文档库 最新最全的文档下载
当前位置:文档库 › DNA、RNA和蛋白质合成

DNA、RNA和蛋白质合成

DNA、RNA和蛋白质合成
DNA、RNA和蛋白质合成

DNA复制(DNA生物合成)

√2.什么叫DNA的半保留复制?有何证据?

答:在复制过程中首先碱基间氢键需破裂并使双链解旋和愤慨,然后每条链可作为模板在其上合成新的互补链,结果由一条链可以形成互补的两条链。这样新形成的两个DNA分子与原来的DNA分子的碱基顺序完全一样。在此过程中,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种方式称为半保留复制。证据:氮的同位素15N标记大肠杆菌DNA的实验以及Cairns用反射自显影的方法第一次观察到正在复制的大肠杆菌染色体DNA都证明DNA的半保留复制。

√9.原核生物DNA复制如何进行的,请阐述复制过程

答:原核生物DNA复制可分为三个阶段:起始、延伸和终止。

复制的起始:复制的起点上四个9bp重复序列为DnaA蛋白的结合位点,大约20~40个DnaA蛋白各带一个ATP结合在此位点上,并聚集在一起,DNA缠绕其上,形成起始复合物。HU蛋白可与DNA结合,促使双链DNA弯曲。受其影响,邻近三个成串富含AT的13bp序列被变性,称为开链复合物,所需能量由ATP 供给。Dna B六聚体随即在Dna C的帮助下结合于解链区。Dna B借助水解ATP产生的能量,眼DNA链5’3’方向移动,解开DNA的双链,此时称为前引发复合物。DNA双链的解开还需要DNA旋转酶和单链结合蛋白,前者可消除解旋酶产生的拓扑张力,后者保护单链并防止恢复双链。至此即可由引物合成酶合成RNA 引物,并开始DNA复制。

复制的延伸:复制的延伸阶段同时进行前导链和滞后链的合成。这两条链合成的基本反应相同,并且都由DNA聚合酶III所催化;但两条链的合成已有显著差别,前者持续合成,后者分段合成,因此参与的蛋白质因子也有不同。亲代DNA首先必须由DNA解螺旋酶将双链解开,其产生的拓扑张力由拓扑异构酶释放。分开的链被单链结合蛋白所稳定。自此之后前导链与滞后链的合成便有所不同。复制起点解开后形成两个复制叉,即可进行双向复制。前导链开始合成后通常都一直继续下去。先由引物合成酶在起点处合成一段RNA引物。某些质粒和线粒体DNA由RNA聚合酶合成引物,其长度可以更长。随后DNA聚合酶III 即在引物上加入脱氧核糖核苷酸。前导链的合成与复制叉的移动保持同步。滞后链的合成师分段进行的,需要不断合成冈崎片段的RNA引物,然后由DNA聚合酶III加入脱氧核糖核苷酸。由于DNA得两条互补链方向相反,为使滞后链能与前导链被同一个DNA聚合酶III不对称二聚体所合成,滞后链必须绕成一个突环。合成冈崎片段需要DNA聚合酶III不断与模板脱开,然后再新的位置又与模板结合。

复制的终止:两个复制叉在终止区相遇而停止复制,复制体解体,其间人又50~100bp未被复制。其后两条亲代链解开,通过修复方式填补空缺。此时两环状染色体互相缠绕,称为连锁体。

基因转录(RNA的生物合成)

√2.基因的转录控制有什么因素控制?

√4.原核生物的RNA聚合酶有何特性?

答:真核生物有三种RNA聚合酶Ⅰ,Ⅱ,Ⅲ,它们专一地转录不同的基因,而原核生物的mRN A、rRNA、tRNA 由同一种RNA聚合酶所转录,聚合酶的分子量为480kD,由五个亚基组成α2ββ′σ,还含两个Zn原子,与β′亚基相连接。去掉σ亚基称为核心酶。

√5.原核生物的转录启动子的结构有哪几部分组成?

答:原核生物的转录启动子从起点上游约-10处有保守序列TATAAT为-10序列,-10序列的突变不影响RNA 聚合酶与启动子结合的速度,可是会降低双链解开的速度;在-10序列上游有一个保守序列为TTGACA称为-35序列,-35序列的突变将降低RNA聚合酶与启动子结合的速度,但不影响转录起点附近DNA双链的解开。

√7.真核生物的转录酶与原核生物有何区别?

答:真核生物有三种RNA聚合酶Ⅰ,Ⅱ,Ⅲ,它们专一地转录不同的基因,聚合酶Ⅰ转录45S rRNA的前体,聚合酶Ⅱ转录所有的mRN A前体和大多数核内的小RN A,聚合酶Ⅲ转录tRNA、5S rRNA、U6snRNA和不同的胞质小RNA。而原核生物的mRN A、rRNA、tRNA由同一种RNA聚合酶所转录。

基因翻译(蛋白质的生物合成)

√1.三种细胞质RNA在蛋白质合成中各起什么作用?

答:(1)mRN A是蛋白质合成的模版;(2)tRNA转运火化的氨基酸至mRN A模版上;(3)rRNA是核糖体的主要组成成分,核糖体是蛋白质合成的工厂。

√3.遗传密码有何特点?这些特点有何意义?

答:(1)遗传密码的基本单位是按5′—3’方向编码、不重叠、无标点的三联体密码子;(2)同一种氨基酸可以有两个或更多密码子。这样可以减少有害突变;(3)tRNA上的反密码子与mRN A密码子配对时,密码子第一、第二位碱基配对时严格的,第三位碱基可以有一定的变动。

√7.tRNA各部分结构在蛋白质合成中起什么作用?

答:反密码子环在蛋白质的合成中可与mRNA模板上的密码子进行剪辑配对的专一性识别,并将所携带的氨基酸送入到合成的多肽链的指定位置上。tRNA三叶草形的二级结构可折叠成L-形的三维结构,这一结构由两个螺旋以直角的方位构成,结合氨基酸的一端称为接受臂,另一端则含有反密码子,叫反密码子臂。tRNA分子上与多肽合成有关的位点至少有4个,分别为3’端CCA上的氨基酸接受位点、识别氨酰-tRNA合成酶的位点、核糖体识别位点及反密码子位点。

√11.请阐述原核生物蛋白质合成的过程。

答:tRNA转运活化的氨基酸只mRNA模板上,

第6章遗传信息的传递和表达 第2节DNA复制和蛋白质合成 教案

第6章第2节DNA复制和蛋白质合成 课题: DNA复制和蛋白质合成 教材分析: 本节重点介绍遗传物质的功能,包括DNA分子的复制功能,以及通过基因控制蛋白质合成及其生物性状的功能。 初中教材中主体一“人体”中相关教学内容是“人体性状的遗传和变异”其中有“染色体和基因”的教学内容,教学要求是能说出染色体与基因的关系。学生对染色体和基因在遗传中的作用有初步了解,前一节教学内容在探究人类研究遗传物质的发展历程的基础上学习了DNA的构成和结构,本节就DNA的功能展开探索,并归纳为中心法则这一遗传信息传递的规律。 学生有机化学的基础极弱,因此本节课的教学重点落在采用图像和动画等直观方法和多用比喻等方式降低学生对所学知识的理解难度。用列表法归纳和总结DNA的功能,帮助学生整理知识点。要求学生采用举例、说出相关概念等方式说出对中心法则的理解,以问题引导学生思考DNA与蛋白质的分工与联系,以这个方式帮助学生将相关内容整合成一定知识体系。 教学目标: 知识与技能: 能简述DNA复制及遗传信息传递和表达的过程。 能说出遗传信息、遗传密码和密码子和DNA分子于RNA分子的关系及相互关系。 能用中心法则解释基因与性状的关系。 过程与方法: 在了解DNA分子的结构和碱基配对原则的基础上,感受生物体遗传信息传递的准确性。 了解密码子的功能,注意DNA核苷酸排列顺序与蛋白质氨基酸顺序的关系。 情感态度与价值观: 在学习遗传信息的传递和表达过程中,体验核酸和蛋白质在生命活动中的分工和联系,以及基因对蛋白质合成的控制功能。 重点与难点: 重点:DNA复制 遗传信息的转录和翻译(蛋白质合成) 中心法则 难点:DNA复制 遗传信息的转录 遗传信息的翻译 课时安排:3课时 第1课时:DNA复制 第2课时:遗传信息的转录和翻译 第3课时:中心法则及其发展

蛋白质合成、加工和转运的过程

一、蛋白质的合成 1、核糖体是合成蛋白质的机器,其功能是按照mRNA的指令由氨基酸合成蛋白质。 2、游离核糖体游离于胞质中,合成细胞内的基础蛋白质;附着核糖体,附着在内质网表面,构 成粗面内质网的核糖体,合成分泌蛋白和膜蛋白。 3、蛋白质合成的一般过程: 1)氨基酸的活化。氨基酸和tRNA在氨酰一tRNA合成酶作用下合成活化的氨酰一 tRNA。2)起始、延伸和终止。3)蛋白质合成后的加工。肽链N端Met的去除; 氨基酸残基的化学修饰,乙酰化、甲基化、磷酸化等;肽链的折叠;二硫键的形成。 二、蛋白质的分泌合成、加工修饰和转运 1、信号肽介导分泌性蛋白在粗面内质网的合成。 1)信号肽是蛋白质合成中最先被翻译出来的一段氨基酸序列,通常由18-30个疏水氨基酸组成,能指引核糖体与内质网结合,并引导合成的多肽链进入内质网 腔。 2)新生分泌性蛋白质多肽链在胞质中的游离核糖体上起始合成。当新生肽链N端的信号肽被翻译后,可立即被细胞质基质中的信号识别颗粒(SRP)识别、结 合。 3)与信号肽识别结合的SRP,识别结合内质网膜上的SRP-R,并介导核糖体锚泊附着于内质网膜的通道蛋白移位子上。而SRP则从信号肽一核糖体复合体上解离, 返回细胞质基质中重复上述过程。 4)在信号肽的引导下,合成中的肽链,通过由核糖体大亚基的中央管和移位子蛋白共同形成的通道,穿膜进入内质网网腔。随之,信号肽序列被内质网膜俄面的信号肽酶且除, 新生肽链继续延伸,直至完成而终止。最后完成肽链合成的核糖体大、小亚基解聚,并 从内质网上解离。 2、跨膜驻留蛋白的插入和转移决定了蛋白质的两种去处:1)穿过膜进腔,为可溶性蛋 白质,包括分泌蛋白和内质网驻留蛋白。2)嵌入内质网膜中,形成膜蛋白。 3、粗面内质网与外输性蛋白质的分泌合成、加工修饰和转运过程密切相关。 1)新生多肽链的折叠与装配,与合成同时发生。内质网为新生多肽链正确的折叠和装配提供了有利的环境。分子伴侣通过对多肽链的识别结合来协助它们的折叠组装和转运。 2)蛋白质的糖基化。在粗面内质网网膜腔面的糖基转移酶作用下发生N一连接糖基化。 三、蛋白质的加工、分选和定向运输 1、蛋白质在高尔基体内加工等。 1)糖蛋白的加工合成。糖基化修饰加工合成的糖蛋白,主要包括N一连接糖蛋白和O一连接糖蛋白两种类型。前者,糖链合成与糖基化修饰始于内质网,完成 于高尔基复合体;后者,则主要或完全是在高尔基复合体中进行和完成的。 2)蛋白质糖链的加工有严格的区域性和顺序性:甘露糖去除发生在中间扁囊高尔基复合体靠近顺面的部位;N一乙酰葡萄糖胺加入在中间部;半乳糖加入在中 间扁囊区靠近反面的部位。 3)蛋白质的水解加工。 2、分选蛋白质:高尔基体通过对蛋白质的修饰、加工,使其带上能被高尔基复合体网膜上专一 受体识别的分选信号,进而选择、浓缩,形成不同靶向的分泌泡。 四、蛋白质合成的质量监控 1、内质网至高尔基体的蛋白质必须是正确折叠和组装的。分子伴侣可特异性的识别错

蛋白质合成体系

蛋白质合成体系 一、mRNA和遗传密码二、t RNA三、核糖体四、辅助因子 一、mRNA和遗传密码:mRNA (messenger RNA)是蛋白质生物合成过程中直接指令氨基酸掺入的模板,是遗传信息的载体。 遗传密码: DNA(或mRNA)中的核苷酸序列与蛋白质中氨基酸序列之间的对应关系称为遗传密码。 密码子(codon):mRNA上每3个相邻的核苷酸编码蛋白质多肽链中的一个氨基酸,这三个核苷酸就称为一个密码子或三联体密码。 tRNA 在蛋白质合成中处于关键地位,它不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。1、tRNA的结构特征——三叶草型二级结构 2、tRNA的功能(1)被特定的氨酰- tRNA合成酶识别,使tRNA接受正确的活化氨基酸。 (2)识别mRNA链上的密码子。(3)在蛋白质合成过程中,tRNA起着连结生长的多肽链与核糖体的作用。 核糖体是由rRNA和多种蛋白质结合而成的一种大的核糖核蛋白颗粒,蛋白质肽键的合成就是在这种核糖体上进行的。 核糖体的活性位点:核糖体可分为翻译区域(Translationaldomain)和逐出区 域(Exitdomain),有A位、P位、肽基转移酶(转肽酶)活性位点、EF-Tu位点、EF-G位点、5SrRNA位点、mRNA位点和逐出位点(E位)等活性位点,翻译区域占2/3,逐出区域占1/3,与膜系统结合。 核糖体功能1.mRNA结合位点位于30S亚基的头部。30S亚基与mRNA的起始结合。 2.P位点P位点大部分位于30S亚基,小部分位于50S亚基。结合或接受肽基的部位。 3.A位点A位点靠近P位点,16SrRNA是其构成成份之一。A位点主要在50S亚基上,结合或接受AA- tRNA的部位。 4.转肽酶活性位点位于P位点和A位点的连接处,靠近tRNA的接受臂。5.5SrRNA位点在50S亚基上,靠近转肽酶位点。可能与tRNA的进入有关。6.EF-Tu位点位于大亚基内,靠近30S亚基,这一位点与氨基酰-tRNA的结合有关。 7.转位因子EF-G结合位点在大亚基上,靠近与小亚基的界面处。 8.GTP酶活性位点位于50S亚基。包括L7/L12、L10、L11和rRNA。多拷贝的L7 /L12对GTP酶活性及延伸因子的结合都是必需的。

细胞内蛋白质的合成与运输_论文

细胞内蛋白质的合成与运输 摘要:蛋白质是一切生命的物质基础,这不仅是因为蛋白质是构成机体组织器官的基本成分,更重要的是蛋白质本身不断地进行合成与分解。这种合成、分解的对立统一过程,推动生命活动,调节机体正常生理功能,保证机体的生长、发育、繁殖、遗传及修补损伤的组织。根据现代的生物学观点,蛋白质和核酸是生命的主要物质基础。 关键字:多肽链、蛋白质、翻译、核糖体、运输途径、运输方式,研究前景 前言:国家重大科学研究计划对中国的四项重要科学研究所涉及的领域分别作了详细说明,四个项目分别是蛋白质研究,量子调控研究,纳米研究,发育与生殖研究。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 一、蛋白质生物合成过程

遗传密码表在mRNA的开放式阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸或其他信息,这种三联体形势称为密码子(codon)。如图,通常的开放式阅读框架区包含500个以上的密码子。 遗传密码的特点 一方向性:密码子及组成密码子的各碱基在mRNA序列中的排列具有方向性(direction),翻译时的阅读方向只能是5ˊ→3ˊ。 二连续性:mRNA序列上的各个密码子及密码子的各碱基是连续排列的,密码子及密码子的各个碱基之间没有间隔,每个碱基只读一次,不重叠阅读。 三简并性:一种氨基酸可具有两个或两个以上的密码子为其编码。遗传密码表中显示,每个氨基酸都有2,3,4或6个密码子为其编码(除甲硫氨酸只有一个外),但每种密码子只对应一个氨基酸,或对应终止信息。 四通用性:生物界的所有生物,几乎都通用这一套密码子表 五摆动性:tRNA的最后一位,和mRNA的对应不完全,导致了简并性 氨基酸活化 在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA合,带到mRNA 相应的位置上,这个过程靠tRNA合成酶催化,此酶催化特定的氨基酸与特异的tRNA 相结合,生成各种氨基酰tRNA.每种氨基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用A TP供能,在氨基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的氨基酸臂(即3'-末端CCA-OH)上(图1)。原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。前面讲过运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对tRNA识别的特异性较低。氨基酰tRNA合成酶是如何选择正确的氨基酸和tRNA 呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的tRNA进入合成酶的相应位点,才能合成正确的氨酰基tRNA。现在已经知道合成酶与L形tRNA的内侧面结合,结合点包括接近臂,DHU臂和反密码子臂(图2)。氨基酰-tRNA合成酶与tRNA的相互作用,可见氨酸接受柄、乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些tRNA也确实如此,然而对于大多数tRNA来说,情况并非如此,人们早就知道,当某些tRNA上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和Schimmel的实验证明丙氨酸tRNA酸分子的氨基酸臂上G3:U70这两个碱基发生突变时则影响到丙氨酰tRNA合成酶的正确识别,说明G3:U70是丙氨酸tRNA分子决定其本质的主要因素。tRNA分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰tRNA合成酶可以识别以一组同功tRNA,这说明它们具有共同特征。例如三种丙氨酸tRNA

第十二章蛋白质的生物合成及转运

第十二章蛋白质的生物合成及转运 蛋白质的生物合成在细胞代谢中占有十分重要的地位。目前已经完全清楚,贮存遗传信息的DNA并不是蛋白质合成的直接模板,DNA上的遗传信息需要通过转录传递给mRNA。mRNA才是蛋白质合成的直接模板。mRNA是由4种核苷酸构成的多核苷酸,而蛋白质是由20种左右的氨基酸构成的多肽,它们之间遗传信息的传递与从一种语言翻译成另一种语言时的情形相似。所以人们称以mRNA为模板合成蛋白质的过程为翻译或转译(translation)。 翻译的过程十分复杂,几乎涉及到细胞内所有种类的RNA和几十种蛋白质因子。蛋白质合成的场所是核糖体,合成的原料是氨基酸,反应所需能量由A TP和GTP提供。蛋白质合成的早期研究工作都是用大肠杆菌的无细胞体系进行的,所以对大肠杆菌的蛋白质合成机理了解最多。真核细胞蛋白质合成的机理与大肠杆菌的有许多相似之处。 第一节遗传密码 任何一种天然多肽都有其特定的严格的氨基酸序列。有机界拥有1010~1011种不同的蛋白质,构成数目这么庞大的不同的多肽的单体却只有20种氨基酸。氨基酸在多肽中的不同排列次序是蛋白质多样性的基础。目前已经清楚,多肽上氨基酸的排列次序最终是由DNA上核苷酸的排列次序决定的,而直接决定多肽上氨基酸次序的却是mRNA。不论是DNA还是mRNA,基本上都由4种核苷酸构成。这4种核苷酸如何编制成遗传密码,遗传密码又如何被翻译成20种氨基酸组成的多肽,这就是蛋白质生物合成中的遗传密码的翻译问题。 一、密码单位 用数学方法推算,如果mRNA分子中的一种碱基编码一种氨基酸,那么4种碱基只能决定4种氨基酸,而蛋白质分子中的氨基酸有20种,所以显然是不行的。如果由mRNA 分子中每2个相邻的碱基编码一种氨基酸,也只能编码42=16种氨基酸,仍然不够。如果采用每3个相邻的碱基为一个氨基酸编码,则43=64,可以满足20种氨基酸编码的需要。所以这种编码方式的可能性最大。应用生物化学和遗传学的研究技术,已经充分证明了是 293

生物化学习题-蛋白质的生物合成

第十二章蛋白质的生物合成 一、知识要点 (一)蛋白质生物合成体系的重要组分 蛋白质生物合成体系的重要组分主要包括mRNA 、tRNA 、rRNA、有关的酶以及几十种蛋白质因子。其中,mRNA是蛋白质生物合成的直接模板。tRNA的作用体现在三个方面:3ˊCCA接受氨基酸;反密码子识别mRNA链上的密码子;连接多肽链和核糖体。rRNA和几十种蛋白质组成合成蛋白质的场所——核糖体。 遗传密码的特点:无标点性、无重叠性;通用性和例外;简并性;变偶性。 (二)蛋白质白质生物合成的过程 蛋白质生物合成的过程分四个步骤:氨基酸活化、肽链合成的起始、延伸、终止和释放。 其中,氨基酸活化即氨酰tRNA的合成,反应由特异的氨酰tRNA合成酶催化,在胞液中进行。氨酰tRNA合成酶既能识别特异的氨基酸,又能辩认携带该氨酰基的一组同功受体tRNA分子。 肽链合成的起始对于大肠杆菌等原核细胞来说,是70S起始复合物的形成。它需要核糖体30S和50S亚基、带有起始密码子AUG的mRNA、fMet-tRNA f 、起始因子IF1、IF2、IF3(分子量分别为10 000、80 000和21 000的蛋白质)以及GTP和Mg2+的参加。 肽链合成的延伸需要70S起始复合物、氨酰-tRNA、三种延伸因子:一种是热不稳定的EF-Tu,另一种是热稳定的EF-Ts,第三种是依赖GTP的EF-G以及GTP和Mg2+。 肽链合成的终止和释放需要三个终止因子RF1、RF2、RF3蛋白的参与。 比较真核细胞蛋白质生物合成与原核细胞的不同。 (三)蛋白质合成后的修饰 蛋白质合成后的几种修饰方式:氨基末端的甲酰甲硫氨酸的切除、肽链的折叠、氨基酸残基的修饰、切去一段肽链。 二、习题 (一)(一)名词解释 1.密码子(codon) 2.反义密码子(synonymous codon) 3.反密码子(anticodon) 4.变偶假说(wobble hypothesis) 5.移码突变(frameshift mutant) 6.氨基酸同功受体(isoacceptor) 7.反义RNA(antisense RNA) 8.信号肽(signal peptide) 9.简并密码(degenerate code) 10.核糖体(ribosome) 11.多核糖体(poly some) 12.氨酰基部位(aminoacyl site) 13.肽酰基部位(peptidy site) 14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA合成酶(amino acy-tRNA synthetase) 16.蛋白质折叠(protein folding) 17.核蛋白体循环(polyribosome) 18.锌指(zine finger) 19.亮氨酸拉链(leucine zipper) 20.顺式作用元件(cis-acting element) 21.反式作用因子(trans-acting factor)

高中生物DNA复制和蛋白质合成

高中生物DNA复制和蛋白质合成2019年3月21日(考试总分:108 分考试时长: 120 分钟) 一、填空题(本题共计 2 小题,共计 8 分) 1、(4分)科学家以大肠杆菌为实验对象,运用同位素示踪技术及密度梯度离心方法进行了DNA复制方式的探索实验,实验内容及结果如表所示。 (1)要得到DNA中的N全部被15N标记的大肠杆菌B,必须经过________代培养,且培养液中的________是唯一氮源。 (2)综合分析本实验的DNA离心结果,第________组结果对得到结论起到了关键作用,但需把它与第____ ____组和第________组的结果进行比较,才能说明DNA分子的复制方式是________________。 (3)分析讨论: ①若B的子Ⅰ代DNA的离心结果为“轻带”和“重带”两条密度带,则“重带”DNA来自________,据此可判断DN A分子的复制方式不是________复制。 ②若将B的子Ⅰ代DNA双链分开后再离心,其结果________(填“能”或“不能”)判断DNA的复制方式。 ③若在同等条件下将B的子Ⅱ代继续培养,子n代DNA离心的结果是密度带的数量和位置________(填“有”或“没有”)变化。 2、(4分)通常DNA分子复制从一个复制起始点开始,有单向复制和双向复制,如下图所示: 放射性越高的3H-胸腺嘧啶脱氧核糖核苷(3H-脱氧胸苷),在放射自显影技术的图像上,感光还原的银颗粒密度越高。请利用放射性自显影技术、低放射性3H-脱氧胸苷和高放射性3H-脱氧胸苷,设计实验以确定大肠杆菌DNA复制的方向,简要写出: (1)实验思路:_____________。 (2)预测实验结果和得出结论:____________。 二、单选题(本题共计 20 小题,共计 100 分)3、(5分)具有100个碱基对的一个DNA分子片段,内含30个腺嘌呤,如果连续复制2次,则需要游离的胞嘧啶脱氧核苷酸 A.120 个 B.280 个 C.210 个 D.60 个 4、(5分)下图是果蝇染色体上的白眼基因示意图,下列叙述正确的是 A.白眼基因片段中,含有成百上千个核糖核苷酸 B.S基因是有遗传效应的DNA片段 C.白眼基因在常染色体上 D.基因片段中有5种碱基、8种核苷酸 5、(5分)将全部核DNA分子双链经32P标记的1个果蝇精原细胞置于不含32P标记的培养基培养,先经过一次有丝分裂,再经过一次减数分裂,产生了8个精细胞。下列说法错误的是 A.有丝分裂中期和1个减I中期细胞内染色体数相同,标记的染色单体数不同 B.有丝分裂后期和1个减I后期细胞内染色体数不同,标记的染色体数也不同 C.1个减工后期和1个减Ⅱ后期细胞内染色体数相同,标记的染色体数不同 D.产生的8个精细胞,每个细胞内含有4条染色体,均有2条被标记 6、(5分)下列有关真核生物基因的说法,正确的是 ①基因是有遗传效应的DNA片段 ②基因的基本单位是核糖核苷酸 ③基因存在于细胞核、核糖体等结构 ④基因在染色体上呈线性排列 ⑤基因的多样性不仅和碱基排列顺序有关,也和其空间结构有关 ⑥DNA分子每一个片段都是个基因 ⑦基因的分子结构首先由摩尔根发现 A.两种 B.三种 C.四种 D.五种 7、(5分)在亲代产生子代的过程中发生了DNA的复制。下列有关说法不正确的是 A.个体产生个体的过程中需要进行DNA的复制 B.细胞产生细胞的过程中需要进行DNA的复制 C.通过DNA复制使亲代遗传信息传递给子代 D.DNA准确无误地复制只与DNA的双螺旋结构有关 8、(5分)已知某DNA分子含有1000个碱基对,其中一条链上A:G:T:C=l:2:3:4;该DNA分子连续复制3次后,共需要从周围环境中利用多少个鸟嘌呤脱氧核苷酸 A.2100 B.4200 C.4800 D.2800 9、(5分)下列关于真核生物中基因、染色体和性状的叙述,错误的是 A.基因是有遗传效应的DNA片段 B.一条染色体上有很多个基因 C.基因的改变只引起单一性状的改变 D.线粒体中的基因控制生物的性状 10、(5分)二倍体动物某个精原细胞形成精细胞过程中,不同时期细胞的核DNA相对含量和染色体目如图

DNA复制、引物、酶及蛋白质

DNA复制起始引发体的形成及所参与的酶和蛋白质、 DNA复制过程 一、DNA复制起始引发体的形成及所参与的酶和蛋白质 DNA复制起始一共涉及到DnaA(复制起始因子,识别OriC序列)、DnaB(DNA解链酶)、DnaC(召唤DnaB到复制叉)、HU(结合DNA使之弯曲)、引物合成酶、单链DNA结合蛋白、RNA聚合酶、DNA旋转酶、Dam甲基化酶,一共是9种重要的酶或蛋白质,其中DnaA、DnaB、引物合成酶、单链DNA结合蛋白、Dam甲基化酶非常重要。 DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3’端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 1.解链酶(helicase,unwinding enzyme) 复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程。在DNA不连续复制过程中,结合于复制叉前面,在起始点处解开双链,反

应是在解链酶的催化下进行的。解链酶有ATP酶活性的酶,两种活性相互偶联,通过水解ATP提供解链的能量。解链酶的作用就是打开DNA双链之间的氢键。 解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5’—〉3’方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3’—〉5’方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA 的两条母链上协同作用以解开双链DNA。 大肠杆菌中DnaB蛋白就有解链酶活性,与随从链的模板DNA结合,沿5′→3′方向移动,还有一种叫做Rep蛋白和前导链的模板DNA结合沿3′→5′方向移动。 2.单链结合蛋白(single strand binding proteins,SSBP) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。ssbDNA蛋白稳定解开的单链,保证此局部不会恢复成双链。它与解开的单链DNA结合,使其稳定不会再度螺旋化并且避免核酸内切酶对单链DNA的水解,保证了单

高三生物rna和蛋白质的合成

第四节遗传信息的表达—RNA和蛋白质的合成 (一)RNA RNA的种类 信使RNA(mRNA):行使传达DNA上的遗传信息的公能。 转运RNA(tRNA):把氨基酸运送到核糖体,使之按照mRNA的信息指令连接起来,形成蛋白质。核糖体RNA(rRNA):核糖体的重要成分。 (二)遗传信息的转录:RNA是在细胞核中,以DNA的一条链为模板合成的,这一过程称转录 1)场所:细胞核 DNA 指导下的RNA聚合酶与基因中RNA聚合酶结合位点结合2)过程:起始在RNA聚合酶作用下DNA解旋 核苷酸与核糖核苷酸互补配对 DNA RNA A--------------------U 延伸G------------------- C C------------------- G T------------------- A 核糖核苷酸聚合需要RNA聚合酶催化,形成磷酸二酯键

终止:mRNA从DNA模板链上脱落 原料核糖核苷酸 3)条件模板DNA的一条链 能量ATP 酶RNA聚合酶 4)遗传信息传递方向 (三)遗传信息的翻译 1、mRNA上3个相邻碱基决定一个氨基酸,遗传学上把mRNA上决定一个氨基酸的三个相 邻的碱基叫一个密码子。 2、密码子共有64 个。决定氨基酸的密码子61个,终止密码子3个。 3、遗传信息的翻译:游离在细胞质中的各种氨基酸,就以mRNA为模板合成具有一定氨基酸 顺序的蛋白质,这一过程叫做翻译 1)场所:细胞质(核糖体) 2)遗传信息的翻译过程 第一步:mRNA与核糖体结合,tRNA携带甲硫氨基酸进入位点1 第二步:携带另一种氨基酸的tRNA进入位点2 第三步:氨基酸经脱水缩合形成肽键,并转移到2 号位的tRNA上。 第四步;核糖体读取下一个密码子,1 号位tRNA离开核糖体。占据2 号位的tRNA 进入1 号位。一个新的tRNA进入2 号位。 模板mRNA 原料氨基酸 3)条件能量ATP 酶 4)遗传信息传递方向mRNA 蛋白质

1 基因指导蛋白质的合成 教学设计 教案

教学准备 1. 教学目标 1.1 知识与技能: ①概述遗传信息的转录和翻译。 ②运用数学方法,分析碱基与氨基酸的对应关系。 1.2过程与方法: ①作好本章的引子。 ②准确把握主干知识与侧枝内容的教学要求 充分利用教材中的插图 1.3 情感态度与价值观: ①认同基因指导蛋白质合成的方法 2. 教学重点/难点 2.1 教学重点 ①遗传信息转录和翻译的过程 2.2 教学难点 ①遗传信息的翻译过程。 3. 教学用具 教学课件 4. 标签 教学过程 引入新课 片段1:导入

师:当我们认识到基因的本质后,能不能利用这一认识,分析现实生活中一些具体的问题呢?例如,在现实生活中,我们能不像电影《侏罗纪公园》中描述的那样,利用恐龙的DNA,使恐龙复活呢? 生:讨论、争论,看图,形成新的问题 (提出探究的问题,引起悬念,明确探究的目标) 师:如果能利用恐龙的DNA使恐龙复活,你认为主要要解决什么问题? 生:需要使恐龙DNA上的基因表达出来,表现恐龙的特性。 师:看来要解决这个问题,我们还需要研究“基因的表达”。引导学生看本章的章图。询问学生看懂了什么,又产生了哪些问题。 师:基因是如何指导蛋白质合成的?导入新课。 片段2学习转录过程 师:DNA在细胞核中,而蛋白质合成是在细胞质中进行的,两者如何联系起来? 推测有一种物质能够作为传达DNA信息的信使,科学家发现此物质就是RNA。 师:如何解读DNA信息? 生:看图分析比较核糖和脱氧核糖的区别,通过图形和CAI课件的演示,认识遗传信息的转录过程,并且完成对比表格。 RNA与DNA的比较

师:DNA是如何转录的,特点是什么?转录的单位是什么?转录与复制有何异同? (通过问题的步步深入,学生推理分析,形成结论) 生:学生阅读教材找到答案。 (结合图解、讲CAI课件,认识转录的过程) 教师讲述:DNA相当于总司令。在战争中,如果总司令总是深入前沿阵地直接指挥, 就会影响他指挥全局。DNA被核膜限制在细胞核内,必须先把遗传信息传给mRNA,这一过程称为转录。 教师提问:为什么mRNA适于作DNA的信使呢?DNA的遗传信息是怎样传给mRNA 的? 结合多媒体课件或图示教师精讲点拨: ①DNA双螺旋解开,DNA双链的碱基得以暴露,其中一条链提供准确模板; ②游离的核苷酸随机地与DNA链的碱基碰撞,当核苷酸的碱基与DNA的碱基互补时,两者以氢键结合。 ③新结合的核苷酸连接到正在合成的mRNA分子上; ④合成的mRNA从DNA链上释放,而后,DNA双链恢复。 学生听讲、阅读、思考,师生讨论共同完成以上问题,即①mRNA为单链,而且比DNA短,因此能够通过核孔,从细胞核转移到细胞质中;②转录成的RNA的碱基序列, 与供转录用的DNA单链的碱基序列之间的碱基是互补配对关系,与DNA双链间碱基互补 配对不同的是,RNA链中与DNA链的A配对的是U,不是T。这样转录出的这个mRNA 与DNA另一条链的碱基序列基本相同,只是DNA链上T的位置,RNA链上是U,从而 保证了转录的准确性。 教师讲述:转录与复制都需要模板、都遵循碱基互补配对规律,等等。可以从所需条件、过程中的具体步骤和过程中所表现出的规律等角度进行对比分析。 师:转录得到的RNA仍是碱基序列,而不是蛋白质。那么,RNA上的碱基序列如何 能变成蛋白质中氨基酸的种类、数量和排列顺序呢?RNA如何将信息翻译成蛋白质?

DNA、RNA和蛋白质合成

DNA复制(DNA生物合成) √2.什么叫DNA的半保留复制?有何证据? 答:在复制过程中首先碱基间氢键需破裂并使双链解旋和愤慨,然后每条链可作为模板在其上合成新的互补链,结果由一条链可以形成互补的两条链。这样新形成的两个DNA分子与原来的DNA分子的碱基顺序完全一样。在此过程中,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种方式称为半保留复制。证据:氮的同位素15N标记大肠杆菌DNA的实验以及Cairns用反射自显影的方法第一次观察到正在复制的大肠杆菌染色体DNA都证明DNA的半保留复制。 √9.原核生物DNA复制如何进行的,请阐述复制过程 答:原核生物DNA复制可分为三个阶段:起始、延伸和终止。 复制的起始:复制的起点上四个9bp重复序列为DnaA蛋白的结合位点,大约20~40个DnaA蛋白各带一个ATP结合在此位点上,并聚集在一起,DNA缠绕其上,形成起始复合物。HU蛋白可与DNA结合,促使双链DNA弯曲。受其影响,邻近三个成串富含AT的13bp序列被变性,称为开链复合物,所需能量由ATP 供给。Dna B六聚体随即在Dna C的帮助下结合于解链区。Dna B借助水解ATP产生的能量,眼DNA链5’3’方向移动,解开DNA的双链,此时称为前引发复合物。DNA双链的解开还需要DNA旋转酶和单链结合蛋白,前者可消除解旋酶产生的拓扑张力,后者保护单链并防止恢复双链。至此即可由引物合成酶合成RNA 引物,并开始DNA复制。 复制的延伸:复制的延伸阶段同时进行前导链和滞后链的合成。这两条链合成的基本反应相同,并且都由DNA聚合酶III所催化;但两条链的合成已有显著差别,前者持续合成,后者分段合成,因此参与的蛋白质因子也有不同。亲代DNA首先必须由DNA解螺旋酶将双链解开,其产生的拓扑张力由拓扑异构酶释放。分开的链被单链结合蛋白所稳定。自此之后前导链与滞后链的合成便有所不同。复制起点解开后形成两个复制叉,即可进行双向复制。前导链开始合成后通常都一直继续下去。先由引物合成酶在起点处合成一段RNA引物。某些质粒和线粒体DNA由RNA聚合酶合成引物,其长度可以更长。随后DNA聚合酶III 即在引物上加入脱氧核糖核苷酸。前导链的合成与复制叉的移动保持同步。滞后链的合成师分段进行的,需要不断合成冈崎片段的RNA引物,然后由DNA聚合酶III加入脱氧核糖核苷酸。由于DNA得两条互补链方向相反,为使滞后链能与前导链被同一个DNA聚合酶III不对称二聚体所合成,滞后链必须绕成一个突环。合成冈崎片段需要DNA聚合酶III不断与模板脱开,然后再新的位置又与模板结合。 复制的终止:两个复制叉在终止区相遇而停止复制,复制体解体,其间人又50~100bp未被复制。其后两条亲代链解开,通过修复方式填补空缺。此时两环状染色体互相缠绕,称为连锁体。 基因转录(RNA的生物合成) √2.基因的转录控制有什么因素控制? √4.原核生物的RNA聚合酶有何特性? 答:真核生物有三种RNA聚合酶Ⅰ,Ⅱ,Ⅲ,它们专一地转录不同的基因,而原核生物的mRN A、rRNA、tRNA 由同一种RNA聚合酶所转录,聚合酶的分子量为480kD,由五个亚基组成α2ββ′σ,还含两个Zn原子,与β′亚基相连接。去掉σ亚基称为核心酶。 √5.原核生物的转录启动子的结构有哪几部分组成? 答:原核生物的转录启动子从起点上游约-10处有保守序列TATAAT为-10序列,-10序列的突变不影响RNA 聚合酶与启动子结合的速度,可是会降低双链解开的速度;在-10序列上游有一个保守序列为TTGACA称为-35序列,-35序列的突变将降低RNA聚合酶与启动子结合的速度,但不影响转录起点附近DNA双链的解开。 √7.真核生物的转录酶与原核生物有何区别? 答:真核生物有三种RNA聚合酶Ⅰ,Ⅱ,Ⅲ,它们专一地转录不同的基因,聚合酶Ⅰ转录45S rRNA的前体,聚合酶Ⅱ转录所有的mRN A前体和大多数核内的小RN A,聚合酶Ⅲ转录tRNA、5S rRNA、U6snRNA和不同的胞质小RNA。而原核生物的mRN A、rRNA、tRNA由同一种RNA聚合酶所转录。

蛋白质的合成、转运、修饰

蛋白质的合成 蛋白质的种类是由基因决定的,也就是说人类基因组有多少个基因,人体就有多少种蛋白质,只是蛋白质表达的时期和部位不同.根据人类基因组计划分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;也就是说人体蛋白质的种类有39000多种 蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰 一.氨基酸的活化 分散在胞液中的各种氨基酸需经特异的氨基酰-tRNA合成酶催化,ATP供能,并需Mg2+或Mn2+参与在氨基酸的羧基上进行活化,生成中间复合物 ()后者再与相应的tRNA作用,将氨基酰转移到tRNA分子 的氨基酸臂上,即3′末端腺苷酸中核糖的3′(或2′)羟基以酯键相结合形成氨基酰-tRNA 【氨基酰tRNA的生成】

tRNA 各种tRNA的一级结构互不相同,但它们的二级结构都呈三叶草形 三叶草形结构的主要特征是:含有四个螺旋区、三个环和一个附加叉 四个螺旋区构成四个臂,其中含有3′末端的螺旋区称为氨基酸臂,因为此臂的3′-末端都是C-C-A-OH序列,可与氨基酸连接三个环分别用Ⅰ、Ⅱ、Ⅲ表示 环Ⅰ含有5,6二氢尿嘧啶,称为二氢尿嘧啶环(DHU环) 环Ⅱ顶端含有由三个碱基组成的反密码子,称为反密码子环;反密码子可识别mRNA分子上的密码子,在蛋白质生物合成中起重要的翻译作用 环Ⅲ含有胸苷(T)、假尿苷(ψ)、胞苷(C),称为假尿嘧啶环(TψC环);此环可能与结合核糖体有关tRNA在二级结构的基础上进一步折叠成为倒“L”字母形的三级结构

起始因子 原核起始因子只有三种(IF1、IF2、IF3) 真核起始因子(简称为eIF)种类多且复杂,已鉴定的真核起始因子共有12种 延长因子 原核生物(简称EF)由三部分组成:EF-Tu,EF-Ts,和EF-G EF-Tu它介导氨酰-tRNA进入核糖体的空位 EF-Ts充当EF-Tu亚基的鸟嘌呤核苷酸交换因子,催化EF-Tu释放GDP EF-G催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来 真核生物(简称eEF) 真核生物中分为:eEF-1和eEF-2 eEF-1有两个亚基,α和βγα相当于原核生物中的EF-Tu亚基,它介导氨酰-tRNA进入核糖体的空位Βγ相当于原核生物中EF-Ts,核苷酸交换因子α,催化GDP从α上释放eEF-2相当于原核生物的EF-G,催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来

第十八节:蛋白质的合成及转运 考研生物化学精编辅导讲义

第十八节:蛋白质的合成及转运 ?翻译以mRNA为直接模板,tRNA为氨基酸运载体,核蛋白体为装配场所,共同协调完成蛋白质生物合成的过程。也就是把mRNA的碱基排列顺序转译成多肽链中氨基酸的排列顺序。 ?三大进展使蛋白质合成的主要过程得到认识 ①蛋白质合成的部位-核糖体;②氨基酸被氨酰tRNA激活;③遗传密码子。 1.遗传密码 ?密码子是指编码一个特定氨基酸的三联体核苷酸。 ?编码连续氨基酸的密码子中没有标点。 起始密码子:AUG(Met), (少数情况下GUG(Val)) ? ?终止密码子:UAA,UAG,UGA(无义密码子并非总是无义的,是稀有氨基酸如磷酸丝氨酸、硒半胱氨酸(UGA)掺入肽链的正常途径) ? ?遗传密码的特性 ①连续性;②读码不重叠性;③通用性;④简并性;⑤摆动性(变偶性)。 ?简并性:每一个氨基酸可能有一个以上的密码子;(甲硫氨酸AUG和色氨酸只有一个密码子)?摆动性:大多数密码子的第三个碱基与其反密码子的相应配对比较松,使一些tRNA能识别多个密码子 ?意义:密码子和反密码子相互作用平衡了准确性和速度的需要。 ?密码子的特性 ①无标点符号;②读码不重复;③一定的防突变功能。 ?碱基丢失――后续氨基酸全改变 ?一个碱基突变――一个氨基酸改变 ?密码子第三个碱基改变――氨基酸可能不变(简并性,摆动性) ?阅读框移动和RNA编辑――――― 一些mRNA在翻译前就被编辑。 ?在一些病毒DNA中发现不同阅读框中的重复基因 (密码子结构与氨基酸侧链极性之间有一定关系. 1)氨基酸侧链极性性质在多数情况下由密码子的第二个碱基决定。第二个碱基为嘧啶(Y)时,氨基酸侧链为非极性,第二个碱基为嘌呤(P)时,氨基酸侧链侧有极性. 2)当第一个碱基为U或A,第二个碱基为C,第三个碱基无特异性时,所决定的氨基酸侧链为极性不带电; 3)当第一个碱基不是U,第二个碱基是G时,氨基酸侧链则带电。在此前提下,若第一个是C或A时,表示带正电

蛋白质生物合成习题84692

蛋白质生物合成 选择题 A型题 1.蛋白质合成体系中不含下列哪一种物质 A.mRNA B.DNA C.核蛋白体 D.氨基酸 E.tRNA 2.各种蛋白质分子中氨基酸的排列顺序是由下列哪种因素决定的? A.mRNA分子中的单核苷酸排列顺序氨基酸的种类C.tRNA D.氨基酰-tRNA合成酶 E.rRNA 3.氨基酸活化需要哪种酶参加? A.-氨基酸激酶 B.氨基酰-tRNA合成酶 C.磷酸酶 D.ATP酶 E.ATP合成酶 4.蛋白质合成的部位主要是在细胞的 A.线粒体 B.内质网

C,细胞核 D.核仁 E.细胞质 5.终止密码子一共有3个,它们是 A.AAA、CCC、GGG B.AUG、UGA、GAU C.UAA、CAA、GAA D.UUU、UCC、UGG E.UAA、UAG、UGA 6.能出现在蛋白质分子中的下列氨基酸,哪种没有遗传密码? A.色氨酸 B.蛋氨酸 C.谷氨酸 D.脯氨酸 E.羟脯氨酸 7.不出现于蛋白质中的氨基酸是 A.半胱氨酸 B.胱氨酸 C.瓜氨酸 D.精氨酸 E.赖氨酸 8.mRNA模板没有胱氨酸的密码子,多肽链的二硫键是由A.蛋氨酸转变来 B.S-腺苷甲硫氨酸转变

C.两个半胱氨酸的基氧化而成 D.丝氨酸的羟基被二硫键取代 E.甘氨酸巯基化 9.下列哪一种酶是蛋白质生物合成过程中必需的A.DNA聚合酶 B.RNA聚合酶 C.引物酶 D.氨基酰-tRNA合成酶 E.连接酶 10.有关蛋白质合成的错误叙述是 A.氨基酸需要活化 B.需三种RNA参与 C.需以DNA作为模板 D.需有Mg2+、K+参与 E.氨基酸活化需要消耗ATP 11.有关真核生物蛋白质合成的叙述哪一项是正确的A.核蛋白体上合成的多肽链均具有生物学活性B.所需能量均由ATP供给 C.合成的多肽链需加工修饰后才有活性 D.在细胞核内合成 E.以上均不是 12.下列有关遗传密码的叙述中哪项是错误的A.密码有简并性 B.密码无标点符号

细胞内蛋白质的合成与运输 论文

细胞内蛋白质的合成与运输 摘要:蛋白质生物的合成亦称为翻译(Translation),即把mRNA分子中碱基排列顺序转变为多肽链中的氨基酸排列顺序过程。不同的组织细胞具有不同的生理功能,是因为它们表达不同的基因,产生具有特殊功能的蛋白质,参与蛋白质生物合成的成份至少有200种,其主要由mRNA、tRNA、核糖核蛋白体以及有关的酶和蛋白质因子共同组成。原核生物与真核生物的蛋白质合成过程中有很多的区别,真核生物此过程更复杂,原核生物蛋白质合成的过程可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。细胞内蛋白质有多种运输途径,一般可分为三种类型:翻译后转运的蛋白质运输途径;共翻译转运的蛋白质运输途径;蛋白质的胞吞途径。主要三种运输方式:门控运输、穿膜运输和小泡运输。 关键字:多肽链、蛋白质、翻译、核糖体、运输途径、运输方式 前言:随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 一、蛋白质生物合成过程 合成过程可分为起始、延长、终止三个阶段,蛋白质合成在核蛋白体上进行称为核蛋白体循环(广义)。肽链的合成是从N端到C端。 1.翻译起始(原核生物) 生成由起始氨基酰-tRNA、mRNA和核蛋白体组成的70S起始复合物,原核生物的起始因子(IF)有三种。其过程在原核生物和真核大同小异。(1)核蛋白体大、小亚基分离。(2)mRNA 结合小亚基mRNA起始密码上游为S-D序列,可与小亚基16S rRNA 3'端互补。紧接S-D 序列的短核苷酸序列可被小亚基蛋白识别结合,两方面作用促使mRNA在小亚基上定位。 (3)fmet-tRNAifmet结合于mRNA-小亚基复合体的AUG上,形成30S起始复合体。(4)大亚基加入30S起始复合体,形成70S起始复合体。 真核生物翻译起始的特点是:真核生物核蛋白体为80S(60S + 40S)。10种起始因子(eIF),生成起始复合物步骤IF eIF 亚基分离起始tRNA就位mRNA就位大亚基结合IF-3、IF-1IF-2、IF-1核酸-核酸、核酸-蛋白质之间的辨认结合各种IF脱落,GTP水解eIF-3、eIF-3A、eIF-4CeIF-2、eIF2B、eIF- 3、eIF-4CeIF-4、eIF-4A、eIF-4B、eIF-4E 、eIF-4F 。(1)真核起始甲硫氨酸不需甲酰化。(2)真核mRNA没有S-D序列,但5'端帽子结构与其在核蛋白体就位相关。帽结合蛋白(CBP)可与mRNA帽子结合,促进mRNA与小亚基结合。 2.肽链的延长 延长阶段为不断循环进行的过程,也称核蛋白体循环。分为进位、成肽和转位三个步骤。真核及原核生物的延长,主要是延长因子体系的不同。EFTuEFTsEFG 协助氨基酰-tRNA进入A位,结合GTP从EFTu中置换GDP转位酶,促助肽酰-tRNA由A位进至P位,协助

相关文档