 B.小磁针静止时S极指向即为该点的磁场方向 C.磁感线的疏密程度反映了磁场的强弱 D.地球磁场的N极与地理北极重合 10.下列关于磁场的说法正确的是() A.磁场只存在于磁极周围 B.磁场中的任意一条磁感线都是闭合的 C.磁场中任意一条磁感线都可以表示磁场的强弱和方向

几种常见的磁场教案完美版

[选修3-1第三章磁场教案] 第三节几种常见的磁场(2课时) 一、教学目标 (一)知识与技能 1.知道什么叫磁感线。 2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况 3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。 4.知道安培分子电流假说,并能解释有关现象 5.理解匀强磁场的概念,明确两种情形的匀强磁场 6.理解磁通量的概念并能进行有关计算 (二)过程与方法 通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。 (三)情感态度与价值观 1.进一步培养学生的实验观察、分析的能力. 2.培养学生的空间想象能力. 二、重点与难点: 1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向. 2.正确理解磁通量的概念并能进行有关计算 三、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源 四、教学过程: (一)复习引入 要点:磁感应强度B的大小和方向。 [启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢? [学生答]磁场可以用磁感线形象地描述.----- 引入新课 (老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向 (二)新课讲解 【板书】1.磁感线 (1)磁感线的定义

在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。 (2)特点: A 、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极. B 、每条磁感线都是闭合曲线,任意两条磁感线不相交。 C 、磁感线上每一点的切线方向都表示该点的磁场方向。 D 、磁感线的疏密程度表示磁感应强度的大小 【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。 【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。 ②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。 2.几种常见的磁场 【演示】 ①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。 ②用投影片逐一展示:条形磁铁(图1)、蹄形磁铁(图2)、通电直导线(图3)、通电环形电流(图4)、通电螺线管以及地磁场(简化为一个大的条形磁铁) (图5)、※辐向磁场(图 6)、还有二同名磁极和二异名磁极的磁场。 (1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况(图1、图2) (2)电流的磁场与安培定则 ①直线电流周围的磁场

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

测量磁场分布

测量磁场分布 摘 要:本文通过测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布,了解电磁感应 法测量磁场的原理和一般方法,并对场强叠加原理加以验证。 关键字:圆线圈 亥姆霍兹线圈 双线圈 磁场分布 电磁感应法 引言: 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等。本实验介绍电磁感应法测磁场的方法,它具有测量原理简单、测量方法简便及测试灵敏度较高等优点。 实验目的: 1.了解用电磁感应法测交变磁场的原理和一般方法。 2.载流圆线圈在轴线上的磁场分布。 3.亥姆霍兹线圈在轴线上的磁场分布,验证磁场叠加原理。 4.较两载流圆线圈距离不同时轴线上磁场分布情况。 原理简述: 1.载流圆线圈轴线上磁场的分布 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直 线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为: 2/3222 0)X R (2NIR B += μ 式中 μ为真空磁导率: , H/m 10470 -?=πμ N 为圆线 圈的匝数,式中I 为通过线圈的电流强度,N 为线圈匝数, R 为线圈平均半径,x 为圆心到该点的距离。 2.载流双线圈轴线上磁场的分布 磁场与电场一样满足叠加原理。总磁场的磁感应强度等于各个运动电荷或载流线段产生的磁场的磁感应强度的矢量和,这个结论称为磁场的叠加原理。 两个尺寸结构完全相同圆线圈彼此平行且共轴,通以方向一致,大小相同的电流I ,

其中一个固定,另一个可沿其共轴平行移动。若O 点为两线圈轴线中点,则两线圈在P 点产生的磁感应强度方向沿轴线向右。根据毕奥—萨伐尔定律和场强叠加原理,可求得轴线上P 点的磁感应强度大小为: 2 /3222 02/32220])X 2a (R [2NIR ])X 2a (R [2NIR B -++ ++=μμ 式中 , H/m 10470 -?=πμ N 为圆线圈的匝数,R 为内外 平均半径,a 为两线圈间距。 由上式可以看出,磁场分布与两线圈距离a 有关。由于对称性,场强在O 点的切线一定是水平的,即在x=0处 0dx dB =。而使O 点附近场强最均匀的条件是0)dx B d (0x 22==,即a=R 。这种间距等于半径的一对尺寸结 构完全相同的圆线圈叫做亥姆霍兹线圈。 当两线圈距离a 与半径R 相差越远时,磁场分布越不均匀:当aR 时,B 在O 点处有极大值。(如图 2所示) 3.用电磁感应法测磁场的原理 设均匀交变磁场为(由通交变电流的线圈产生):t sin B B m ω=,磁场中一探测线圈的磁通量为:Φ=NSBmcos θsin ωt ,式中:N为探测线圈的匝数,S 为该线圈的截面积,θ 为B 与线圈法线夹角。 则线圈产生的感应电动势为: t cos cos B NS t d d m ωθω-=- =εΦ t cos m ωε-= 式中θω=εcos B NS m m 是线圈法线和磁场成θ角时,感应电动势的幅值。当?=θ0时, m max B NS ω=ε,这时的感应电动势的幅值最大。 如果用数字万用表测量此时线圈的电动势示值(有效值)为U = 2m ax ε,则: ω= ωε= NS U 2NS B max max =fNS 2U π

磁场的认识和分布

磁场的认识和分布(叠加) 1.两圆环A 、B 同心放置且半径A B R R >,将一条形磁铁置于两圆心处且与圆环平 面垂直,如图所示,则穿过A 、B 两圆环的磁通量的大小关系为: ....A B A B A B A B C D φφφφφφ>=<无法确定 4、如图所示,矩形线框abcd 的长和宽分别为2L 和L ,匀强磁场的磁感应强度为B ,虚线为磁场的边界。若线框以ab 边为轴转过60°的过程中,穿过线框的磁通量的变化情况是 A .变大 B .变小 C .不变 D .无法判断 (2013上海·13)如图,足够长的直线ab 靠近通电螺线管,与螺线 管平行?用磁传感器测量ab 上各点的磁感应强度B,在计算机 屏幕上显示的大致图像是( )B 14.一列横波沿水平绳传播,绳的一端在t =0时开始做周期为T 的简谐运动,经过时间t (34T

磁场分布

磁场分布实验报告 实验目的、原理及实验步骤。(见预习报告) 1. 不同磁极头间隙内的磁场分布特点 这个实验的目的是研究不同磁极头对磁场分布特点的影响,主要是截面积与边缘条件的影响。我们使用了四种不同的磁极头,利用集成霍尔元件对各磁极头间空气隙内的磁场进行了测量。 ① 情况1如图所示 根据数据画出变化趋势图(如下): 此图表现出随着游标卡尺位置的变化(实际就是测量位置从边缘向中间扩展),霍尔效应电压值先逐渐增加后趋于平稳,当到达2.2cm 位置左右时基本不变。这说明了,在集束铁芯中间区域,磁场可以看做是匀强磁场,在磁极边缘区域,磁场迅速减小直至为零。(由于游标卡尺位置的限制,没有测量到磁场为零的位置)。由于游标卡尺和实验仪器的问题,所测量的数据少了点,不能更准确的体现出磁场的分布特点。 情况2 ,3,4的实验情况和1 相差不大,它们的曲线变化也基本一样。不作过多陈述。 ② 情况 2如图所示:

③ 情况3如图: ④ 情况4如图: 测量过程中,我们保证了电流值几乎不变(在2.0上下晃动) 。所以,每组数据可以做纵向比较。如下图所示:

从纵向比较的图中我们可以看出,从1~4的迅速变化阶段,4的变化最早,也最平稳。这与磁极的形状有关的,4的平行面积最小,使得4变化的最早,也就是说,④磁极产生的磁感 应强度集中区域最少。由后面平稳的情况可知,2的磁场最大,也就是说它的励磁电流也是最大的。1与4刚好相反,变化的最迟。 从研究不同磁极头对磁场分布特点的影响,主要是截面积与边缘条件的影响来说,我们是达到了目的。上述实验表明:磁极的截面积影响了磁极产生的磁感应强度集中区域的大小,从而影响了磁场的分布范围和集中程度。 下面是实验数据: 2. U形磁路及E形磁路磁场分布研究 ①U形磁路 磁路是由一个U形线圈、U形铁块和一个可动长铁块构成。实验中,我们主要测量了同一个位置(靠近不动部分)的磁场随着铁块位置,即磁路闭合情况的变化关系。实验数据也是记录了这一信息。实验的关系图如下:

相关文档
相关文档 最新文档