文档库 最新最全的文档下载
当前位置:文档库 › 糖蜜基多孔碳球电极材料的制备及应用_韩雪

糖蜜基多孔碳球电极材料的制备及应用_韩雪

糖蜜基多孔碳球电极材料的制备及应用_韩雪
糖蜜基多孔碳球电极材料的制备及应用_韩雪

【CN109841814A】一种硅碳负极材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910122429.0 (22)申请日 2019.02.19 (71)申请人 深圳市斯诺实业发展有限公司 地址 518000 广东省深圳市南山区高新区 北区朗山路28号1栋2层西侧、2栋1层、 3栋1层 申请人 上海交通大学 (72)发明人 王开学 刘昕 陈接胜 鲍海友  (74)专利代理机构 深圳市科吉华烽知识产权事 务所(普通合伙) 44248 代理人 胡吉科 (51)Int.Cl. H01M 4/36(2006.01) H01M 4/583(2010.01) H01M 4/62(2006.01) H01M 4/38(2006.01)H01M 10/0525(2010.01) (54)发明名称一种硅碳负极材料的制备方法(57)摘要本发明提供了一种硅碳负极材料的制备方法,其包括以下步骤:选择反应物料,并对反应物料进行烘干、共混处理;其中,硅前驱体材料在烘箱内烘干24-48小时;在反应釜中加入反应物料,在N 2或Ar气的气氛下反应,反应釜的压力为1-3MPa,反应温度为150-450℃,反应时间为6-60小时,得到反应彻底的硅负极材料;对得到的硅负极材料进行水洗、酸洗、过滤、干燥,得到硅材料;对得到的硅材料进行包碳处理,然后与石墨负极材料进行掺杂复合,得到硅碳负极材料。采用本发明的技术方案,能够完全实现大批量规模化生产硅碳负极材料,生产硅材料的成本低廉,后处理过程安全无害,循环容量高,首次充放电效率高, 循环寿命长。权利要求书2页 说明书8页 附图3页CN 109841814 A 2019.06.04 C N 109841814 A

多孔碳材料制备与应用

摘要 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料

Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This paper mainly introduces the PEI (Polyetherimide) prepared for ionic liquid precursors, methods of carbon materials and related characterization. First by PEI of raw materials to join bromoacetonitrile (BrCH2CN) of ionic liquid precursor preparation, obtained by ionic liquid precursor to join dicyanamide silver [AgN (CN) 2] by anion exchange reaction, the activation method of porous carbon materials. The greatest advantage of this method is that there is a high carbon yield. Keywords: Ionic liquid, anion exchange, porous carbon material.

玻碳电极

玻碳电极 玻璃碳简称玻碳,是将聚丙烯腈树脂或酚醛树脂等在惰性气氛中缓慢加热至高温(达1800℃)处理成外形似玻璃状的非晶形碳,适于作电极的电子导体材料,在乒乓球底板中也被广泛使用。玻璃碳电极的优点是导电性好,化学稳定性高,热胀系数小,质地坚硬,气密性好,电势适用范围宽(约从-1~1V),相对于饱和甘汞电极),可制成圆柱、圆盘等电极形状,用它作基体还可制成汞膜玻碳电极和化学修饰电极等。在电化学实验或电分析化学中得到日益广泛的应用。玻碳电极比金电极好处理。金电极表面要处理的很干净还是要花不少功夫的。 文献中有不同的处理方法,如CV、恒电势法等, 同种方法也出现很多不同的酸度、电位、时间及扫速等。预处理的目的是为了在玻碳电极表面形成—COOH,—OH等活性基团,电极表面处于活化状态,而且易于电极的的修饰。不需要通氮除氧的,在PBS溶液中,只是要很宽的电位窗口下好像是0~1.5V进行氧化,氧化后,电极表面肉眼可以看到一层蓝色的膜。 固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度,特别当电极表面上存在惰化层或很强的吸附层时,必须用机械或加热的方法处理。通常用于抛光电极的材料有金刚砂,CeO2 ,ZrO2 ,MgO和α-Al2O3粉,抛光时总是按抛光剂粒度较低的顺序依次进行研磨。实验时,将直径为3mm的玻碳电极先用金相砂纸(1#~7#)逐级抛光,再依次用1.0、0.3μm 的Al2O3浆在麂皮上抛光至镜面,每次抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3min,重复三次,最后依次用1:1乙醇、1:1HNO3和蒸馏水超声清洗 彻底洗涤后,电极要在0.5-1mol/L H2SO4溶液中用循环伏安法活化,扫描范围1.0~-1.0V,反复扫描直至达到稳定的循环伏安图为止。最后在0.20mol/LKNO3中记录1×10-3mol/L K3Fe(CN)6溶液的循环伏安曲线,以测试电极性能,扫描速度50 mV/s,扫描范围0.6 ~-0.1V。实验室条件下所得循环伏安图中的峰电位差在80mV以下,并尽可能接近64mV,电极方可使用,否则要重新处理电极,直到符合要求 玻碳电极活化后带羧基的方法:玻碳电极在10% HNO3 和2.5% K2Cr2O7溶液中活化,电位是1.5

碳硅电极材料制备

(54) 发明名称 一种可控化学气相沉积连续层状生长制备锂离子电池负极硅/碳/碳纤维复合材料 (57) 摘要 本发明涉及一种多孔纳米硅/碳/碳纤维锂离子电池负极材料的化学气相沉积方法。将导电衬底悬挂于真空炉配套试样架上,分别以甲基苯基二氯硅烷为硅源,甲烷为碳源,将氩气或氦气或氢气作为载气,气体流量为100~400ml/h,通过载气将碳源和硅源输运到温度为100~250℃的基体材料碳纤维上;对导电衬底进行加热,通过高温分解和两步化学气相沉积制备了一种多孔纳米硅/碳/碳纤维复合材料。气相沉积过程中通过控制气相的流量及停留时间使得硅、碳呈交叉的层状有序式铺展,使得硅层和碳层间形成孔洞,这种结构大大缓解了材料在嵌锂过程中的体积膨胀,减少阻抗,提高电导,抑制硅材料的粉化,循环性能和倍率性能显著提高。

1. 一种硅/碳/碳纤维复合电极材料的化学气相沉积方法,多孔纳米硅、纳米碳及复合电极材料的制备方法,所述的纳米硅为纳米单质硅球或颗粒;所述的纳米碳包括碳纳米管或石墨烯;其特征在于步骤如下: 步骤1:将基底材料置于真空炉配套试样架上,试样处于炉内等温区中心位置; 步骤2:以甲基苯基二氯硅烷为硅源,甲烷为碳源,在保护气氛下以部分H2作为载气将汽化的甲基苯基二氯硅烷带入沉积炉中,部分H2作为稀释气体,Ar为稀释气体;载气H2和甲基苯基二氯硅烷的流量比为0.2~12,甲基苯基二氯硅烷和甲烷的流量比为0.1~1,部分稀释气体H2和甲基苯基二氯硅烷的流量比为2~10,Ar和甲基苯基二氯硅烷的流量比为5~12。以部分Ar作为载气将甲烷带入沉积炉中,部分Ar为稀释气体;载气Ar和甲烷的流量比为0.1~20。保持氩气持续通入,按照5°C/min的升温速率,升至沉积温度。此时,幵启溶液的管路,通过载气将碳源气体带入真空沉降炉中,保温沉积,气流量稳定在120sccm。随后通过载气将硅源气体带入真空沉降炉中,保温沉积,气流量稳定在15sccm。真空炉中反应温度为200~400°C,保温时间为10min~180min,炉内压力为100 ~1000Pa,完成硅/碳/碳纤维复合电极材料的化学气相沉积。 2.根据权利要求1 所述硅/碳/碳纤维复合电极材料的化学气相沉积方法,其特征在于:所述基底材料为碳纤维预制体或碳纳米管预制体或石墨纤维预制体、或石墨片。 A) 碳纳米管的制备方法是采用化学气相沉积法或弧光放电法或激光烧灼法; B) 制备纳米硅碳复合电极材料采用超声雾化热沉积法,其具体过程包括: a) 纳米硅与纳米碳材料混合前驱体溶液的制备:选用去离子水或乙醇或丙酮作为溶剂,溶液中纳米硅与纳米碳材料固体体积含量为溶液体积含量的 1 ~10%,其中纳米硅的固体体积含量为溶液体积含量的0.5 ~5% ; b) 前驱体溶液的雾化:20~60kHz 超声频率下将前驱体溶液雾化; c) 雾化液滴的输运:将氩气或氦气作为载气,气体流量为50~300sccm,通过载气将雾化液滴输运到温度为100~350℃的导电衬底上;进行复合材料的沉积;

2021年多孔碳材料制备与应用

摘要 欧阳光明(2021.03.07) 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料 Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This paper mainly introduces the PEI (Polyetherimide) prepared for ionic liquid precursors, methods

硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次放电容量为g,库伦效率%,第20次循环时材料的放电容量仍能够维持在 mAh/g。 图1、Si/C 复合负极材料在倍率下的充放电曲线但是,该材料的倍率特性较差,将放电倍率提高到到,材料的放电容量为 mAh/g。再次变换充放电倍率至时,材料的放电容量仅为mAh/g。 、高温裂解沥青 西安建筑科技大学的栾振星等人通过高温裂解沥青的方式制备出了硅/碳/碳纳米管复合材料。该方法是将碳纳米管浸入H 2 SO 4 /HNO 3 溶液中震荡搅拌12H,空气中高温处理4H,将纳米硅、碳纳米管放入甲苯超声分散,然后将其按比例倒入溶于甲苯的沥青溶液中,搅拌均匀后真空

多孔碳材料制备与应用之欧阳家百创编

摘要 欧阳家百(2021.03.07) 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI 中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料 Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This

铁氰化钾在玻碳电极上的氧化还原

铁氰化钾在玻碳电极上的氧化还原 一、实验目的。 (1)掌握循环伏安扫描法。 (2)学习测量峰电流和峰电位的方法。 (3)掌握受扩散控制电化学过程的判别方法。 二、实验原理 循环伏安法也是在电极上快速施加线性扫描电压,起始电压从Ei开始,沿某一方向变化,当达到某设定的终止电压Em后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫描速率可以从每秒数毫伏到1V。 当溶液中存在氧化态物质Ox时,它在电极上可逆地还原生成还原态物质,即 Ox + ne → Red 反向回扫时,在电极表面生成的还原态Red则可逆地氧化成Ox,即 Red → Ox + ne 由此可得循环伏安法极化曲线。 在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。 从循环伏安法图中可以确定氧化峰峰电流Ipa、还原峰峰电流Ipc、氧化峰峰电位φpa和还原峰峰电位φpc。 对于可逆体系,氧化峰峰电流与还原峰峰电流比为 Ipa/Ipc =1 25℃时,氧化峰峰电位与还原峰峰电位差为 △φ=φpa- φpc≈58/n (mV) 条件电位为 φ。′=(φpa+ φpc)/2 由这些数值可判断一个电极过程的可逆性。 三、仪器与试剂 仪器 1,电化学分析仪;

的惰性电极,具有导电性好,硬度高,光洁度高,氢过电位高,极化范围宽,化学性稳定,可作为惰性电极直接用于 阳极溶出,阴极和变价离子的伏安测定,还可以作化学修饰电极)、Ag/AgCl电极、铂电极 3. 铁氰化钾标准溶液(50mM) 4.氯化钾溶液(0.5M) 四、实验步骤 1.溶液的配置 1)铁氰化钾标准溶液(50mmol/L)50mL容量瓶中。 2)配置1、2、5、10mM 一系列浓度的溶液。(分别移取0.5,1.0,2 .5,5.0mL 的铁氰化钾标准溶液于25mL的容量瓶中加入5mL的KCl溶液,用蒸馏水稀释至刻度,摇匀备用。) 2.体系换成浓度工作电极的预处理 用Al2O3粉末在湿的抛光布上抛光玻碳电极表面,在用蒸馏水冲洗干净. 3.调试 (1)打开仪器,电脑,准备好玻璃电极,Ag/AgCl电极,和铂电极并清洗干净。(2)双击桌面上的VaLab图标 4. 选择实验方法:循环伏安法 设置参数: 低电位: -100mv ; 高电位:800 mv 初始电位:-100mv; 扫描速度:50mv/s; 取样间隔: 2mv;静止时间:1S; 扫描次数:1; 5. 开始扫描:点击绿色的“三角形”。 6.将上述体系改变扫描速度分别为10mv/s、20mv/s、40mv/s、80mv/s、160mv/s,其他条件不变,作不同速度下的铁氰化钾溶液的循环伏安曲线 7.在同一扫速下扫不同浓度的铁氰化钾溶液的循环伏安曲线。 五、数据记录与处理 1. 峰值电流与扫描速度的二分之一次方的曲线。 2.峰电流对不同浓度下峰电流的曲线。 六结果与讨论 1实验时为什么要保持溶液静止? 为了使液相传质过程只受扩散控制 2为什么要抛光电极的表面? 在使用任何固体电极之前都必须清洁其表面,以便清除表面上玷污或吸附杂质造成的污染。正如大多数金属材料电极表面易生成氧化层一样,碳电极表面发生氧化后,会产生各种含氧基团(如醇、酚、羧基、酮醌和酸酐等),从而使电极的重现性、稳定性变差,灵敏度下降,失去应有的选择性。实验时,将直径为3mm的玻碳电极先用金相砂纸(1#~7#)逐级抛光,再依次用1.0、0.3μm的Al2O3浆在麂皮上抛光至镜面,每次抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3min,重复三次,最后依次用1:1乙醇、1:1HNO3和蒸馏水超

清华大学硅碳负极方面的研究

清华大学关于硅碳复合负极材料方面的专利汇总 清华大学化学工程系魏飞教授关于硅碳负极方面的专利在soopat或佰腾专利搜索只能检索到一篇(201510395054.7),且还未授权,其专利大致情况如下所示: 该硅碳复合材料是一种核壳结构,其中以硅或其氧化物为核,石墨烯为壳的亚/微米颗粒,所得材料的粒径尺寸在0.05-15um之间,石墨烯的重量占核壳结构颗粒总重量的1-8wt%,且核壳结构的比表面积等于或小于原始硅或其氧化物颗粒的比表面积。制备的复合材料宏观形貌为球形、棒状、片状、不规则多面体形状。其制备方法包括如下步骤: 1)在常温下,将含碳粘合剂(如直连、直链淀粉、葡萄糖、多羟基醇)溶于去离子水中,持续搅拌并缓慢加热至50-100℃,保持恒温1-6小时,得到粘性液体; 2)将粒径为0.1um-10um的硅或其氧化物颗粒加入到步骤1)所制备的粘性液体中,搅拌得到固含量为30-60wt%悬浊液浆料; 3)将步骤2)得到的浆料进行喷雾造粒,得到粒径分布在50-300um之间的多孔球形颗粒,即二级结构颗粒; 4)将步骤3)得到的二级结构颗粒填充到流化床中,在惰性气氛中加热至反应温度700-1000℃,然后通入碳源(如甲烷、乙烷、乙烯、乙炔、甲苯、苯等),惰性气体和碳源的总空速为500-900 h-1,保持碳源与惰性气体的体积比在0.5-2之间,进行化学气相沉积,反应时间为20-60min,得到粒径尺寸为0.05-15um的石墨烯包覆的硅或其氧化物核壳结构。 清华大学材料系黄正宏教授有一篇关于硅碳负极方面的专利(200910082897.6)。该专利的大致情况如下所示。 该复合负极材料由基体和均匀分布其中的颗粒组成,其中颗粒是一种具有纳米尺寸的核壳结构颗粒;所述纳米颗粒的核为纳米硅,壳为有机物热解得到的无定型碳,所述的基体是高压静电电纺制备的有机纤维热解碳化后得到的,为不规则多孔洞的无定型碳网络结构。其大致步骤如下:

锂离子电池硅_碳复合负极材料的研究进展_张瑛洁

第34卷第4期 硅酸盐通报Vol.34No.42015年4月BULLETIN OF THE CHINESE CERAMIC SOCIETY April ,2015 锂离子电池硅/碳复合负极材料的研究进展 张瑛洁,刘洪兵 (东北电力大学化学工程学院,吉林132012) 摘要:负极材料是制约锂离子电池发展的重要因素之一。硅/碳复合材料储锂容量高、循环稳定性好,是目前制备 新型锂离子电池负极材料的研究热点。介绍了硅/碳复合材料的不同制备方法和复合结构以及优良的电化学性 能,综述了硅/碳复合材料的研究进展,并对未来的发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;制备方法;复合结构;电化学性能 中图分类号:TQ152文献标识码:A 文章编号:1001- 1625(2015)04-0989-06Research Progress on Si /C Composite Anode Materials for Lithium-ion Battery ZHANG Ying-jie ,LIU Hong-bing (School of Chemical Engineering ,Northeast Dianli University ,Jilin 132012,China ) Abstract :Anode materials is a major factor that restricts the development of lithium-ion batteries.Si /C composite materials ,which possesses high capacity and cycling stability ,becomes the hot spot to preparation of new type lithium-ion battery anode materials at present.Different preparation methods of Si /C composite materials ,composite structures ,and excellent electrochemical performance were introduced.And the research progress of Si /C composites was summarized.Subsequently ,the future development direction of Si /C composite materials was prospected as well. Key words :lithium ion battery ;Si /C composite materials ;preparation method ;complex structure ; electrochemical performance 基金项目:吉林省科技厅产业技术创新战略联盟项目(20130305017GX );吉林省教育厅吉教科合字[ 2014]第103号作者简介:张瑛洁(1969-),女,教授, 博士.主要从事水的深度处理方面的研究.1引言 负极材料储锂容量是制约锂离子电池应用范围的关键因素,硅/碳复合材料作为一类应用潜力巨大的负 极材料, 成为近年来研究的热点。碳与硅相近似的化学性质,为两者的紧密结合提供了理论依据,所以碳常用作与硅复合的首选基质。硅通常与石墨、石墨烯、无定型碳和碳纳米管等不同的碳基质制备复合材料,在硅碳复合的体系中硅主要作为活性物质,提供容量 [1-3];碳材料一般作为分散基质,限制硅颗粒的体积变化,并作为导电网络维持电极内部良好的电接触[4-6]。理论上,硅/碳复合材料储锂容量高,导电性能好,但要成为可商用的锂离子电池负极材料,面临着两个基本的挑战:循环稳定性差和可逆循环容量保持率低。不同的制备方法以及复合结构都会对复合材料的电化学性能产生影响,开发强附着性、紧密电接触、耐用的新型硅碳复合材料,对促进硅/碳复合材料实际应用的进程具有重大意义。本文着重从制备方法、复合结构及电化学性能等方面综述了硅/碳复合材料近年来的研究进展,以期对后续的研究人员的相关实验提供理论依据。DOI:10.16552/https://www.wendangku.net/doc/7a5732622.html,ki.issn1001-1625.2015.04.018

玻碳电极的打磨清洗

玻碳电极的打磨清洗 1.首先在麂皮上撒上少量0.05um的抛光粉(Al2O3)(可使用其他粒径抛光粉,颗粒由大到小依次打磨),然后滴加上少量的去离子水,用玻碳电极上绝缘的部分稍微搅匀。之后竖直的握玻碳电极,使玻碳电极在麂皮慢速的按圆形移动,每次打磨3min左右。 2.接着用去离子水冲洗电极表面除去附着的大团抛光粉。再移入超声水浴中清洗,每次2~3min。冲洗干净电极表面后,继续用抛光粉打磨,再清洗。整个过程重复五次,最后用蒸馏水超声清洗。 3.彻底洗涤后,电极要在0.5-1mol/L H2SO4溶液中用循环伏安法活化,扫描范围1.0~-1.0V,反复扫描直至达到稳定的循环伏安图为止。最后在0.20mol/LKNO3中记录1×10-3mol/L K3Fe(CN)6溶液的循环伏安曲线,以测试电极性能,扫描速度50 mV/s,扫描范围0.6 ~-0.1V。实验室条件下所得循环伏安图中的峰电位差在80mV以下,并尽可能接近64mV,电极方可使用,否则要重新处理电极,直到符合要求. 铂电极清洗 将铂电极浸入浓硝酸中30min,取出后用去离子水冲洗干净。 电解液的配制 配制电解液时,可先加入所需量的电解质,再加入去离子水(或其他溶剂)。溶解后,加入所需量的底物(浓度一般为10-3M,但10-4M测CV也可以出峰);注意不要配好各自的浓度后再混合。

玻碳电极清洗步骤: 1.打磨:打磨前用湿润的镜头纸轻轻拭擦电极表面,去除污物,确保电极表面光滑。取0.05微米的打磨浆液少许于打磨盘上,加DI水少许,按“8”字形打磨电极2-3分钟,打磨过程中确保电极表面压在打磨盘上,不能歪斜,否则打磨后的电极表面轻易变形,而不是平面。(以上打磨仅限电极表面没有大的划痕时,假如电极表面有明显的划痕,则需要分级打磨,即用1微米,0.5微米,0.05微米的打磨浆液依次打磨。因此,日常使用过程中请保护电极表面,不要形成明显的划痕) 2.将打磨好的电极头竖直放在盛有少量DI水的小烧杯中(注重:a. 水不要没过电极后端的金属, b. 玻璃碳不要触及烧杯底,否则电极表面轻易被杯底玻璃划伤),将小烧杯置于超声中超声2分钟,更换小烧杯中的DI水后重新超声。确认电极表面无残余打磨浆后,停止超声,取出电极,用DI水冲洗。 3.化学清洗:将步骤2处理过的电极的玻碳一头放于浓硫酸中(限PTFE外套的玻碳电极)30秒,取出后用DI水冲洗干净,然后将电极的玻碳一头放在1摩尔氢氧化钠溶液中30秒后取出,用DI水冲洗干净。 4. 将化学清洗过的电极用步骤2中方法超声3次(期间每次要更换DI水)。 5.将得到的电极在红外灯下烘干,或在空气气流中吹干。(用红外灯烘干的时候,注重不要在红外灯下强烈烤,可放在红外光线靠边缘光线不太强的地方,否则PTFE外套轻易被烤得松软,造成玻碳头松动,最终电极因接触不良而无法使用。) 除了工作电极之外还应该考虑电解池是否干净,参比电极是否稳定甚至整个电化学工作站的稳定性

硅碳材料是最有潜力的锂电池负极

新能源汽车领域的日趋火爆,吸引着国内外大量企业前赴后继奔赴“战场”,并不新鲜的锰酸锂技术却似乎又开始绽放出引人注目的色彩。技术创新固然可喜,但寻找性价比更高、储藏量更大、具有更多定价话语权的新原材料,才是提升行业终端降本增效能力的治本之法。 硅是目前人类至今为止发现的比容量(4200mAh/g)最高的锂离子电池负极材料,是一种最有潜力的负极材料,但硅作为锂电池负极应用也有一些瓶颈,第一个问题是硅在反应中会出现体积膨胀的问题。通过理论计算和实验可以证明嵌锂和脱锂都会引起体积变化,这个体积变化是320%。 所以不论做成什么样的材料,微观上,在硅的原子尺度或者纳米尺度,它的膨胀是300%。在材料设计时必需要考虑大的体积变化问题。高体积容量的材料在局部会产生力学上的问题,通过一系列的基础研究证明,它会裂开,形成严重的脱落。 硅体积膨胀会导致一系列结果 1.颗粒粉化,循环性能差 2. 活性物质与导电剂粘结剂接触差 第二个问题就是在硅表面的SEI膜是比较厚且不均匀的,受温度和添加剂的影响很大,会影响锂离子电池中整个比能量的发挥。 石墨表面因为导电性特别好,相对来说SEI膜比较均匀,它的组成跟硅负极不一样。为了研究这个问题,中科院相关科学家做了模型材料,通过微加工做成硅纳米柱。观察这种材料在充放电过程中SEI膜的生长,我们发现随着循环次数的增加,SEI膜逐渐把硅柱中间的空隙填上,覆盖完后还会继续生长大概4.5μm,在硅表面如果不加任何处理,SEI膜可以长得很厚。 这说明它是多孔的,溶剂始终能够接触到浸到硅的表面,这样在全电池设计时是不行的。怎么样解决这个问题,中科院科相关学家做了一些尝试在硅上做了碳包覆,为了做对比,我们硅上只做了部分的石墨烯包覆,其他地方空出来。最终看到包覆和不包覆SEI膜的生长情况

多孔碳材料的制备与应用

多孔碳材料的制备与应用 摘要:多孔碳材料不仅具有碳材料化学稳定高、导电性好等优点,由于多孔结构的引入,还具有比表而积高、孔道结构丰富、孔径可调等特点,在催化、吸附和电化学储能等方而都得到了广泛的应用。本文综述了微孔、介孔、大孔及多级孔碳等多孔碳材料的最新研究进展,重点介绍了多孔碳孔道结构的调控,并对多孔碳材料的应用进行了展望。 关键词:多孔碳;模板合成;活化合成;有序孔道 Abstract: Porous carbon with large specific surface area,tunable porous structure,high stability and goodelectron conductivity,has attracted considerable attention due to its promising applications in the fields of catalyst,catalyst support,absorption and electrochemical energy storage.This manuscript reviews recent development in thefabrication of microporous carbon,mesoporous carbon,macroporous carbon and hierarchically porous carbon withboth ordered and disordered porous structures.The so-called soft- and hard-template methods are efficient in tuningthe porous structures and morphologies of carbon materials.The potential applications of porous carbon materialsare also highlighted in this review. Key words porous carbon:template synthesis; activation preparation; ordered porous channels

玻碳电极的打磨清洗(经典版)知识讲解

玻碳电极的打磨清洗 (经典版)

玻碳电极的打磨清洗步骤 1、打磨:打磨前用湿润的镜头纸轻轻拭擦电极表面,去除污物,确保电极表面光滑。取0.3微米的抛光粉(Al2O3)少许于打磨盘(麂皮)上,然后滴加上少量的去离子(DI)水,用玻碳电极上绝缘的部分稍微搅匀。[也可配置成不同的Al2O3的悬浊液] 之后竖直的握玻碳电极,手臂肘部均匀用力,使玻碳电极在麂皮慢速的移动,其路径为圆形或者“8”字形,打磨电极2-3分钟,顺逆时针各磨100圈,打磨过程中确保电极表面压在打磨盘上,不能歪斜,否则打磨后的电极表面轻易变形,而不是平面。 (建议:磨电极时,拿捏电极的底部,不要太大力,这样能保持电极不会歪斜和损坏。) 切忌:不要左右或者上下打磨,这样会在铂碳电极上形成一道明显的划痕(由于你是平行的,所以经过麂皮面上同一个凸起的地方,形成划痕)。玻碳电极尽量少用砂纸打磨,会减少它的使用寿命,只要玻碳电极表面呈镜面,直接用氧化铝抛光粉抛光就可以了。 ★以上打磨仅限电极表面没有大的划痕时,假如电极表面有明显的划痕,则需要分级打磨,即用1微米,0.5微米,0.3微米,0.05微米的抛光粉依次打磨。因此,日常使用过程中请保护电极表面,不要形成明显的划痕。 2、用去离子水冲洗电极表面,然后将打磨好的电极头竖直放在盛有少量去离子水的小烧杯中(注重:a.水不要没过电极后端的金属, b.玻璃碳不要触及烧杯底,否则电极表面轻易被杯底玻璃划伤),将小烧杯置于超声水浴中超声清洗2-3min,重复三次。确认电极表面无残余打磨浆后,停止超声,取出电极,用DI水冲洗。 3、化学清洗:将步骤2处理过的电极的玻碳电极依次用1:1 HNO3(限聚四氟乙烯PTFE外套的玻碳电极)、1:1乙醇溶液(或丙酮)和DI水超声清洗2-3min 时间不能太长,否则容易损坏电极。

硅碳复合电极材料制备及储锂性能

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第12期 ·4540· 化 工 进 展 硅碳复合电极材料制备及储锂性能 夏楠1,刘园园1,马焕梅1, 2,田建华1 (1天津大学化工学院,天津 300072;2航天精工股份有限公司,天津 300300) 摘要:采用水热法以ZnCl 2为活化剂制备活化石墨烯纳米片(a-GNPs ),并研究了工艺参数对其孔结构的影响。将表面包覆导电聚苯胺(PANI )的硅纳米粒子与a-GNPs 以一定比例混合,经热解形成Si/p-PANI/a-GNPs 复合材料用于锂离子电池负极。采用TEM 对a-GNPs 孔结构进行了表征;采用FTIR 分析了PANI 热解前后化学键的变化;采用SEM 分析了电极结构和形貌;采用循环伏安、交流阻抗和恒流充放电等方法测量了硅复合电极的电化学性能。实验结果表明,Si/p-PANI/a-GNPs 复合电极的储锂容量和稳定性有明显改善,400mA/g 恒电流充放电循环50次后可逆比容量达到1093.4mA ·h/g ,比Si 电极和Si/p-PANI 电极分别提高了415.3%和112%。这主要归因于a-GNPs 对电解质传输的促进作用以及电导的贡献。 关键词:电化学;硅碳复合材料;纳米材料;活化石墨烯;稳定性 中图分类号:TM911 文献标志码:A 文章编号:1000–6613(2017)12–4540–07 DOI :10.16085/j.issn.1000-6613.2017-0585 Preparation and lithium storage properties of Si/C composite electrodes XIA Nan 1,LIU Yuanyuan 1,MA Huanmei 1, 2,TIAN Jianhua 1 (1School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China ;2Aerospace Precision Products Company ,Limited ,Tianjin 300300,China ) Abstract :Activated graphene nanoplates (a-GNPs )were prepared by using the hydrothermal method with the activating agent of ZnCl 2,and the influences of different process parameters on the pore structure of a-GNPs were also investigated. Si nanoparticles coated with the conductive polyaniline (PANI ) were mixed with suitable amounts of a-GNPs. After the subsequent pyrolysis ,the Si/p-PANI/a-GNPs composites were obtained ,which could be used as the negative electrode material of Li-ion batteries. The pore structure of a-GNPs was characterized by TEM ,the variation of covalent bonds of PANI before and after pyrolysis was analyzed by FTIR ,and the structure and morphology of the Si/p-PANI/a-GNPs electrode were observed by SEM. The electrochemical performance of as-prepared Si/C composite electrode was tested by electrochemical methods such as cyclic voltammetry ,electrochemical impedance spectrum and galvanostatic charge-discharge. The results indicated that the lithium storage capacity and stability of Si/p-PANI/a-GNPs electrode were significantly improved compared with that of pure Si and Si/p-PANI electrodes. The reversible specific capacity of the Si/p-PANI/a-GNPs electrode prepared at optimized conditions reached 1093.4mA ·h/g after 50 charge/discharge cycles ,which increased by 415.3% and 112% compared to that of Si electrode and Si/p-PANI electrode ,respectively. This was primarily due to the contribution of a-GNPs to the improvements in electrolyte transmission and conductivity. Key words :electrochemistry ;Si/C composites ;nanomaterial ;activated graphene ;stability 第一作者:夏楠(1992—),男,硕士研究生。联系人:田建华,教授,主要从事先进化学电源研究。E-mail :jhtian@https://www.wendangku.net/doc/7a5732622.html, 。 收稿日期:2017-04-05;修改稿日期:2017-07-16。 基金项目:国家重点研发计划项目(2016YFB0100511)。 万方数据

2020年玻碳电极的打磨清洗(经典版)

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 玻碳电极的打磨清洗步骤 1、打磨:打磨前用湿润的镜头纸轻轻拭擦电极表面,去除污物,确保电极表面光滑。取0.3微米的抛光粉(Al2O3)少许于打磨盘(麂皮)上,然后滴加上少量的去离子(DI)水,用玻碳电极上绝缘的部分稍微搅匀。[也可配置成不同的Al2O3的悬浊液] 之后竖直的握玻碳电极,手臂肘部均匀用力,使玻碳电极在麂皮慢速的移动,其路径为圆形或者“8”字形,打磨电极2-3分钟,顺逆时针各磨100圈,打磨过程中确保电极表面压在打磨盘上,不能歪斜,否则打磨后的电极表面轻易变形,而不是平面。 (建议:磨电极时,拿捏电极的底部,不要太大力,这样能保持电极不会歪斜和损坏。) 切忌:不要左右或者上下打磨,这样会在铂碳电极上形成一道明显的划痕(由于你是平行的,所以经过麂皮面上同一个凸起的地方,形成划痕)。玻碳电极尽量少用砂纸打磨,会减少它的使用寿命,只要玻碳电极表面呈镜面,直接用氧化铝抛光粉抛光就可以了。 ★以上打磨仅限电极表面没有大的划痕时,假如电极表面有明显的划痕,则需要分级打磨,即用1微米,0.5微米,0.3微米,0.05微米的抛光粉依次打磨。因此,日常使用过程中请保护电极表面,不要形成明显的划痕。 2、用去离子水冲洗电极表面,然后将打磨好的电极头竖直放在盛有少量去离子水的小烧杯中(注重:a.水不要没过电极后端的金属, b.玻璃碳不要触及烧杯底,否则电极表面轻易被杯底玻璃划伤),将小烧杯置于超声水浴中超声清洗2-3min,重复三次。确认电极表面无残余打磨浆后,停止超声,取出电极,用DI水冲洗。 3、化学清洗:将步骤2处理过的电极的玻碳电极依次用1:1 HNO3(限聚四氟乙烯PTFE外套的玻碳电极)、1:1乙醇溶液(或丙酮)和DI水超声清洗2-3min 时

相关文档