文档库 最新最全的文档下载
当前位置:文档库 › 小波变换图像去噪MATLAB实现

小波变换图像去噪MATLAB实现

小波变换图像去噪MATLAB实现
小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现

一、 论文背景

数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。

然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。

二、 课题原理

1.小波基本原理

在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1

,a

b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为:

()()

1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:

()

dx a

b x a x f f x W b a b a )(1)(,,,-ψ=

ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4)

可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。

2. 图像去噪综述

所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。

依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x ,y)力为理想图像,n(x ,y)力为噪声,实际输入图像为为g(x ,y),则加性噪声可表示为:

g(x ,y)= f(x ,y)+ n(x ,y), (5)

其中,n(x ,y)和图像光强大小无关。

图像去噪的目的就是从所得到的降质图像以g(x ,y)中尽可能地去除噪声n(x ,y),从而还原理想图像f(x ,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。

图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

3. 小波阈值去噪法

3.1小波变换去噪的过程

小波去噪是小波变换较为成功的一类应用,其去噪的基本思路可用框图3-1

来概括,即带噪信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换恢复检测信号。

图3-1小波去噪框图

因此,利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息。而传统的傅立叶变换去噪方法在去除噪声和边沿保持上存在着矛盾,原因是傅立叶变换方法在时域不能局部化,难以检测到局域突变信号,在去除噪声的同时,也损失了图像边沿信息。由此可见,与傅立叶变换去噪方法相比,小波变换去噪方法具有明显的优越性。

3.2小波阈值去噪的基本方法

3.2.1阈值去噪原理

Donoho提出的小波阈值去噪方法的基本思想是当w j,k小于某个临界阈值时,认为这时的小波系数主要是由噪声引起的,予以舍弃。当w j,k大于这个临界阈值时,认为这时的小波系数主要是由信号引起,那么就把这一部分的w j,k直接保留下来(硬阈值方法),或者按某一个固定量向零收缩(软阈值方法),然后用新的小波系数进行小波重构得到去噪后的信号。此方法可通过以下三个步骤实现:

(1)先对含噪声信号f(t)做小波变换,得到一组小波分解系数w j,k。

(2)通过对分解得到的小波系数w j,k进行阈值处理,得出估计小波系数k j w,使得w j,k- u j,k,尽可能的小。

(3)利用估计小波系数k j w,进行小波重构,得到估计信号了)(t

f,即为去噪之后的信号。

需要说明的是,在小波阈值去噪法中,最重要的是闭值函数和闲值的选取。

3.2.2阈值函数的选取

阈值函数关系着重构信号的连续性和精度,对小波去噪的效果有很大影响。目前,阈值的选择主要分硬阈值和软阈值两种处理方式。其中,软阈值处理是将信号的绝对值与阈值进行比较,当数据的绝对值小于或等于阈值时,令其为零;大于阈值的数据点则向零收缩,变为该点值与阈值之差。而硬阈值处理是将信号的绝对值阈值进行比较,小于或等于阈值的点变为零,大于阈值的点不变。但硬阈值函数的不连续性使消噪后的信号仍然含有明显的噪声;采用软阈值方法虽然

连续性好,但估计小波系数与含噪信号的小波系数之间存在恒定的偏差,当噪声

信号很不规则时显得过于光滑。

4、基于小波变换的图像分解与重构

二维离散小波主要解决二维多分辨率分析问题,如一幅二维离散图像{c(m,n)},二小波可以将它分解为各层各个分辨率上的近似分量cAj,水平方向细节分量cHj,垂直方向细节分量cVj,对角线方向细节分量cDj,其二层小波图像分解过程如图4-1 所示:

图4-1 小波图像分解过程

图4-2 小波图像分解过程

其二层小波图像重构过程正好与此相反如图4-2所示,基于小波变换的图像处理,是通过对图像分解过程中所产生的近似分量与细节分量系数的调整,使重构图像满足特定条件,而实现图像处理。

三、程序实现图像消噪

常用的图像去噪方法是小波阈值去噪法,它是一种实现简单而效果较好的去噪方法,阈值去噪方法的思想很简单,就是对小波分解后的各层稀疏模大于和小于某阈值的系数分别进行处理,然后利用处理后的小波系数重构出去噪后的图像。在阈值去噪中,阈值函数体现了对小波分解稀疏的不同处理策略以及不同的估计方法,常用的阈值函数有硬阈值和软阈值函数,硬阈值函数可以很好的保留图像边缘等局部特征,但图像会出现伪吉布斯效应,等视觉失真现象,而软阈值处理相对较平稳,但可能会出现边缘模糊等失真现象,为此人们又提出了半软阈值函数。小波阈值去噪方法处理阈值的选取,另一个关键因素是阈值的具体估计,如果阈值太小,去噪后的图像仍然存在噪声,相反如果阈值太大,重要图像特

征又将被滤掉,引起偏差。从直观上讲,对给定的小波系数,噪声越大,阈值就越大。

图像信号的小波去噪步骤与一维信号的去噪步骤完全相同,只使用二维小波分析工具代替了一维小波分析工具,如果用固定阈值形式,则选择的阈值用m2代替了一维信号中的n。

这三步是:1)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号S到第N层的分解。2)对高频系数进行阈值量化,对于从一到N 的每一层,选择一个阈值,并对这一层的高频系数进行软阈值化处理。3)二维小波的重构,根据小波分解的第N层的低频系数和经过修改的从第一层到第N 层的高频系数,来计算二维信号的小波重构。下面就通过具体实例来说明利用小波分析进行图像去噪的问题。

对给定图像进行去噪的二维小波去噪源程序:

clear; % 清理工作空间

load wbarb; % 装载原始图像

subplot(221); % 新建窗口

image(X); % 显示图像

colormap(map); % 设置色彩索引图

title('原始图像'); % 设置图像标题

axis square; % 设置显示比例, 生成含噪图像并图示

init=2055615866; % 初始值

randn('seed',init); % 随机值

XX=X+8*randn(size(X)); % 添加随机噪声

subplot(222); % 新建窗口

image(XX); % 显示图像

colormap(map); % 设置色彩索引图

title(' 含噪图像'); % 设置图像标题

axis square; %用小波函数coif2对图像XX进行2层

[c,l]=wavedec2(XX,2,'coif2'); % 分解

n=[1,2]; % 设置尺度向量

p=[10.28,24.08]; % 设置阈值向量, 对高频小波系数进行阈

%nc=wthcoef2('h',c,l,n,p,'s');

%nc=wthcoef2('v',c,l,n,p,'s');

X1=waverec2(nc,l,'coif2'); % 图像的二维小波重构

subplot(223); % 新建窗口

image(X1); % 显示图像

colormap(map); % 设置色彩索引图

title(' 第一次消噪后的图像 '); % 设置图像标题

axis square; %设置显示比例,再次对高频小波系数进行阈值处理

%mc=wthcoef2('h',nc,l,n,p,'s');mc=wthcoef2('v',nc,l,n,p,'s');

%mc=wthcoef2('d',nc,l,n,p,'s');

X2=waverec2(mc,l,'coif2'); % 图像的二维小波重构

subplot(224); % 新建窗口

image(X2); % 显示图像

colormap(map); % 设置色彩索引图

title(' 第二次消噪后的图像 '); % 设置图像标题

axis square; % 设置显示比例

程序运行结果:

原始图像

5010015020025050100150200250

含噪图像

50100150200250

50

100

150

200

250第一次消噪后的图像

5010015020025050100150200250

第二次消噪后的图像

5010015020025050

100

150

200

250

图5-1 去噪前后图像

比较上图中几幅图像,可见第一次去早滤除了大部分的高频噪,但与原图比较,依然有不少的高频噪声,第二次去噪在第一次的去噪基础上,再次滤除高频噪声,去噪效果较好,但图像的质量比原图稍差。

六、总结

随着信息时代计算机的日益普及,人们对数字图像的质量要求越来越高。但是数字图像在采集和传输过程中,难免会受到噪声的污染,这不仅不符合人们的视觉效果,而且也不利于图像的进一步处理。因此,图像去噪具有很强的理论意义和应用价值。图像消噪是信号处理中的一个经典问题,传统的消噪方法多采用平均或线性方法进行,但是其消噪效果不好,随着小波理论的不断完善,它以自身良好的时频特性在图像消噪领域受到越来越多的关注,文中将以MATLAB 为平台介绍以小波变换去除图像噪声的基本方法。

采用基于小波变换的图像增强技术可以通过对低频分解系数进行增强处理,对高频分解系数进行衰减处理达到图像增强的作用。小波阈值去噪方法是小波去噪领域使用较多的方法,因为其理论相对比较成熟,而且去噪效果也比较好。它是集图像去噪和增强为一体的优秀处理方法,被广泛的应用于图像处理中,大量实践也证明该算法优于其他增强技术。

基于Matlab基本图像处理程序

图像读入 ●从图形文件中读入图像 imread Syntax: A = imread(filename, fmt) filename:指定的灰度或彩色图像文件的完整路径和文件名。 fmt:指定图形文件的格式所对应的标准扩展名。如果imread没有找到filename所制定的文件,会尝试查找一个名为filename.fmt的文件。 A:包含图像矩阵的矩阵。对于灰度图像,它是一个M行N列的矩阵。如果文件包含 RGB真彩图像,则是m*n*3的矩阵。 ●对于索引图像,格式[X, map] = imread(filename, fmt) X:图像数据矩阵。 MAP:颜色索引表 图像的显示 ●imshow函数:显示工作区或图像文件中的图像 ●Syntax: imshow(I) %I是要现实的灰度图像矩阵 imshow(I,[low high],param1, val1, param2, val2,...) %I是要现实的灰度图像矩阵,指定要显示的灰度范围,后面的参数指定显示图像的特定参数 imshow(RGB) imshow(BW) imshow(X,map) %map颜色索引表 imshow(filename) himage = imshow(...) ●操作:读取并显示图像 I=imread('C:\Users\fanjinfei\Desktop\baby.bmp');%读取图像数据 imshow(I);%显示原图像 图像增强 一.图像的全局描述 直方图(Histogram):是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。 图像直方图(Image Histogram):是表示数字图像中亮度分布的直方图,用来描述图象灰度值,标绘了图像中每个亮度值的像素数。 灰度直方图:是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图 像中某种灰度出现的频率。描述了一幅图像的灰度级统计信息。是一个二维图,横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。 归一化直方图:直接反应不同灰度级出现的比率。纵坐标表示具有各个灰度级别的像

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

MATLAB实现频域平滑滤波以及图像去噪代码

用MATLAB实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间:2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。具体的实验指导书上的要求如下: 频域平滑滤波实验步骤 1. 打开Matlab 编程环境;

2. 利用’imread’函数读入图像数据; 3. 利用’imshow’显示所读入的图像数据; 4. 将图像数据由’uint8’格式转换为’double’格式,并将各点数据乘以 (-1)x+y 以便FFT 变换后的结果中低频数据处于图像中央; 5. 用’fft2’函数对图像数据进行二维FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示频率域图 像; 7. 在频率图像上去除滤波半径以外的数据(置0); 8. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示处理过的 频域图像数据; 9. 用’ifft2’函数对图像数据进行二维FFT 逆变换,并用’real’函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以(-1)x+y; 11. 利用’imshow’显示处理结果图像数据; 12. 利用’imwrite’函数保存图像处理结果数据。 图像去噪实验步骤: 1. 打开Matlab 编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’显示所读入的图像数据; 4. 以3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声 图像进行滤波处理; 5. 利用’imshow’显示处理结果图像数据; 6. 利用’imwrite’函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就OK,谢谢大家 %%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .^ ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2));

Matlab中关于图像处理、去噪分析以及有关散点连线画图等程序

算法程序 1.找到图片 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); imshow('3.jpg') 2.将彩色图片处理成灰度图片 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('3.jpg'); I=rgb2gray(A); imshow(I) 3.改变图片大小 右键----编辑----属性-----输入想要的大小 4.两张图片相叠加(区分imadd和系数叠加) 直接把图像数据矩阵相加,可以设定叠加系数,如(系数可自由设定,按需要) img_tot = img1 * 0.5 + img2 * 0.5; %两个图像大小要一致 图像的矩阵我再那里能找到 img1 = imread('tupian.bmp'); 图片相加 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('2.jpg'); imshow(A) >> B=imread('3.jpg'); imshow(B) >> C=imadd(A,B); imshow(C) >> D=A*0.5+B*0.5; imshow(D) A图像

B图像 C图像 D图像 5.两张图片相减 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('2.jpg');

基于MATLAB的减少图像噪声

目录 第一章概述 (2) 第二章典型噪声介绍 (3) 第三章基于MATLAB的模拟噪声生成 (5) 第四章均值滤波处理方法 (7) 4.1均值滤波原理 (7) 4.2 均值滤波法对图像的处理 (9) 第五章中值滤波处理方法 5.1 中值滤波原理 (12) 5.2中值滤波法对图像的处理 (12) 第六章频域低通滤波法 (15) 6.1理想低通滤波器(ILPF)对图像的处理 (15) 6.2 巴特沃思低通滤波器(BLPF)对图像的处理 (18) 6.3 指数滤波器(ELPF)对图像的处理 (20) 6.4 梯形滤波器(TLPF)对图像的处理 (22) 6.5 构建二维滤波器对图像的处理 (24) 第七章总结与体会 (27) 参考文献 (28)

第一章概述 图像平滑主要有两个作用:一个是清除或减少噪声,改善图像质量;另一个是模糊图像,使图像看起来更柔和自然。图像噪声来自于多方面,有来自于系统外部的干扰,如电磁波或经电源窜进系统内部的外部噪声;也有来自于系统内部的干扰,如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声。实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或在频率域处理。空间域常用的方法有领域平均法、中值滤波法、多图像平均法等;在频域可以采用理想低通、巴特沃斯低通等各种形式的低通滤波器进行低通滤波。 图像平滑处理的主要目的是去噪声,而噪声有很多种,大体可分为两类:加性噪声和乘性噪声。加性噪声通常表现为椒盐噪声、高斯噪声等;乘性噪声的一个典型例子就是光照变化。图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。 图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传输、分析、动画制作、媒体合成等多个方面。该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

最新图像去噪处理的研究及MATLAB仿真

图像去噪处理的研究及M A T L A B仿真

目录 引言 (1) 1图像去噪的研究意义与背景 (2) 1.1数字图像去噪研究意义与背景 (2) 1.2 数字图像去噪技术的研究现状 (3) 2 邻域平均法理论基础 (3) 2.1 邻域平均法概念 (3) 3 中值滤波法理论基础 (3) 3.1中值滤波法概念 (3) 3.2中值滤波法的实现 (4) 4中值滤波法去噪技术MATLAB仿真实现 (4) 4.1Matlab仿真软件 (4) 4.2中值滤波法的MATLAB实现 (5) 4.3邻域平均法的MATLAB实现 (6) 总结 (8) 全文工作总结 (8) 工作展望 (8) 参考文献 (9) 英文摘要 (10) 致谢语 (11)

图像去噪处理的研究及MATLAB仿真 电本1102班姓名:杨韬 指导老师:刘明军摘要:图像是生活中一种重要的信息来源,通过对图像的处理可以帮助我们了解信息的内在信息。数字图像去噪声涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系非常完善,且其应用很广泛,在医学、军事、艺术、农业等都有广泛且充分的应用。MATLAB是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。 本文概述了邻域平均法与中值滤波法去噪的基本原理。对这两种常用的去噪方法进行了分析比较和仿真实现。最后根据理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际工作中的图像处理,去噪方法的选择和改进提供了数据参考和依据。 关键字:邻域平均法;中值滤波法;MATLAB 引言 图像因为一些原因总会被外界干扰,所以图像质量往往不是很好,而质量不好的图片又不容易进行进一步的处理。在对图像的地处理过程中,图像去噪是很重要的一个环节,所以想对图像进行进一步的处理,对图像的去噪就变得重要起来,所以很多研究人员对这一课题进行了比较全面的研究,图像的处理最传统的方法是在空域中的处理,也就是说在图像的空间范畴内对图像质量进行改善。也可以对图像进行平滑处理等,这属于第一类图像处理方法。 中值滤波法与邻域平均法是出现最早的去噪手段,而且由于其具备良好的空频特性,实际应用也非常广泛。其中图像的邻域平均去噪方法是众多空域图像去噪方法中效果最好的去噪方法。基本思想就是用邻近的像素平均值来代替噪声的像素,且图像尺寸越大,去噪

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

基于MATLAB的图像平滑算法实现及应用

目录 1.3 图像噪声 一幅图像在获取和传输等过程中,会受到各种各样噪声的干扰,其主要来源有三:一为在光电、电磁转换过程中引入的人为噪声;二为大气层电(磁)暴、闪电、电压、浪涌等引起的强脉冲性冲激噪声的干扰;三为自然起伏性噪声,由物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声、散粒噪声等。一般在图像处理技术中常见的噪声有:加性噪声、乘性噪声、量化噪声、“盐和胡椒”噪声等。下面介绍两种主要的噪声。 1、高斯噪声 这种噪声主要来源于电子电路噪声和低照明度或高温 带来的传感器噪声,也称为正态噪声,是在实践中经常用到的噪声模型。高斯随机变量z 的概率密度函数(P D F )由下式给出: }2/)(ex p{2/1)(22σμσπ--=z z p 其中, z 表示图像像元的灰度值;μ表示z 的期望;σ表示z 的标准差。 2、椒盐噪声 主要来源于成像过程中的短暂停留和数据传输中产生 的错误。其P D F 为: ?????===其他0)(b z pb a z pa z p 如果b > a , 灰度值b 在图像中显示为一亮点,a 值显

示为一暗点。如果P a和图像均不为零,在图像上的表现类似于随机分布图像上的胡椒和盐粉微粒,因此称为椒盐噪声。当P a为零时,表现为“盐”噪声;当P b为零时,表现为“胡椒”噪声。 图像中的噪声往往是和信号交织在一起的尤其是乘性 噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓‘线条等模糊不清,从而使图像质量降低。

第二章、图像平滑方法 2.1 空域低通滤波 将空间域模板用于图像处理,通常称为空间滤波,而空间域模板称为空间滤波器。空间域滤波按线性和非线性特点有:线性、非线性平滑波器。 线性平滑滤波器包括领域平均法(均值滤波器),非线 性平滑滤波器有中值滤波器。 2.1.1 均值滤波器 对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。邻域平均法是空间域平滑技术。这种方法的基本思想是,在图像空间,假定有一副N ×N 个像素的原始图像f (x ,y ),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。经过平滑处理后得到一副图像 g (x ,y ), 其表达式如下: ∑∈=s n m n m f M y x g ),(),(/1),( 式中: x ,y =0,1,2,…,N -1;s 为(x ,y )点领域中点的坐标的集合,但不包括(x ,y )点;M 为集合内坐标点的总数。 领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。其公式如下: ?????>-=∑∑∈∈其他),(),(/1),(),(/1),(),(),(y x f T n m f M y x f n m f M y x g s n m s n m 式中:T 为规定的非负阈值。

图像去噪TV模型及Matlab实现

1.%% ROFdenoise 2.% 3.% Image -to denoise 4.% Theta - the parameter 5.% 6.% This denoising method is based on total-variation, originally proposed by 7.% Rudin, Osher and Fatemi. In this particular case fixed point iteration 8.% is utilized. 9.%------ 10.% For the included image, a fairly good result is obtained by using a 11.% theta value around 12-16. A possible addition would be to analyze the 12.% residual with an entropy function and add back areas that have a lower 13.% entropy, i.e. there are some correlation between the surrounding pixels. 14.%------ 15.% Code Provided By Li.J.Z 16.% Based on total-variation 17. 18.function A = ROFdenoise(Image, Theta) 19. 20.[Image_h Image_w] = size(Image); 21.g = 1; dt = 1/4; nbrOfIterations = 50; 22.Image = double(Image); 23. 24.p = zeros(Image_h,Image_w,2); 25.d = zeros(Image_h,Image_w,2); 26.div_p = zeros(Image_h,Image_w); 27. 28.for i = 1:nbrOfIterations 29. for x = 1:Image_w 30. for y = 2:Image_h-1 31. div_p(y,x) = p(y,x,1) - p(y-1,x,1); %backward difference 32. end 33. end 34. 35. for x = 2:Image_w-1 36. for y = 1:Image_h 37. div_p(y,x) = div_p(y,x) + p(y,x,2) - p(y,x-1,2); 38. end 39. end 40. 41. % Handle boundaries 42. div_p(:,1) = p(:,1,2);

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

小波变换去噪

小波变换的图像去噪方法 一、摘要 本文介绍了几种去噪方法,比较这几种去噪方法的优缺点,突出表现了小波去噪法可以很好的保留图像的细节信息,性能优于其他方法。 关键词:图像;噪声;去噪;小波变换 二、引言 图像去噪是一种研究颇多的图像预处理技术。一般来说, 现实中的图像都是带噪图像。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。 三、图像信号常用的去噪方法 (1)邻域平均法 设一幅图像f (x, y) 平滑后的图像为g(x, y),它的每个象素的灰度值由包含在(x, y)制定邻域的几个象素的灰度值的平均值决定。将受到干扰的图像模型化为一个二维随机场,一般噪声属于加性、独立同分布的高斯白噪声。可见,邻域平均所用的邻域半径越大,信噪比提高越大,而平滑后图像越模糊,细节信息分布不明显。 (2)时域频域低通滤波法 对于一幅图像,它的边缘、跳跃部分以及噪声都为图像的高频分量,而大面积背景区和慢变部分则代表图像低频分量,可以设计合适的低通滤波器除去高频分量以去除噪声。 设f(x,y)为含噪图像,F(x,y)为其傅里叶变换,G(x,y)为平滑后图像的傅里叶变换,通过H,使F(u,v)的高频分量得到衰减。理想的低通滤波器的传递函数满足下列条件: 1 D(u,v)≤D H(u,v)= 0 D(u,v)≤D 式中D0非负D(u,v)是从点(u,v)到频率平面原点的距离,即,即D(u, v) = u2 + v2 (3)中值滤波 低通滤波在消除噪声的同时会将图像中的一些细节模糊掉。中值滤波器是一种非线性滤波器,它可以在消除噪声的同时保持图像的细节。 (4)自适应平滑滤波 自适应平滑滤波能根据图像的局部方差调整滤波器的输出。局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f*(x,y) 与原始图f(x,y) 的均方误差 e2 = E ( f (x, y) ? f *(x, y))2 最小。自适应滤波器对于高斯白噪声的处理效果比较好. (5)小波变换图像信号去噪方法 小波变换去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声信息分散。对信号进行小波分解,就是把信号向L2 ( R) ( L2 ( R) 是平方可积的实数空间) 空间各正交基分量投影,即求信号与各小波基函数之间的相关系数,亦即小波变换值。“软阈值化” ( soft-thresholding) 和“硬阈值化”( hard-thresholding) 是对超过阈值之上的小波系数进行缩减的两种主要方法。一般说来,硬阈值比软阈值处理后的图像信号更粗糙,所以常对图像信号进行软 阈值的小波变换去噪。如图2 所示,横坐标代表信号( 图像) 的原始小波系数,纵坐标

MATLAB图像滤波去噪分析及其应用

《MATLAB图像滤波去噪分析及其应用》,双线性滤波、Kirsch滤波、超限邻域滤波、逆滤波、双边滤波、同态滤波、小波滤波、六抽头滤波、约束最小平方滤波、非线性复扩散滤波、Lee滤波、Gabor滤波、Wiener 滤波、Kuwahara滤波、Beltrami流滤波、Lucy Richardson滤波、NoLocalMeans滤波等研究内容。 《MATLAB图像滤波去噪分析及其应用》全面而系统地讲解了MATLAB图像滤波去噪分析及其应用;结合算法理论,详解算法代码(代码全部可执行且验证通过),以帮助读者更好地学习本书内容。对于网上讨论的大部分疑难问题,本书均有涉及。 第1章图像颜色空间相互转换与MATLAB实现 1.1图像颜色空间原理 1.1.1RGB颜色空间 1.1.2YCbCr颜色空间 1.1.3YUV颜色空间 1.1.4YIQ颜色空间 1.1.5HSV颜色空间 1.1.6HSL颜色空间 1.1.7HSI颜色空间 1.1.8CIE颜色空间 1.1.9LUV颜色空间 1.1.10LAB颜色空间 1.1.11LCH 颜色空间 1.2颜色空间转换与MATLAB实现 1.2.1图像YCbCr与RGB空间相互转换及MATLAB实现 1.2.2图像YUV与RGB空间相互转换及MATLAB实现 1.2.3图像YIQ与RGB空间相互转换及MATLAB实现 1.2.4图像HSV与RGB空间相互转换及MATLAB实现 1.2.5图像HSL与RGB空间相互转换及MATLAB实现 1.2.6图像HSI与RGB空间相互转换及MATLAB实现 1.2.7图像LUV与RGB空间相互转换及MATLAB实现 1.2.8图像LAB与RGB空间相互转换及MATLAB实现 1.2.9图像LCH 与RGB空间相互转换及MATLAB实现 第2章图像噪声概率密度分布与MATLAB实现 2.1噪声概率密度分布函数 2.1.1均匀分布 2.1.2正态分布 2.1.3卡方分布 2.1.4F分布 2.1.5t分布 2.1.6Beta分布 2.1.7指数分布 2.1.8Gamma分布 2.1.9对数正态分布 2.1.10瑞利分布 2.1.11威布尔分布

基于小波变换的图像去噪方法研究毕业设计

题目基于小波变换的图像去噪方法研究

毕业论文﹙设计﹚任务书 院(系) 物理与电信工程学院专业班级通信1101班学生姓名陈菲菲 一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究 二、毕业论文﹙设计﹚工作自 2015 年 3 月 1 日起至 2015 年 6 月 20 日止 三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室 四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。 设计任务: (1)整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2)在MATLAB下仿真验证基于小波变换的图像去噪算法。 2、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法,应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。 进度安排: 1-3周:查找资料,文献。 4-7周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11周:研究基于小波的图像去噪算法,在MATLAB下对算法效果真验证。 12-14周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17周:撰写毕业论文,完成毕业答辩。 指导教师陈莉系(教研室) 系(教研室)主任签名批准日期 2015.1.1 接受论文 (设计)任务开始执行日期 2015.3.1 学生签名

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

相关文档
相关文档 最新文档