文档库 最新最全的文档下载
当前位置:文档库 › 有载分接开关过渡电阻匹配的探讨

有载分接开关过渡电阻匹配的探讨

有载分接开关过渡电阻匹配的探讨
有载分接开关过渡电阻匹配的探讨

分接开关过渡电阻匹配的探讨

摘要:从改善触头切换任务、提高触头寿命和提高工作可靠性三个方面分析有载分接开关过渡电阻理论上最佳匹配

的方式以及实际匹配的修正状况。

关键词:分接开关、过渡电阻、匹配

一.概 述

过渡电阻是电阻式有载分接开关的—个重要组成部分。这种型式的分接开关采用过渡电路高速转换的原理来实现调压目的。因此,调压过程是在暂态条件下工作。在由图1中,当分接1转换到分接2的过程中,过渡触头将过渡电阻R 和回路电感L 0 突然接入级电压Us 的电路中,其环流为:

因R 远大于 L 0 ,环流Ic 的暂态分量(Us/2R)e -

αt 很快衰减。 图1 双电阻过渡电路

对于调压变压器,按理论计算不到几个毫秒,该暂态分量就衰减 R -过渡电阻 Us -级电压 到零。因此,过渡电阻的匹配可以按稳态情况来考虑。 I N -负载电流 I c -环流 二.过渡电阻理论最佳的匹配

过渡电阻的匹配一般都是按交流稳态情况下考虑,并遵循利于改善触头的切换任务,提高触头电气寿命和工作可靠性三原则进行匹配。综合考虑匹配方案,从中筛选最佳匹配值。

分接开关采用过渡电路的原理实现分接变换操作。过渡电路按GB10230.1分接开关标准归纳分为旗循环、对称尖旗循环以及非对称尖旗循环三种分接变换操作法。触头切换任务与它所采用的分接变换操作法有关。

1.改善触头切换任务的匹配

⑴ 双电阻过渡旗循环法的触头任务

双电阻过渡旗循环法的过渡电路见图2所示,电弧触头变换程序为“1—2一1”程序,输出电压经过四次变化,输出电压变化的相量图(图3)外观很象一面旗。因此称它为旗循环变换法。

(a) (b) (a) (b) 图2 双电阻过渡电路(“1-2-1”程序) 图3 双电阻过渡旗循环法相量图

(a)-CM 型分接开关 (b)-CV 型分接开关 (a)-电流相量 (b)-电压相量

双电阻过渡旗循环法的触头切换任务见表1所示

表1 双电阻过渡旗循环的触头任务表(R = n U匹配)

从表1知道,过渡触头的切换容量P k2 =[(1+2ncos¢+n)/2n]U s I N,以n为变量,令dP k2/dn=0,求解n的匹配值。dP k2/dn=(1/2)-(1/2n2)= 0,则n =1,即过渡电阻的匹配值为R = U s/I N 。

但是,为了保证分接开关工作可靠性,应尽量降低主通断

触头的恢复电压,过渡电阻匹配系数n也尽量取低。但n值取

低会引起环流的增加,过渡触头开断电流会增加,触头寿命也

就降低。如果要减少过渡触头的电流,过渡电阻匹配系数n必

然提高。为了满足上述两个相反的条件,试求切换总容量的最

小参数,从而导出过渡电阻新的匹配法。从表1知道,切换开

关总切换容量为:

即过渡电阻采用R=0.577U s/I N匹配值。从图4的P = f (n) 图4 触头任务与电阻匹配的关系

曲线看,恰好是P K l 4= f (n) 曲线的最低点。此时,过渡触头的

切换容量仅略有增加,但主通断触头的切换容量却大大降低,因此,分接开关工作可靠性大大提高。

⑵四电阻过渡旗循环法触头任务

双电阻过渡旗循环法的过渡电路见图5所示,其电弧触头变换程序为“2—3一2”程序,输出电压经过六次变化,输出电压变化的相量图(图6)外观仍象一面大旗,可以视为双电阻过渡旗循环的延伸。

K1

R1 K2

R2 K3

R2 K4

K5

R1 K6

图5 四电阻过渡电路

“2-3-2”程序图6 四电阻过渡旗循环相量图(R2= mR1)

四电阻过渡旗循环法(R1 = n U S / I N ,R2 = m R1 =m n U S / I N 匹配)的触头切换任务见表2所示。

表2 双电阻过渡旗循环的触头任务表(cosΦ = 1)

在四电阻过渡电路中,R1 = n U S / I N ,R2 = m R1 =m n U S / I N的匹配情况下,触头总切换容量P Kl6 (cos¢=1)为:

⑶单电阻过渡非对称尖旗循环法触头任务

单电阻过渡非对称尖旗循环法的过渡电路见图7a

所示。输出电压经过两次变化,输出电压变化的相量

图(图7b)外观很象一面尖旗。因电路非对称,故称它

为旗循环变换法。

(a) (b)

图7 非对称尖旗循环法的过渡电路和相量图图8 过渡电阻系数n与触头任务的关系

(a)-过渡电路 (b)-电压电流相量图(cosΦ = 1)

单电阻过渡单臂接法的选择开关过渡电阻匹配系数n对各触头任务的关系见图8所示。

从图8可以看出,随着n的增大,降压方向的主通断触头切换容量直线上升,而过渡触头切换容量却是下降,然而降压方向的切换总容量以及升压方向的主通断触头切换容量(即是切换总容量)开始随n增大而急剧下降,随后在0.51.5以后,切换

容量又上升。从图中可以发现,无论降压或升压方向,仅在n = 1时,其切换总容量最小。为此,单电阻过渡单臂接法的选择开关其过渡电阻只有一个最佳匹配方案n=1,即R=Us /I N 。 2. 提高触头寿命的匹配

分接开关在众多动、定电弧触头中,只要其中一个触头烧损完结,则认为分接开关触头电气寿命完结。因而,需要更换全部电弧触头。要提高触头电气寿命,应力求电弧触头烧损均匀。从触头烧损量平衡角度来考虑,主通断触头和过渡触头的烧损比等于1,即两者烧损速度相等。过渡电阻匹配值大小对电弧触头烧损均匀有着一定的影响。 ⑴ 双电阻过渡旗循环法

触头烧损量用公式A = N ·K m ·I α

N · t 表示,式中N 为触头操作次数;K m 为触头材料的常数;α为指数,其值为1≤α≤2;t 为触头的燃弧平均时间。

在双电阻过渡旗循环法触头任务分析中可知,主通断触头开断电流I N 为N 次时,则过渡触头在最为恶劣条件(cos Φ = 1)下,其中开断电流(1+n) I N /2n 为N/2次,另外开断电流(1-n) I N /2n 也为N/2次(考虑升降压次数趋于平衡缘故)。

假定过渡触头与主通断触头燃弧平均时间相等时,则主通断触头与过渡触头的烧损速度相等的话,其过渡电阻的匹配系数n 的解为:

NK m I αN t = (N/2) K m [(1+n) I N / 2n ]α t +(N/2) K m [(1-n) I N / 2n ]αt [(1+n) I N / 2n ]α + [(1-n) I N / 2n ]α = 2

过渡电阻匹配系数n 的解见表3。

从表3 可知,当α=2时,触头烧损最佳匹 表3 α与n 值 配与触头任务最佳匹配是一致的。无疑,当过渡 电阻匹数系数n = 0.577时,过渡触头与主通断触头的烧损比较均匀,使用寿命较长。

对于双电阻过渡旗循环法的触头直接并联而成单相分接开关,从触头烧损角度来分析单相分接开关的过渡电阻最佳匹配情况。假定过渡触头有一些并联电弧,并联电弧的个数为p 个时(p = 1,2,3),则流过一个过渡触头的电流为:

I = Us / (3+p) R ±I N / (3+p) = [(1 / n )+1] I N / (3+p)

,于是,p 个过渡触头电弧引起p 倍的烧损,则主通断触头与过渡触头的烧损速度相等的

话,其过渡电阻的匹配系数n 的解为:

NK m I αN t = (N/2) K m [(1 / n )+1] αI αN / (3+p) αt +(N/2) K m [(1 / n )-1]

αI αN / (3+p) αt

2 (3+p)

α/ p = [(1 / n )+1]α+[(1 / n )-1]α

当1≤α≤2时,p = 1,2,3,则过渡电阻匹配系数n 的解见表4。

由于在实际中引起并联电弧的频率事先不知 表4 p 与n 值 道,则n 值就不能明确的肯定。 为此根据一些文献介绍,取n=0.33为好.

同样,三相分接开关两相触头直接并联使用时,

取n = 0.4为宜,此时触头烧损比较均匀。 ⑵ 单电阻过渡非对称尖旗循环法

当选择开关在降压方向时,主通断触头开断电流为I N ,过渡触头开断电流为I N / n ;而在升压方向时,主通断触头开断电流为I N (n 2-2ncos Φ+1)1/2 / n ,过渡触头开断电流为零(I = 0)。为了简化考虑,令cos Φ ≈ 1。则主通断触头与过渡触头的烧损速度相等的话,其过渡电阻的匹配系数n 的解为:

(N/2)K m I αN t +(N/2) K m [1-(1/n) I N ] αt = (N/2)K m (I N /n)αt +0

n α

+(n -1)α= 1

当1≤α≤2时,则过渡电阻匹配系数n 的解见表5。

从表5 可知,无论α为任何值,其触头烧损最佳匹配 表5 α与n 值 系数始终为n = 1,这与触头任务最佳匹配是一致的。为 此,单电阻过渡非对称尖旗循环法的选择开关,其过渡电 阻匹配系数n = 1时,触头寿命最长。 ⑶ 提高工作可靠性的匹配

从提高工作可靠性角度,过渡电阻匹配系数n 应满足下述要求:

n = [P s N ] / U s I max

式中,[P S N ]为分接开关的主通断触头额定的开断容量。

如果分接开关有几组不同开断电流与相关级电压的组合, 则需要限定额定开断容量,即主通断触头开断容量不得超过 其两倍额定级容量。否则将会危及分接开关的运行安全性。 例如CM 型分接开关主通断触头开断能力见图9。

I max 为分接开关允许最大负载电流。对于电力变压器,

允许最大的负载电流,即I max =2I N 。对于电弧炉变压器,允许

最大负载电流按三倍最大额定通过电流来考虑,即I max =3I N 。 当三相分接开关触头直接并联作为单相分接开关使用时, 开断电流(A)

由于负载转换最为严重情况发生在最后一个开断的主通断触 图9 CM 型分接开关主通断触头 头上,从而开断电流比原来均衡电流增加三倍。同样,电弧 开断能力 (β-负载率) 炉变压器上使用的分接开关,操作频繁,其工作电流最大高

达三倍额定的工作电流。因此,过渡电阻的匹配值选择应特别慎重。通常从工作可靠性出发,匹配系数n 都取得较低,即匹配系数n 为0.3~0.5中某一数值为宜。 三. 过渡电阻实际匹配值的确定

上述确定匹配系数的三原则都是从理论上进行分析后推导的,然而变压器在实际运行中,所承载的容量往往低于额定容量。因此,变压器实际负载电流低于变压器额定电流值,则过渡电阻匹配值大都需要进行修正。

双电阻过渡旗循环变换方式:n i =n /K i ;四电阻过渡旗循环变换方式:n i =n /K i ,m i =m /K i 单电阻过渡非对称尖旗循环变换方式:n i =n /K i 。上述式中,K i 为修正系数,它取决于变压器实际负载电流与额定电流的比值。根据大量的统计概率,有载调压变压器大都在80%额定容量下运行,例如国产150MW 发电机组,所配变压器往往是180MV A 。所以,一般情况下Ki 取0.8为宜,则三相分接开关过渡电阻实际最佳匹配系数值为: 双电阻过渡旗循环变换方式:n i ≈0.7~0.8

四电阻过渡旗循环变换方式:n i ≈0.5 m i ≈2~3 单电阻过渡非对称尖旗循环变换方式:n i ≈1~1.2

实际匹配系数随着级电压和负载电流变化而略有变动。级电压高时,取匹配系数的下限值,则电弧触头断口间恢复电压可以降低,有利于电弧迅速熄灭。级电压低时,取匹配系数的上限值,虽然恢复电压略有增加,但不影响熄弧,然而过渡触头开断电流降低,有利于提高触头寿命。

对于特种变压器用的分接开关,往往每级的级电压和负载电流都是变化的。这时过渡电阻的匹配按最大级电压和最大负载电流来考虑,并验证在变化范围内所选取匹配系数的安全性和合理性。 对于单相分接开关,首先应从工作安全性和可靠性角度出发,兼顾触头寿命,综合考虑匹配系数。一般说来,匹配系数要取得低些。为了提高运行安全性、可靠性和触头寿命,变压器绕组设计时应尽量采用强制分流措施。

四.结束语

本文所探讨过渡电阻的匹配方法己在分接开关上获得应用。这对改善分接开关触头切换任务,提高触头使用寿命,确保分接开关工作安全可靠性和节约电阻材料等方面有着现实的指导意义。

————————————————————————

参考文献

1.IEC60214-2 Tap-changers-Part 2:Application guide (2004)

2.MR. Technical Data:General part TD61. Germany.

3.科雷默尔著. 有载分接开关原理和应用.沈祖俊译. 沈阳:辽宁科学技术出版社,2000. 4.张德明. 变压器有载分接开关. 沈阳:辽宁科学技术出版社,1998.

ABB有载分接开关原理介绍

? ABB PPTR Components - 1
DLJ
变压器组件
ABB 电力技术产品
有载分接开关

? ABB PPTR Components - 2
DLJ
UC型有载分接开关

UC型有载分接开关
?
概述
组合型
? 单独的切换开关和分接选择器 ? 切换开关在单独的油室内
? 安装,检修简单方便 ? 独特的驱动系统,吊芯和复装简单 ? 切换开关开放式设计,维修方便 ? 运行可靠性高,40年世界各地的运行经验 ? 性能指标 ? 最大冲击电压1050 kV ? 最大通过电流1600/4500 A
? ABB PPTR Components - 3
DLJ
? 最大级电压5000 V ? UC型开关可用于任何联结形式的变压器 ? 触头电气寿命最大50万次 ? 机械寿命100万次以上。

UC型有载分接开关 UC型开关主要由三部分组成:
? 切换开关、分接选择器、电动机构 ? 还包括传动系统、开关保护装置、储油柜( 用户可自备)等。 ? 此外,还可选装远方档位显示、自动电压调 整器、对应档位的空接点、BCD编码器等附 件。 ? 切换开关 分为UCG、UCL、UCD、UCC等,其 主要区别在外观尺寸、额定通过电流。
? ABB PPTR Components - 4
DLJ
结构特点
传动系统
切换开关
分接选择器
电动机构
? 分接选择器 分为I、III、C、G型等。 ? 电动机构 分为BUL、BUE1、BUE2型等。
UCG型有载开关

干式变压器有载分接开关控制器使用说明

YE-1型有载分接开关智能控制器使用说明书

山东优逸电气有限公司

目录 1. 概述 (1) 2. 工作环境 (2) 3. 技术参数 (2) 4. 安装与调整 (2) 5. 使用 (6) 6. 常见故障及检修 (6) 7. 产品代码含义 (7) 8. 通讯规约 (8) 9. 附录一:产品代码W0-07-2-1BR-09用户接线图 (10) 10.附录二:产品代码W0-07-2-1BR-15用户接线图 (11)

1.概述 1.1主要用途 YE-1型有载分接开关智能控制器(以下简称YE-1)主要用来控制有载分接开关,与有载调压变压器组成手动、自动调压系统。YE-1可以通过RS485通讯接口与上位机直接通讯,在多台运行时(最多8台),通过上位机的设置,将任意几台进行并联控制。而且YE-1还可以不通过上位机控制,在多台运行时(最多6台),通过RS485接口可直接将任意几台控制器进行并联控制。 1.2适用范围 YE-1通过有载分接开关内部的电动操作机构来控制有载分接开关的切换操作,以达到调压目的。 YE-1设有过电压速降和欠电压保护功能,以确保有载分接开关的安全操作。 YE-1可通过轻触按键进行目标电压值、区间延时、调节精确度、装置地址等参数的设置。 YE-1可显示取样电压(信号电压)、分接位置显示。 YE-1还具有可靠的二端电气限位。 YE-1具有多种远控输出接口,档位信号一一对应无源触点输出或档位信号BCD码无源触点输出(触电容量:1A/AC120V或2A/DC30V)及远方控制信号输入(升档、降档、停止动作指令必须提供无源触点),实现有载分接开关远方监视与控制,也可通过RS485通讯接口与上位机通讯进行遥测、遥控、遥信,实现有载分接开关的无触点的远程监视与控制,并可实现多台有载调压变压器的并联控制。

有载分接开关调节 2

武汉华能阳光电气有限公司 配电变压器调节分接开关操作 1、先停电。断开配电变压器低压侧负荷后,用绝缘棒拉开高压侧跌落式熔断器,然后做好必要的安全措施。 2、拧开变压器上的分接开关保护盖,将定位销置于空档位置。 3、调节档位时,应根据输出电压高低,调节分接开关到相应位置,调节分接开关的基本原则是: 当变压器输出电压低于允许值时,把分接开关位置由Ⅰ档调到Ⅱ档,或Ⅱ档调整到Ⅲ档。 当变压器输出电压高于允许值时,把分接开关位置由Ⅲ档调到Ⅱ档,或Ⅱ档调整到Ⅰ档。 4、调节档位后,用直流电桥测量各项绕组直流电阻值,检查各绕组之间电阻值相差大于2%,必须重新调整,否则运行后,动静触头会因接触不好而发热,甚至放电,损坏变压器。 5、确认无误再送电,查看电压情况。 户外变压器的安装要求

武汉华能阳光电气有限公司 油浸自冷式变压器绝缘电阻的测量 1、电力变压器为何要装分接开关?何时需要切换? 2、切换分接开关的操作方法? 3、试述对运行中的变压器分接开关进行切换的全过程?(按操作顺序回答,包括测量及判断切换操作的质量,安全措施应足够)1、电力变压器为何要装分接开关?何时需要切换? 答:分接开关是变压器高压绕组改变抽头的装置。调整分接开关位置,可以增加或减少高压绕组的匝数,以改变其变压比,使低压侧输出电压得到调整。运行中的变压器,高压侧供电电压偏高或偏低时,致使低压侧电压值过高或过低,这种情况下,需要调整其分接开关位置,改变其变压比,以使低压侧电压恢复到额定电压下正常运行。分接开关分为三档,Ⅰ档为10.5KV(额定电压、绕组圈数最多),Ⅱ档为10 KV,Ⅲ为9.5KV;

武汉华能阳光电气有限公司 任何电压等级的电力系统,其实际电压都允许在一定范围内波动,此时,二次电压也会波动,这就会影响到用户的用电。为使变压器二次电压维持在额定值附近,又要适应一次电压的波动,所以变压器上装有分接开关。当二次变压器长期偏高或者长期偏低时,就应调节分接开关,使二次电压恢复正常。通过调节分接开关的接头来改变一次绕组的匝数而维持二次电压在额定值附近。变压器铭牌上标明的电压调整范围即表明了保证二次电压为额定值时,一次电压的几个标准值。变压器铭牌所标示的电压调整范围说明,当一次电压升高到10.5kV时,把分接开关调整到Ⅰ位,能保持二次电压为额定值;当一次电压降到9.5kV时,调整分接开关到Ⅲ位,同样能使二次电压维持在额定值。 答:何时需要切换分接开关:当电压长期的偏高或偏低时需要切换变压器的分接开关。 长期是多长:时间约十天到半个月,并结合用电季节特点进行切换。 偏多少算偏:大于或接近用户端电压偏离额定值时应切换。 电压允许波动值是多少:

有载调压开关故障原因及解决(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 有载调压开关故障原因及解决 (最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

有载调压开关故障原因及解决(最新版) 陕西商洛供电局在35kV变电站无人值班改造过程中,陆续出现主变有载调压开关更换调压控制器后,在极限位置时无法可靠动作,针对该类有载调压开关操作过程中,有时出现滑档的异常现象,结合实际情况,进行了总结分析。 1故障现象 陕西商洛供电局无人值班变电站改造中的旧35kV变电站,主变压器大多为2000年以前的设备,所配有载开关为复合式结构型,调压控制器也是配套生产的。由于老的调压控制器无法满足远方控制要求,结合设备特点,更换为新型控制器,拆除原有控制器以及外置补偿电容后,出现调压开关到达极限档位后,无法继续正常操作的问题。经检查控制器正常,因此不得不将有载开关进行放油,打开机构顶盖反方向拨动机构,才能继续操作,这给设备的正常运行

及远方控制带来不便。 2调压机构 对于35kV主变压器,有载开关多为复合式结构,即电机、传动机构、开关本体合为一体,没有机构控制箱,远方装有调压控制器。电机电源虽接两相交流电,但电机也是三相异步电机,三相异步电机接两相电源时,如果是静止的电动机,一般不能正常启动且发出嗡嗡声,这是因为电动机通入对称的三相交流电源后会在定子铁芯中产生旋转磁场,但当缺一相电源后,定子铁芯中产生的是单相脉动磁场,它不能使电动机产生启动转矩。至于复合式有载调压机构所用的三相异步电机大多功率很小,一般不超过180W,加之电机主要是用来弹簧储能,启动负载较小,为了改善启动性能,并便于控制及接线方便,通常在两相交流电源中取任意一相通过补偿电容移相后输出产生“第三相电源”,由于电机电源三相不对称,此时电机定子绕组将产生椭圆形旋转磁场,也可使负载不大的电机正常顺利启动。 3故障原因分析及采取的措施

变压器有载调压开关异常的分析和处理

变压器有载调压开关异常的分析和处理 有载分接开关可以在变压器带有负载的运行状态下改变分接位置,达到不停电改变变压比调整运行电压的目的。它由分头选择器和切换开关两部分组成,由统一的电动操作机构控制和协调工作。分头选择器的作用是先在无载状态下变换选择分头,然后由切换开关进行有负载的切换。 有载分接开关异常运行或故障的处理 1、调压开关拒动 发生拒动时应检查以下内容: (1)操作是否正确。 不正确的操作有: ①操作方式选择开关(如远方或就地操作选择开关,手动或自动 选择开关等)位置不正确,应将它们置于正确位置上; ②操作超越极限位置(已在最高位继续调增.或已在最低位继续 调减),应向发令人报告,改正错误。 (2)操作回路直流电源是否正常。 如不正常应处理恢复电源。 (3)操作机构交流电源是否正常。 不正常的情况可能有: ①机构动力电源三相或两相无电压(断路器未合或熔断器断开), 电动机不能启动;

②操作动力电源有一相无电压,电动机两相受电引起过电流使电 源接触器跳闸; ③机构交流控制电源无电压,控制回路不能动作; ④操作交流电源三相相序错误,使电动机反向旋转,有关保护动作使电源接触器跳闸。如属这种情况,将三相电源中两相互换,调正电源相序即可重新操作。如属①②③情况应排除电源故障,然后再启动调 压; ⑤控制回路是否闭锁。 闭锁的可能原因:交流失压,三相失步,调整时间过长或其它,根据直流控制回路的设计而定。应根据设计回路图及出现的信号,查明 并排除引起闭锁的原因。 2、有载分接开关机械故障。 有载分接开关机械故障包括切换开关或分头选择器故障、操作机 构机械故障在内,是一种严重故障,可能产生以下情况: (1)分头选择器带负荷转换。这种情况与带负荷分合隔离开关相似,将使变压器本体主瓦斯继电器动作跳闸。 (2)切换开关拒动或切换不到位。如果切换开关在切换中途长时间停止在某一中间位置,会使过渡电阻因长期通电而过热,可能使切换开关瓦斯继电器动作,将变压器跳闸. (3)切换开关或分头选择器触头接触不良过热。 发生以上类似情况时,应及时申请将变压器退出运行,进行检修。

有载调压分接开关说明书

1. 概述 宾馆、酒店、企业等单位的照明和用电设备的供电电压过高造成大量损坏,或减少寿命,维护量大。电压过低用电设备不能启动,或增加工作电流来维持功率。这样就增加多项费用支出。真空有载分接开关与电力有载调压变压器配套组成有载调压系统,保证设备用电电压稳定在一定的范围内,使用电设备正常工作,降低损耗、减少费用,提高一些用电装置的寿命。 本手册介绍了分接开关的原理、技术参数、使用方法、注意事项等供用户定货、使用时参考。在定货和使用前请详细阅读。 本产品是在老产品的基础上,根据市场信息反馈及多年生产、使用所积累的经验研制、开发的新产品。结构先进、可靠、故障率低、智能化控制。我们将质量卓越的产品、优良的售后服务提供给您,与您共创辉煌! 由于产品不断改进,说明书上所述内容可能与产品有不同点,请与我厂联系咨询,不另行通知。 2. 分接开关 2.1 型号说明 SPK-C3型165-10 /35-09 9档 工频耐压35KV 额定电压10KV 额定电流165A 3型 中部调压 开关 真空 三相 2.2 系统特点 (1) 开关体积小、重量轻、运行噪声低。 (2) 凸轮条传动准确可靠。 (3) 切换采用新式结构,防止由于分接开关故障烧坏变压器,取消过流

保护装置。 (4)采用世界上最先进的枪机式切换机构。 (5) 开关本体采用西门子PLC控制,无触点,具有完善的保护功能。 (6) 远程自动控制器采用单片机结构,具有RS-485接口,用于计算机 监控使用,通信地址可自由预置。 (7) 电压稳定范围等参数预置另活、方便。 (8) 具有分接开关并联运行接口,与并联控制器相连结,组成多台开关 并联运行系统。 2.3 使用条件 (1)户内安装使用,有防雨设施。 (2)环境温度不大于55℃,不低于-25℃。 (3)相对湿度不超过95%。 (4)无易燃、易爆、腐蚀性气体及导电尘埃。 (5)分接开关上不应凝霜、凝露和结冰。 (6)基础不平度公差不大于2mm。 2.4 技术参数 电压等级10KV 额定通过电流165A 对地绝缘工频耐压35KV1min 相间绝缘工频耐压35KV1min 对地相间雷电冲击耐压75KV 1.2/50μS 相邻分接间工频耐压3KV1min 短路试验电流3000A热稳定(3S值) 最高工作电压11.5KV 分接级数用户确定,最多21级 转换1挡时间6S 执行电机额定功率60W 执行电机额定电压AC220V 执行电机额定频率50Hz 重量286kg

有载分接开关 (1).

武汉华能阳光电气有限公司 有载分接开关说明 §8-1有载分接开关的发展 (一)有载分接开关的优点 电压质量是电网运行的主要技术指标之一,《供用电规则》对用户的电压质量提出了明确的考核标准。电力系统为保证用户电压质量,也级母线电压规定了合格范围。无励磁调压开关,其最大的缺点为不能带负一般区域负荷变化较大或网络结构不合理的变电站,一年1—2次。而区域负荷变化较小或网络结构合理的变电站,变压器多年也不调整。电压难满足用户的要求。随着国民经济的快速用户对电压质量的要求愈来愈高,无励磁调压变压足用户对电压质量的要求。而有载调压变压器可以在变压器运行(负载)状态下随时对电压进行调整,可以有效的提高电压质量。近年来得到了广泛的应用。 §8-2用途 在变压器运行(负载)状态下,通过调整有载分接开关的挡位,改变变压器的分接头位置,以达到调整变压器输出电压的目的。

武汉华能阳光电气有限公司 (二)有载分接开关的发展 我国于1953年上海电机厂第一次制造出35KV、5000KVA电抗式有载调压变压器。几十年来,特别是改革开放以来,为了满足用户对电压质量的要求,适应有载调压变压器发展的需要,有载分接开关的制造技术发展比较迅速,生产厂家有贵州长征电气厂、吴江远洋电气厂、上海华明电力设备开关厂、西安鹏远开关厂、上海赛力电工电气厂、以及沈变、保变、常变、上海电力修造厂、等等。其制造技术和制造质量已比较成熟,已完全能满足国内220KV及以下市场的需求。 早在1920年美国通用(G、E)电气公司首先制造出电抗式有载调压开关。1927年德国扬森(Jansens)博士发明的电阻过渡原理制造出电阻式有载分接开关。以后得到迅速发展,在世界各国都被大量采用。并有了几十年的制造经验,国际上有载调压开关的制造技术和制造质量已非常的成熟,电阻式有载分接开关形成了一系列产品,电压能做到420KV,电流能做到3相3000A,单相4500A。比较出名的厂家有:德国莱茵豪森(MR)机械制造公司、瑞典ABB组件公司、奥地利伊林公司、以及法国阿尔斯通公司、比利时沙城电器制造公司、日本、苏联等一些制造公司都可以生产有载分接开关。目前我国330KV及以上主变压器使用的有载调压开关大部分为进口设备。

HMK8变压器有载分接开关控制器使用说明书

HMK8

HM0.460.1421 目 录 一、 概述 (2) 二、 主要功能特点 (2) 三、 性能参数 (2) 四、 工作原理 (3) 五、 结构组成 (3) 六、安装与接线 (5) 七、功能键的操作及其调试 (9) 八、远程监控及RS485 通信规约 (11) 九、常见故障处理表 (13) 十、随机文件和附件 (13) 1

2 一、 概述 HMK8变压器有载分接开关控制器 ( 以下简称HMK8 )适用于变压器有载调压的控制。HMK8具有档位显示、动作次数显示功能,并且经RS-485串口实现远程通信,控制变压器有载分接开关升、降、停。HMK8还可以通过模式选择实现本地和电操的升、降、停控制。 二、主要功能特点 2.1 适用于SHM-III 型电动机构2.2 界面采用LCD 显示屏 2.3 本地、远控、电操三种操作模式 2.4 档位BCD 码无源触点输出、运行状态和欠压闭锁状态无源触点输出2.5 档位显示和动作次数显示2.6 具有RS-485串行通信功能 三、性能参数 3.1 工作环境 3.1.1 最高温度40℃,最低温度-10℃。3.1.2 周围空气的相对湿度不大于85%。3.1.3 海拔不超过2500m。 3.1.4 不允许有剧烈的振动与冲击。 3.1.5 安装位置对于任一方向允许偏差为±2°。 3.1.6 无爆炸、不含腐蚀金属和破坏绝缘的气体及导电介质、不允许充满水蒸气及严重霉菌存在。 3.2 技术参数 3.2.1 额定参数:——电源相数: 三相;——电源电压:380V/220V;——额定频率:50Hz/60Hz; ——额定功耗:≤10VA(无电机驱动信号时)。3.2.2 整定参数: ——欠电压闭锁设定:80%。3.2.3 显示参数 ——分接位置:最大35(特殊订货例外); ——操作次数: 最大66000(超过此数后重新从0开始计数)。

变压器有载调压的原理

变压器有载调压的原理: 变压器的高压绕组终端区隔一些线匝就抽出一个接头,电源接在不同的抽头上,高压绕组的实际线匝数就不同,而低压绕组的线匝数是固定的,这样,变化的高压绕组匝数和不变的低压绕组匝数就构成了不同的变比,根据变压器变压的原理,低压绕组就可以随高压绕组接不同的抽头而变出不同的电压;高压绕组的抽头可以在线圈的电源侧,也可以在中心点侧,这都能不能改变其基本原理。所以220KV以下的变压器抽头一般设在电源侧,更高电压的变压器抽头就设在高压绕组的中心点侧了; 变压器一般都带抽头,以便现场根据实际电压来调整电压值。但是无载调压占多数,主要是一般地区的电压变化不是那么频繁和幅度那么大,可以不用时时调整;但是有些地方对于电压要求比较严,有些地方的电压常常变化,就得使用有载调压了。 有载调压就是将上述绕组抽头都接在有灭弧能力的开关上,在外部通过远方控制手的或自动调节电源好这些抽头的连接,从而达到随时调整低压绕组输出电压的目的。调整时,这些开关先与需要的那个抽头接上,然后断开原来接通的抽头,因为有电压好运行电流的存在,所以跳开的开关与我们使用的其他电源开关一样,要灭弧后断开。 什么情况下不允许调整变压器有载调压装置的分接头? (1)变压器过负荷运行时(特殊情况除外); (2)有载调压装置的轻瓦斯动作报警时; (3)有载调压装置的油耐压不合格或油标中无油时; (4)调压次数超过规定时;

(5)调压装置发生异常时。 500kV变压器也是用的有载调压?厉害! 单从有功潮流方向还不能确切判断如何调整,还得看无功方向,我仅凭经验简单说明一下,但还得进行深层分析,以500kV侧CT为参考点: 第一相限:即有功、无功由500kV流向220kV,500侧电压高说明500kV侧无功过剩,可根据电网运行数据计算需方的无功需量,这种情况一般来讲,调底有载开关档位起不到多大作用,应降低500kV侧系统(发电机无功出力)或投电抗器来实现; 第二相限:即有功由220流向500,无功由500流向220,500侧电压高还是说明500kV侧无功过剩,调节方式同上; 第三相限:即有功、无功均由220流向500,这种情况一般不会导致500kV 过压,除非220侧电压超得太多,也可以调高有载开关档位(类似升压变);第四相限:即有功由500流向220,无功由220流向500,说明220侧无功过剩,也可以调高有载开关档位,或投电抗器或降低220侧系统无功; 有载开关调节都很困难,500kV一般都由电容、电抗器来调节或调发电机AVR,很方便。 以上内容仅为鄙人观点,若有错误,尽请谅解,能力有限,请多指教。 主变压器的有载调压开关操作规程 6.1??110kV主变使用的ZY-I-III300/110-±8有载调压分接开关是镶入型的,具有单独油箱和小油枕的开关。 6.2 有载分接开关的油温不得高于100℃,不低于-25℃。触头中各单触头的接触电阻不大于 500μΩ。 6.3 检修后及新安装的有载调压开关投入使用前,必须进行下述程序进行操作试验检查。 1. 投入使用前必须熟悉使用说明书的各项要求,先手动操作后电动操作。 2. 操作试验:在电动机控制回路施加电压之前,检查供给电源的额定值是否与所要求的数值一致。检查电动机的电源相序是否正确,若电源相序错,则断路器跳闸后再扣不上,或者断路器再扣后机构

有载调压分接开关过渡电阻选用设计

有载调压分接开关过渡电阻选用设计 摘要: 本文通过介绍有载分接开关的基本工作原理及有载分接开关切换过程中暂态过程的建模来选用合适过渡电阻值,同时着重从几个方面(有利于改善触头的切换任务,提高触头的电气寿命以及其工作可靠性三个原则来进行匹配)来分析并从中筛选出最佳方案。这对于变压器设计者更深入的了解有载分接开关以及设计过程中考虑更为全面起到了一定的指导作用。 关键词:灭弧;有载调压开关;变压器 Abstract:Through the introduction of on-load tap basic working principle and the transient process on-load tap changer switching process modeling to choose a suitable transition resistance value at the same time focus from several aspects (help to improve the contact switch tasks, three principles to improve the contact electrical life as well as its operational reliability to match) to analyze and to filter out the best solution. For transformer designers a deeper understanding of the on-load tap switch as well as the design process to consider more comprehensive played a certain role in guiding.Keywords: interrupter; OLTC; transformer 引言 变压器通过调压线圈中增减绕组的分接头来改变电压比的方法几乎与变压器同时问世,有载调压开关的应用使得在不切断负载的情况下可以调节电压。 如今,有载调压分接开关已经由油中灭弧的方式向通过真空泡灭弧的方式发展。无论是工业用户还是电网用户为了缩小维护成本降低维护工作量,都对真空开关比较青睐。所以真空有载调压分接开关是当今以及未来的发展趋势。因此选用真空开关对节省维护成本,降低供电公司工作量也是非常有益的。 1 传统有载调压开关(例如M型)的作用及原理 1.1分接开关的基本功能 一是在开路情况下“选择”一个分接头,二是在不中断电流的情况下把功率“切换”或“调换”到所选的分接头上。而其中也有简易式有载分接开关(即:选择开关)是把两种功能结合在一个装置中,而分接选择器与切换开关或调换开关互相分开的分接开关是用于功率较高的情况下。

有载调压开关故障原因及解决

有载调压开关故障原因及解决 陕西商洛供电局在35kV变电站无人值班改造过程中,陆续出现主变有载调压开关更换调压控制器后,在极限位置时无法可靠动作,针对该类有载调压开关操作过程中,有时出现滑档的异常现象,结合实际情况,进行了总结分析。 1故障现象 陕西商洛供电局无人值班变电站改造中的旧35kV变电站,主变压器大多为2000年以前的设备,所配有载开关为复合式结构型,调压控制器也是配套生产的。由于老的调压控制器无法满足远方控制要求,结合设备特点,更换为新型控制器,拆除原有控制器以及外置补偿电容后,出现调压开关到达极限档位后,无法继续正常操作的问题。经检查控制器正常,因此不得不将有载开关进行放油,打开机构顶盖反方向拨动机构,才能继续操作,这给设备的正常运行及远方控制带来不便。 2调压机构 对于35kV主变压器,有载开关多为复合式结构,即电机、传动机构、开关本体合为一体,没有机构控制箱,远方装有调压控制器。电机电源虽接两相交流电,但电机也是三相异步电机,三相异步电机接两相电源时,如果是静止的电动机,一般不能正常启动且发出嗡嗡声,这是因为电动机通入对称的三相交流电源后会在定子铁芯中产生旋转磁场,但当缺一相电源后,定子铁芯中产生的是单相脉动磁场,它不能使电动机产生启动转矩。至于复合式有载调压机构所用的三相异步电机大多功率很小,一般不超过180W,加之电机主要是用来弹簧储能,启动负载较小,为了改善启动性能,并便于控制及接线方便,

通常在两相交流电源中取任意一相通过补偿电容移相后输出产生第三相电源,由于电机电源三相不对称,此时电机定子绕组将产生椭圆形旋转磁场,也可使负载不大的电机正常顺利启动。 3故障原因分析及采取的措施 3.1原因分析 改造中更换调压控制器后,因为新控制器内置有补偿电容,所以将外置电容拆除,而内置电容接在控制器内部的升、降输出端子间,在未拆除外置电容C时,机构可以反向操作,电机能够启动,但在外置电容拆除后,到达极限位时,由于相应的电气限位开关处于打开位置,无法将控制器内部的电容接入电机绕组,进行移相补偿,所以电机缺相不会启动,无法正常操作,只有拨动机构使其反向转动一个角度,让限位开关闭合方能操作。在现场有时会出现机构到极限位后依旧能操作的现象,这是因为机构切换动作后,未能完全到位所致,属于有载开关吊芯后调整装配误差,大多数再往返操作就无法正常操作了。 3.2改进的措施 鉴于新的调压控制器已具备完整可靠的逐级顺序操作程序,内置有电气限位控制回路,到达极限档位会自动终止操作,同时调压机构内部也有机械限位挡块,所以完全可取消机构内部的电气限位接点,现场采取将电容C1,C2短接,经操作一切正常。 4机构滑档问题的判断 对于复合式结构的有载开关,一般采用调压控制器来控制升降操作和档位显示以及逐级顺序控制,而有载机构本身只是通过分接位置指示盘提供位置信号(无源接点),开关分接指示盘,机构部分用以

有载调压开关的切换顺序试验及其示波图分析

有载调压开关的切换顺序试验及其示波图分析 (张家口供电公司河北张家口075000) 1 概述 随着工农业生产的飞速发展,用电设备对供电质量的要求也越来越高。电力系统对有载调压开关的需求量随之急增,新装的大容量变压器均装有有载调压开关。由于有载调压开关和变压器生产厂家都不能保证其安全可靠运行,因此就需要安装和使用单位在投入前和运行中必须对有载调压开关的重要部分进行试验和检测,才能确保其正常运行。 切换开关质量的好坏对能否保证有载调压开关的安全运行起着决定性的作用。要求其既能在变压器满负载下安全可靠地切换电流进行调压,又要具有一定的使用寿命(切换总次数)。多年的实践已经验证,通过切换试验鉴定切换开关的切换顺序,如果切换顺序的各项性能指标符合设计要求就可以间接判断其切换能力,验证切换开关的质量。因此,在有载调压开关运行前必须做此试验。笔者对此提出了一些粗浅的认识,旨供同行参考。 2 有载调压开关的工作顺序 有载调压开关是由电动机构(执行机构)、切换开关、分接选择器和转换选择器(即选择开关和范围开关)三大部分组成。分接选择器和转换选择器专门传送电流而不接通和开断电流,与切换开关配合使用在不带电流的情况下选择分接开关,然后由切换开关担负接通已选好的回路并开断正在运行的回路;因此,分接选择器和切换开关之间的工作必须严格按规定进行,要保证在分接开关选择器工作结束后,切换开关才能接通和开断电流。如果装配工作出现错误破坏了规定的工作顺序就会引起变压器事故。本文主要对切换开关由一侧切换到另一侧的切换顺序进行分析。 3 切换开关切换顺序及试验过程 3.1 切换过程 图1、图2是双电阻和四电阻切换开关切换过程的图解。在动触头由一侧向另一侧切换的过程中,过渡电阻中的电流将发生变化。如果设计一种专门电路来记录电流变化的过程,就可以清楚地看到切换开关的切换过程,精确地测出各对触头接触和离开的时间以及过渡电流的流通时间。

有载分接开关(1).

有载分接开关说明 § 8-1有载分接开关的发展 (一)有载分接开关的优点 电压质量是电网运行的主要技术指标之一,《供用电规则》 对用户的电压质量提出了明确的考核标准。电力系统为保证用户 电压质量,也级母线电压规定了合格范围。无励磁调压开关,其最大的缺点为不能带负一般区域负荷变化较大或网络结构不合理的变电站,一年1 —2次。而区域负荷变化较小或网络结构合理的变电站,变压器多年也不调整。电压难满足用户的要求。随着国民经济的快速用户对电压质量的要求愈来愈高,无励磁调压 变压足用户对电压质量的要求。而有载调压变压器可以在变压器运行(负载)状态下随时对电压进行调整,可以有效的提高电压质量。近年来得到了广泛的应用。 § 8-2用途 在变压器运行(负载)状态下,通过调整有载分接开关的挡位,改变变压器的分接头位置,以达到调整变压器输出电压的目的。 (二)有载分接开关的发展 我国于1953年上海电机厂第一次制造出35KV 5000KVA电 抗式有载调压变压器。几十年来,特别是改革开放以来,为了满足用户对

电压质量的要求,适应有载调压变压器发展的需要,有载分接开关的制造技术发展比较迅速,生产厂家有贵州长征电气 厂、吴江远洋电气厂、上海华明电力设备开关厂、西安鹏远开关厂、上海赛力电工电气厂、以及沈变、保变、常变、上海电力修造厂、等等。其制造技术和制造质量已比较成熟,已完全能满足国内220KV及以下市场的需求。 早在1920年美国通用(G E)电气公司首先制造出电抗式有载调压开关。1927年德国扬森(Jansens)博士发明的电阻过渡原理制造出电阻式有载分接开关。以后得到迅速发展,在世界 各国都被大量采用。并有了几十年的制造经验,国际上有载调压 开关的制造技术和制造质量已非常的成熟,电阻式有载分接开关 形成了一系列产品,电压能做到420KV,电流能做到3相3000A,单相4500A。比较出名的厂家有:德国莱茵豪森(MR机械制造公司、瑞典ABB组件公司、奥地利伊林公司、以及法国阿尔斯通公司、比利时沙城电器制造公司、日本、苏联等一些制造公司都可以生产有载分接开关。目前我国330KV及以上主变压器使用的有载调压开关大部分为进口设备。 由于电抗式有载分接开关材料消耗多,体积大,燃弧时间长, 各国用得较少。国内几大厂家早期开发生产的电阻式有载分接开关,如西变生产的C、D型开关,沈变、保变、常变等一些制造厂生产的S基本上均以生产仿西德MR技术的组合型(M型)和复合型(V型)有载分接开关丫口ZZ型和CF型开关虽然技术和工艺不够先进,但结构简单,造价较低,在35KV及以下配电变压器上仍然使用较多。

主变有载调压开关的故障分析及解决

主变有载调压开关的故障分析及解决 发表时间:2019-09-10T10:15:08.843Z 来源:《当代电力文化》2019年第09期作者:白丽芝[导读] 对开关事故进行深入的调查分析,并且实施有效的反事故策略。国网太原供电公司山西省太原市 030009摘要:在人们的日常生活生产中,电力能源发挥了非常重要的作用。在电力系统中电压作为最重要的质量标准对工业农业生活产生非常重要的影响,所以必须要加强对变压器的运行效率进行管理,其中有载调压开关作为变压器中唯一在高压电流下快速运行的部件,经常 会出现各种各样的故障,为了能够有效地减少故障发生,必须要对开关事故进行深入的调查分析,并且实施有效的反事故策略。关键词:主变有载调压开关;故障;解决措施引言当前,电力系统中广泛采用有载调压变压器。有载调压变压器是一种可以带负荷调压的电力变压器,实现这一功能主要是基于有载调压装置,当系统电压波动时,有载调压装置可以根据控制系统的指令动作,对电压进行调整,确保电压稳定,在负载运行中完成分接电压切换。有载分接开关分为组合式和复合式两大类。主要包括触头部分(动、静触头)、机械传动部分、电气控制部分。由于有载分接开关是主变压器上唯一的动作部分,而系统的调压又十分频繁,主变投运之后,有载分接开关的次数较多。导致其极易发生故障,一旦出现故障,导致主变压器停运,给电网造成巨大损失。由于有载分接开关在电力系统中的作用十分重要,因此及时的发现并对故障做出诊断,对整个电力系统的安全十分重要。 1主变有载调压开关的故障分析 1.1选择开关故障,触头磨损烧蚀某220kV主变压器,有载分接开关型号为M型,2012年9月14日,主变在由6分接位置向5分接位置调压的过程中,重瓦斯动作,主变三侧开关跳开。经电气试验发现,B、C相分接的直阻均合格。而A相分接在5分接位置出现直阻无穷大,其他分接位置直阻均正常。通过油化分析及电气试验结果,可以基本判定,有载A相选择开关触头接触不良,切换时发生放电。经过对有载分接开关吊芯检查,试验发现,分接开关A相5分接位触头烧损约1/3,动、静触头间存在约3mm间隙,切换过程中接触不良,剧烈放电产生大量气体,引起主变有载重瓦斯动作。本次事故原因主要是主变有载调压开关的选择开关因长期频繁动作,导致触头磨损和烧蚀,切换过程中接触不足。为防止此类事故再次发生,建议对长期使用或频繁切换的有载开关进行预防性试验时,重点测量每个分接位的直阻。在有载吊芯检修中,应重点检查选择开关各个分接位置的接触情况、表面烧蚀情况。对接触压力和接触面积不符合要求的触头进行维修或更换。 1.2切换开关故障,触头磨损烧蚀某110kV主变重瓦斯动作,主变三侧开关跳开,主变停运。经工作人员对保护回路检查及动作特性试验,非电量保护回路绝缘电阻和非电量保护动作试验结果均正常。因此判断为,有载分接开关瓦斯保护正常,判断开关本体故障导致瓦斯动作。试验人员对开关和开关油室进行试验发现:(1)绝缘电阻合格;(2)绝缘油击穿电压合格;(3)过渡电阻值合格;(4)乙炔含量超标,3000微升/升;(5)A、C 相过渡电阻数值正常;(6)B相过渡电流波形有过0电位;因此初步判断,有载分接开关油室放电气体严重超标导致重瓦斯动作,由分接开关的过渡电路原理分析,B相切换开关存在问题,触头接触不良,可能存在严重放电。本次事故原因主要是主变有载调压开关的切换开关因长期频繁动作,导致触头磨损和烧蚀,切换过程中接触不足。为防止此类事故再次发生,建议对长期使用或频繁切换的有载开关进行状态检修,达到一定次数和年限后吊芯检查试验,对不合格的触头及时进行维修和试验。对于运行年限较久的主变应多采用其他方式进行调压,减少主变调档次数,并做好油化跟踪试验。 2主变有载调压开关故障的解决措施根据上述的案例进行分析,有载调压开关可能因为滑档问题产生故障,所以,在滑动检测时必须要根据开关断开顺序的时间,以及交流接触电因为断电之后的剩磁或者油污的问题造成整个有载调压开关出现延时释放,如果存在滑档问题,则调控人员必须要立即停止调压,并及时联系运维人员,切断电源结构。通过人工的方式对滑档进行快速处理,且要及时地对有载调压开关进行检修,如果滑档出现问题,则必须要从检查交流接触器是否出现损坏的情况进行判断与分析,这样才能够确保滑档保护操作机构的效率得到明显增强。另外,在有载调压开关运行之后,必须要对开关箱内的油样进行抽样检验。如果发现切换5000~10000次之后,或者是在绝缘油的击穿电压低于25kV 时,则必须要立即更换绝缘油,并且对绝缘表面进行清洁处理。通过对有载调压开关放电问题进行检修,能够明确大多数的有载调压开关故障原因,最主要的是因为内部绝缘出现故障而引起的放电情况,所以要针对分接选择器开关和分接引线等相关元件进行判断,如果发现绝缘材料的质量下降、潮气侵袭、密封不严谨,或者是绝缘开关性能降低、绝缘油质劣化等缺陷,都有可能造成局部放电等问题。为了能够避免出现有载调压开关放电,必须要及时加强绝缘处理的效果,避免在长时间运行中产生各种振动摩擦等问题而导致绝缘性降低,进而提高绝缘材料的整体质量。有载调压开关如果触头发热,则必须要在投入到检修之前,对各个位置的直流电阻进行检测,在日常维护时要尽可能的对触头接触电阻进行测量判断,以及检查接触是否良好,在检修和试验的过程中要对不同的开关位置进行多次转动,去除触头的整体氧化膜,保证其自身的接触效果。为了能够加强对有载调压开关油时漏油问题的检修,必须要保证对有载调压开关储油柜变压器之间有位异常情况进行分析,如果有载调压开关油箱自身的指示器非常高,则必须考虑是否出现绝缘油内渗等情况,通常有载调压开关在运输安装过程中很有可能造成油室的底部放油阀门螺栓出现松动等情况。另外,两油箱内会因为密封胶材料质量、安装工艺以及制造缺陷等因素,进而造成绝缘油内渗在传动轴的底盘切换开关处,也会因为油密封不到位而出现内渗的情况,如果发现有渗漏的情况,必须要立即进行停电检修,更换密封箱胶垫,并且及时补漏,如果必要时还可以直接联系厂家进行检修。运行中的有载分接开关应严格按照巡视、巡察要求执行,要求外观干净整洁、无渗漏油现象、调压中声音正常,要定期进行红外测温,测量油箱温度,监视过热现象。严格执行分接开关的定期检查和试验规定,分接开关的检查,一定要仔细对动触头和静触头接触紧密程度、过渡电阻材质性能、绝缘筒密封等进行全面深入检测。重视直流电阻的测试、过渡过程中切换波形图分析及绝缘油的色谱分析测试等试验,当发现试验数据变化时,应综合分析试验数据偏差原因,确保不会漏查缺陷。结语

有载分接开关.

有载分接开关说明 §8-1有载分接开关的发展 (一)有载分接开关的优点 电压质量是电网运行的主要技术指标之一,《供用电规则》对用户的电压质量提出了明确的考核标准。电力系统为保证用户电压质量,也级母线电压规定了合格围。无励磁调压开关,其最大的缺点为不能带负一般区域负荷变化较大或网络结构不合理的变电站,一年1—2次。而区域负荷变化较小或网络结构合理的变电站,变压器多年也不调整。电压难满足用户的要求。随着国民经济的快速用户对电压质量的要求愈来愈高,无励磁调压变压足用户对电压质量的要求。而有载调压变压器可以在变压器运行(负载)状态下随时对电压进行调整,可以有效的提高电压质量。近年来得到了广泛的应用。 §8-2用途 在变压器运行(负载)状态下,通过调整有载分接开关的挡位,改变变压器的分接头位置,以达到调整变压器输出电压的目的。 (二)有载分接开关的发展 我国于1953年电机厂第一次制造出35KV、5000KVA电抗

式有载调压变压器。几十年来,特别是改革开放以来,为了满足用户对电压质量的要求,适应有载调压变压器发展的需要,有载分接开关的制造技术发展比较迅速,生产厂家有长征电气厂、江远洋电气厂、华明电力设备开关厂、鹏远开关厂、赛力电工电气厂、以及变、保变、常变、电力修造厂、等等。其制造技术和制造质量已比较成熟,已完全能满足国220KV及以下市场的需求。 早在1920年美国通用(G、E)电气公司首先制造出电抗式有载调压开关。1927年德国扬森(Jansens)博士发明的电阻过渡原理制造出电阻式有载分接开关。以后得到迅速发展,在世界各国都被大量采用。并有了几十年的制造经验,国际上有载调压开关的制造技术和制造质量已非常的成熟,电阻式有载分接开关形成了一系列产品,电压能做到420KV,电流能做到3相3000A,单相4500A。比较出名的厂家有:德国莱茵豪森(MR)机械制造公司、瑞典ABB组件公司、奥地利伊林公司、以及法国阿尔斯通公司、比利时沙城电器制造公司、日本、联等一些制造公司都可以生产有载分接开关。目前我国330KV及以上主变压器使用的有载调压开关大部分为进口设备。 由于电抗式有载分接开关材料消耗多,体积大,燃弧时间长,各国用得较少。国几大厂家早期开发生产的电阻式有载分接开关,如西变生产的C、D型开关,变、保变、常变等一些制造厂生产的S基本上均以生产仿西德MR技术的组合型(M型)和复合型(V型)有载分接开关Y□ZZ型和CF型开关虽然技术和工艺不够

有载调压开关故障原因及解决

编订:__________________ 审核:__________________ 单位:__________________ 有载调压开关故障原因及 解决 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8539-86 有载调压开关故障原因及解决 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 陕西商洛供电局在35kV变电站无人值班改造过程中,陆续出现主变有载调压开关更换调压控制器后,在极限位置时无法可靠动作,针对该类有载调压开关操作过程中,有时出现滑档的异常现象,结合实际情况,进行了总结分析。 1故障现象 陕西商洛供电局无人值班变电站改造中的旧35kV变电站,主变压器大多为20xx年以前的设备,所配有载开关为复合式结构型,调压控制器也是配套生产的。由于老的调压控制器无法满足远方控制要求,结合设备特点,更换为新型控制器,拆除原有控制器以及外置补偿电容后,出现调压开关到达极限档位后,

无法继续正常操作的问题。经检查控制器正常,因此不得不将有载开关进行放油,打开机构顶盖反方向拨动机构,才能继续操作,这给设备的正常运行及远方控制带来不便。 2调压机构 对于35kV主变压器,有载开关多为复合式结构,即电机、传动机构、开关本体合为一体,没有机构控制箱,远方装有调压控制器。电机电源虽接两相交流电,但电机也是三相异步电机,三相异步电机接两相电源时,如果是静止的电动机,一般不能正常启动且发出嗡嗡声,这是因为电动机通入对称的三相交流电源后会在定子铁芯中产生旋转磁场,但当缺一相电源后,定子铁芯中产生的是单相脉动磁场,它不能使电动机产生启动转矩。至于复合式有载调压机构所用的三相异步电机大多功率很小,一般不超过180W,加之电机主要是用来弹簧储能,启动负载较小,为了改善

变压器的有载调压分接开关档位设置

变压器的有载调压分接开关设“9A 9B 9C”档是为什么 这是个极性转换点,9A、9C是不同两个极性的两端,9B是实际的9档。但是在实际上,他们三个是连接在一起的,故称为9A/9B/9C,只是由于极性打的位置不同而已。 这是个极性转换点,9A、9C是不同两个极性的两端,9B是实际的9档。但是在实际上,他们三个是连接在一起的,故称为9A/9B/9C,只是由于极性打的位置不同而已。 没什么区别在8 9 10 档之间切换的时候在9A 9C之间不作停留因为有载调压是在有电的情况下A B C三相同时进行分接头的改变 好像在那里看过,A,C档只是自动调档时的过渡档,比如从8到9,就先到9A再到9B,实际的9档是9B。 就是又在分接开关调压过程中需要转换调压线圈极性,到9A,9C时做过渡。 你的有载调压变压器高压侧是(230±8*1.25%)kV吗?它有16个分抽头位置,一个主抽头位置。就是17个档位,9B就是主抽头位置,即高压侧电压等级是230kV. 我认为设置极性说到底就是为了节省线圈,减小调压装置的体积。 以前只听说A C是过度档,还真没问过为什么这样,求问,为什么设置极性转换 变压器有载调压开关的内部结构如何,为什么测量直流电阻时,其阻值会以额定当位为中心,上下对称呢? 内部结构:以常见的10kV/0.4kV配电变压器上用的为例,底座上一端固定有电动机,另一端像个横着放的笼子,内有转轴与电机相连,如果是7档调压的,笼子上就有7根绝缘横窄条,沿圆周分布,每根条上有三个定触头,接到高压三相线圈的同一档位的分接头上,转轴为三相的中性点。转轴上固定有三相的三个动触头,每个动触头包括一个主触头和一个辅助触头,主触头与转轴相联结,主辅触头之间接有过渡电阻,在调压转换分接头时,利用过渡电阻构成相邻两个分接头间的桥接,使负载电流不会间断,并限制桥接回路的电流,使主触头脱离定触头时电弧容易熄灭。如果分7档调压,通常可以把第4档作为额定电压档,其上下各有3档,如果每档调压为5%,那么高压每相线圈的7个分接头之间的电压也是各相差5%,其匝数也是额定匝数的5%,由于这些匝数的长度基本相同,导线是一样的,其直流电阻也基本相同了,按额定档位的相直流电阻来说,上下档位的值就是对称的了。就说这些吧。

相关文档
相关文档 最新文档