文档库 最新最全的文档下载
当前位置:文档库 › 传感器原理与应用课后习题

传感器原理与应用课后习题

传感器原理与应用课后习题
传感器原理与应用课后习题

《传感器原理与应用》课后习题

课任老师:黄华

姓名:张川 学号:1143032002

第一章

2、一、按工作机理分类:结构型,物性型,复合型三大类。一般在研究物理化学和生物等科学领域的原理、规律、效应的时候,便于选择。

二、按被测量分类:物理量传感器,化学量传感器,生物量传感器。在对各领域的用途上很容易选择。

三、按敏感材料分类:半导体传感器、陶瓷传感器、光导纤维传感器、高分子材料传感器、金属传感器等。很明显不同的名字就代表着用法,不同的制造材料去不同使用。

四、按能量的关系分类:有源传感器、无源传感器。很明显是在能量转换的时候,也就是非电与电之间的转换时,还有就是非电与电能之间的调节作用的时候,需要用到此类传感器。

五、按应用领域分类:医学传感器、航天传感器。顾名思义,就是在医学领域的相关器械检查等方面和航空航天的整体过程中会用到。

六、其他分类法:按用途、科目、功能、输出信号的性质分类。当然按其所需要的类型使用此类传感器。

3、1)线性度:%100max ??±

=Y FS E 2)灵敏度:x

y S n ??= 3)重复性:误差 %100)3~2(?±=∧Y E FS x σ

4)迟滞(回差滞环)现象:||

y y d i E -= 5)分辨率:x min ?

6)稳定性 7)漂移

4、它是传感器对输入激励的输出响应特性。通常从时域或者频域两方面采用瞬态响应法和频率响应法来分析。

6、系统:)()()(t Cx t By dt t dy A =+ )()()(t x B

C t y dt t dy B A =+ 通用形式:)()()

()(t Kx t y t d t dy =+τ 式中τ——传感器的时间常数,τ=A/B ,反映惯性; K ——传感器的静态灵敏度或放大系数,k=C/B ,反映静态特征;

?传递函数: s

K s H τ+=1)( ?频率特性: τ

jw K jw H +=1)( ?幅频特性: )(21|)(|)(ωτ+==K

jw H w A

?想频特性: )arctan()arctan(

)(ωτωτωφ-=-=

? ωτ<< 1 时,输入输出关系接近线性,输出较真实反映输入变化。A (ω)≈1, υ(ω)≈0; 输出y(t)反映输入x(t);

? 截至频率,指幅值比下降到零频率幅值比的0.707时对应的频率,为ωH=1/τ,所以时间常数τ越小,ωH 越高,工作频率越宽,响应越好。

第二章 2、金属导体受到外力作用产生机械形变,电阻值会随着形变的变化而变化。应变片的敏感栅受力形变后使其电阻发生变化。将其粘贴在试件上,利用应变——电阻效应便能把试件表面的应变量直接变换为电阻的相对变化量,这样就把力的大小通过电阻改变转化为电信号再有电信号模拟出来数字显示,金属电阻应变片就是利用这一原理制成的传感元件。

灵敏度系数:εερρμx

x S d R dR

K ++==)21(,其中K S 称为金属丝的灵敏度系数。其物理意义就是单位应变εx 所引起的电阻相对变化。灵敏度系数由两个因素决定:一个是受力后材料几何尺寸的变

化,即)21(μ+;另一个是受力后材料的电阻率发生的变化,即ερρ

x d 。

3、由公式R R R R R R r 1

211

111+?+?-=,可以求得R R 11?=0.02。而εx S R R K ?=,题目中ε=4300μ,所以K S =4.65。

5、直流电桥的平衡条件:R

R R R 4321=,其中R R R R 4321是电桥的桥臂。 交流电桥的平衡条件:

Z Z Z Z 3241=,式中Z Z Z Z 4321,,,为电阻、电感、电容任意组

合的复阻抗。 电桥平衡时

C R R C R R R R n a b X n a b X ==''

,,损耗因数R C R C n n X X D ωω==''.从实验原理来看,R R b a ,没有出现在损耗因数表达式中,所以R R b a ,中可选定一个取固定值.若R R b

a ,

都取固定值,由C R R C R R R R n a b X n

a b

X =='',可知,R C n

n ,必然有唯一值相对应,那么交流电桥的平衡状态只有一种情况,不利于调节与教学。所以R R b a ,只能选定一个取固定

值,这样在既不影响结果又能保证交流电桥有多种平衡状态可调的前提下,通过减少变量,提高了交流电桥的可调性,增加了我们对交流电桥实验的可操作性。

第三章

1、变极距型电容式传感器:d C C d C 0

00?+=

变极板面积型电容式传感器:l a C C C 00-=

变介质型电容式传感器: εεεε2

121

21001+-+=d d C C l a C 3、是线性的。由运算放大器测量电路推导出的输出电压与位移的关系为:d A C U U i i ε00 -= 从式中可知,运算放大器的输出电压与动极板机械位移d 成线性关系。

4、油料液位监测系统

摘要:设计和制作了一种油料液位监测系统,传感器部分采用电容式液位计,当液位高于最大安生高度时,鸣响振铃并点亮红色LED 灯;当液位低于所要求的最小高度时,鸣响振铃并点亮黄色LED 灯;当液位处于所要求的高度范围内时,点亮绿色LED 灯。

油料液位是指油库或油箱中的油积存的相对高度.当油库或油箱需要充油时,若液位已达到最大安全容量所对应的高度,就需要给充油者以提示;若油的液位低于最低要求高度时,需要给以也提示,以便使油库或油箱得以及时补充.这种液位监测系统在储油库或汽车油箱等方面具有重要的作用。文设计和制作了一种油料液位监测系统,以在液位高于最大安全高度时,响振铃报警并点亮红色LED 灯;当液位置低于某一高度时,鸣响振铃并点亮黄色LED 灯;当液位处于所要求的高度范围内时,点亮绿色LED 灯给以提示。

1电路设计及工作原理

油料液位监测系统的电路设计如图1所示。整个电路可以分成两部分:①测量与转换电路。②控制电路、监测系统和振铃。

1.1测量与转换电路如图1所示,虚线方框内为测量与转换电路部分.其中测量部分采用电容式液位计[1],结构如图2所示,电容式液位计是一种电容式传感器,它是将被测介质的液面变化转换为电容器的电容变化,当油料的液面高度变化时,引起圆柱形电容器的电容Cs发生变化,可以证明液面高度x的变化与电容Cs的关系为:

为油料介电常数,为空气式中,

介电常数,h为电极总高度,R

为内电极外径,R2

为外电极内径。从(1)式可见,电容式液位计的

输出电容Cs与液位高度x成线性关系.再利用脉冲

调宽转换电路,就可将液位高度x转换成与之对应

的电压输出。

在脉宽调制电路中,Cs代表传感器电容,Cr

为参比电容,Cs、Cr分别与R1、R2、BG1、BG2

构成充放电电路,其充放电时间常数分别设为和。开始Ul>Ur,U2>Ur,Cs、Cr充电,U1,U2电位迅速降低,由于Cs<Cr,所以,<,U1先达到Ur之后继续充电,直至U2达到Ur,此时比较器A1翻转,输出低电位,BG3反相后输出;当U2达到Ul,比较器A2翻转,开关BG1、BG2导通,Cs、Cr迅速放电,U1.U2又上升为高电平,比较器Al输出高电平,BG3输出低电平,完成一次充放电周期,然后又重复上述动作.T3输出平均直流电压为

将1代得式人:

经BG4反相和

电容器滤波后。输出平均电压Ux正比于液位高度x,,即液面越高,x越大,Ux越大。1.2控制部分控制部分由比较器A和B、TTL、与非门、监测灯和振铃2构成.脉宽调制电路输出Ux通过电压比较器A和B分别与两基准电压U1和U2相比较,U1,U2分别等于液位高度为X1、X2时转换电路的输出电压Ux1、Ux2,因为X1>X2,而Ux与x成正比。所以U1>U2。

以“1”表示比较器输出电压U A、U B是高电平,灯亮及铃响;以“0”表示低电平,灯灭,铃不响,其电路设计要求简化成卡诺图如图3所示。

根据以上要求,我们设计了控

制部分电路.由于与非门输出电平

比较低,达不到灯及振铃工作所需

要的达电压,故要增加一级放大电

路,使电压匹配。适当调节电源E

和电阻R、Rc即可使LED灯及振铃正常工作。

第四章

1、1)、变磁阻式传感器由线圈、铁芯和衔铁三部分组成。铁芯和衔铁由导磁材料如硅钢片或坡莫合金制成,在铁芯和衔铁之间有气隙,气隙厚度为δ,传感器的运动部分与衔铁相连。当衔铁移动时,气隙厚度δ发生改变,引起磁路中磁阻变化,从而导致电感线圈的电感值变化,因此只要能测出这种电感量的变化,就能确定衔铁位移量的大小和方向。

变间隙式电感传感器的测量范围与灵敏度及线性度相矛盾,所以变隙式电感式传感器用于测量微小位移时是比较精确的。为了减小非线性误差,实际测量中广泛采用差动变隙式电感传感器。

2)、差动变压器式互感传感器:把被测的非电量变化转换为线圈互感量变化的传感器称

为互感式传感器。这种传感器是根据变压器的基本原理制成的,并且次级绕组都用差动形式连接。应用最多的是螺线管式差动变压器可测量1-100mm 的机械位移量,灵敏度高。

3)、涡流传感器的工作原理是根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈旋涡状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。根据电涡流效应制成的传感器称为电涡流式传感器。灵敏度高。 5、

图3—15 相敏检波电路

电路如图3-15所示。VD 1、VD 2、VD 3、 VD 4为四个性能相同的二极管,以同一方向串联成一个闭合回路,形成环形电桥。输入信号2u (差动变压器式传感器输出的调幅波电压)通过变压器T 1加到环形电桥的一个对角线。参考信号0u 通过变压器T 2加入环形电桥的另一个对角线。输出信号u L 从变压器T1与T2的中心抽头引出。平衡电阻R 起限流作用,避免二极管导通时变压器T 2的次级电流过大。R L 为负载电阻,u 0的幅值要远大于输入信号u 2的幅值,以便有效控制四个二极管的导通状态,且u 0和差动变压器式传感器激磁电压u 1由同一振荡器供电,保证二者同频、同相(或反相)。 由图3-16(a )、(c )、(d)可知,当位

移Δx>0时,u 2与u 0同频同相,当位移Δx<0

时,u 2与u 0同频反相。

Δx>0时,u 2与u 0为同频同相,当u 2

与u 0均为正半周时,见图3-15(a ),环形

电桥中二极管VD 1、VD 4截止,VD 2、VD 3导

通,则可得图3-15(b )的等效电路。

2020102n u u u == ;1

222212n u u u == 根据变压器的工作原理,考虑到O 、M

分别为变压器T 1、 T 2的中心抽头,则有:

图3—16 波形图

2002012n u u u ==;1

022212n u u u ==; 式中:n 1、n 2为变压器T 1、T 2的变比。

采用电路分析的基本方法,可求得图3-15(b )所示电路的输出电压u L 的表达式:

)

2(112L L L R R n u R u += (3-23) 同理,当u 2与u 0均为负半周时,二极管VD 2、VD 3截止,VD 1、VD 4导通。其等效电路如图3-15(c )所示,输出电压L u 表达式与式(3-23)相同,说明只要位移Δx>0,不论2u 与0u 是正半周还是负半周,负载R L 两端得到的电压L u 始终为正。

当Δx<0时,2u 与0u 为同频反相。采用上述相同的分析方法不难得到:当Δx<0时,不论2u 与0u 是正半周还是负半周,负载电阻R L 两端得到的输出电压L u 表达式总是为:

)

2(112L L L R R n u R u +-= (3-24) 所以上述相敏检波电路输出电压L u 的变化规律充分反映了被测位移量的变化规律,即L u 的值反映位移Δx 的大小,而L u 的极性则反映了位移Δx 的方向。

第五章

1、分两种情况证明

(1)

热电偶回路的总热电势为

E=e AB (T)+e BC (T 0)+e CA (T 0) (1)

如果热电偶回路各接点温度相同,其总的热电势为0.

E=e AB (T 0)+e BC (T 0)+e CA (T 0)=0

变换后

e CA (T 0)+e BC (T 0)= - e AB (T 0) (2)

(2)代入(1)中得

E= e AB (T)+e BC (T 0)

(2)

E= e AB (T)+e BC (T 1)+e CB (T 1)+ e BA (T 0)

由于

e BC (T 1)+e CB (T 1)=0

E= e AB (T)+ e BA (T 0)

2、金属热电阻和半导体热敏电阻同属热电阻传感器,其原理是利用半导体或导体的电阻随温度变化而变化的性质。根据所选材料的不同,将选择金属材料制作的热电阻称为热电阻,选择半导体材料制作的热电阻称为半导体热敏电阻。

1)金属热电阻利用电阻随温度升高而增大的特性来测量温度。温度升高金属内部晶格的震动加剧,从而使金属内部的自由电子通过金属导体的阻力增大,宏观上表现电阻率变大,总电阻值增加。

2)热敏电阻是利用半导体电阻随温度变化的特性制成的测温元件。

5、温敏二极管特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区的复合电流和表面复合电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压-温度特性是偏离理想情况的。由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的U I BE C -关系比二极管的U I F F -关系更符合理想情况,所以表现出更

好的电压-温度线性关系。

6、利用AD590温度传感器完成温度的测量,把转换的温度值的模拟量送入ADC0809的其中一个通道进行A/D 转换,将转换的结果进行温度值变换之后送入数码管显示。 电路原理图

1)系统板上硬件连线

(1). 把“单片机系统”区域中的P1.0-P1.7与“动态数码显示”区域中的ABCDEFGH

端口用8芯排线连接。

(2). 把“单片机系统”区域中的P2.0-P2.7与“动态数码显示”区域中的

S1S2S3S4S5S6S7S8端口用8芯排线连接。

(3).把“单片机系统”区域中的P3.0与“模数转换模块”区域中的ST端子用导线相连接。

(4).把“单片机系统”区域中的P3.1与“模数转换模块”区域中的OE端子用导线相连接。

(5).把“单片机系统”区域中的P3.2与“模数转换模块”区域中的EOC端子用导线相连接。

(6).把“单片机系统”区域中的P3.3与“模数转换模块”区域中的CLK端子用导线相连接。

(7).把“模数转换模块”区域中的A2A1A0端子用导线连接到“电源模块”区域中的GND端子上。

(8).把“模数转换模块”区域中的IN0端子用导线连接到自制的AD590电路上。

(9).把“单片机系统”区域中的P0.0-P0.7用8芯排线连接到“模数转换模块”

区域中的D0D1D2D3D4D5D6D7端子上。

2)程序设计内容

(1).ADC0809的CLK信号由单片机的P3.3管脚提供

(2).由于AD590的温度变化范围在-55℃-+150℃之间,经过10KΩ之后采样到的电压变化在2.182V-4.232V之间,不超过5V电压所表示的范围,因此参考

电压取电源电压VCC,(实测VCC=4.70V)。由此可计算出经过A/D转换之后的

摄氏温度显示的数据为:

如果(D*2350/128)<2732,则显示的温度值为-(2732-(D*2350/128))

如果(D*2350/128)≥2732,则显示的温度值为+((D*2350/128)-2732)3)实验源程序略

AD590测量为其周围温度,因此需要与被测量元件尽可能接近,因此为接触式测量元件。非接触式温度测量器件:题目要求与被测原件距离为5米,因此接触式温度测量元件无法使用。

最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。推荐:热电偶、热电阻。光学高温计,辐射高温计等。

第六章

1、当某些物质沿其某一方向被施加压力或拉力时,会产生形变,此时这种材料的两个表面将产生符号相反的电荷;当去掉外力后,它又重新回到不带电状态,这种现象称为压电效应。有时人们又把这种机械能转变为电能的现象,称为“顺压电效应”。反之,在某些物质的极化方向上施加电场,它会产生机械变形,当去掉外加电场后,该物质的变形随之消失,这种电能转变为机械能的现象,称为“逆压电效应”。

2、(1)当某些物质沿其一定方向施加压力或拉力时,会产生变形,此时这种材料的两个表面将产生符号相反的电荷。当去掉外力后,它又重新回到不带电状态。这种现象叫做压电效应。

(2)石英晶体属于单晶体,化学式为SiO2外形结构呈六面体沿各方向特征不同。从石英晶体上沿机械轴(y)方向切下一块晶体片,当在电轴(x 轴)方向受到力作用时,在与电轴(x轴)垂直的平面上将产生电荷 qx;若在同一晶体片上,当在机械轴(y 轴)方向受到力作用时,则仍在与电轴(x 轴)垂直的平面上将产生电荷 qy电荷 qx 和 qy 的符 qx号

由受力是拉力还是压力决定的。的大小与晶体片形状尺寸无关,而 qy 与晶体片的几何尺寸有关。即沿 X方向电轴的力作用产生电荷的压电效应称”纵向压电效应”;沿 Y 方向的机械轴的力作用产生电荷的压电效应称”横向压电效应”;沿 Z方向的光轴的力作用时不产生压电效应。

8、铁磁性材料受到机械力的作用时,它的内部产生应变,导致导磁率发生变化,产生压磁效应。磁材料被磁化时,如果受到限制而不能伸缩,内部会产生应力。同样在外部施加力也会产生应力。当铁磁材料因磁化而引起伸缩产生应力时,其内部必然存在磁弹性能量,从而产生应力σ,导致磁导率μ发生变化的现象称为压磁效应。

第七章

1、E=hv-W :一束光打到一块金属上,光的;频率是v ,我们知道 hv 是一个光子的能量,即这束光的最小的能量,金属中电子要摆脱原子核的束缚飞出金属表面就需要吸收能量,及吸收一个光子,但是如果光子的能量不足以让电子飞出金属表面,电子式飞不出来的,我们就没看到有光电子。若是能量大于所需能量(即逸出功W),就可以发生光电效应(更确切的说是外光电效应,还有一个就是内光电效应,即吸收了光子发生跃迁,没有脱离金属),并且多余的能量转化为光电子的动能,即E。

2、由光阴极、倍增电极和阳极组成,各倍增电极均加有电场。在一定电子轰击下,会逐级产生更多电子,从而在微弱光照下也能产生很大光电流。1000*1.6*10(-19)*&(16)= 20 安*1秒,&(16)=12.5*10(16)&=11.7 所以&=12故:倍增系数为12.5*10(16),发射系数为12。

3、光敏电阻的光电流和电压成线性关系。不同的光照度可以得到不同的伏安特性,表明电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,而且没有饱和现象。由于光敏电阻的光照特性是非线性的,因此不适宜作线性敏感元件,这是光敏电阻的缺点之一。所以在自动控制中光敏电阻常用作开关量的光电传感器光电池的特点是工作时不需要外加偏压,接收面积小,使用方便。缺点是响应时间长。

光电池的光照特性为开路电压与光照度之间为对数关系,因而具有饱和性。因此,把硅光电池作为敏感元件时,应该把它当作电流源的形式使用,即利用短路电流与光照度成线性的特点,这是硅光电池的主要优点。

光敏二极管的光照特性亦呈良好线性,这是由于它的电流灵敏度一般为常数。而光敏三极管在弱光时灵敏度低些,在强光时则有饱和现象,这是由于电流放大倍数的非线性所至,对弱信号的检测不利。故一般在作线性检测元件时,可选择光敏二极管而不能用光敏三极管。

光敏三极管的光电流比同类型的光敏二极管大好几十倍,零偏压时,光敏二极管有光电流输出,而光敏三极管则无光电流输出。原因是它们都能产生光生电动势,只因光电三极管的集电结在无反向偏压时没有放大作用,所以此时没有电流输出(或仅有很小的漏电流)。

10、光纤涡轮流量传感器探头如图1所示。当流体驱动涡轮旋转时,涡轮上的反光转子周期性地将入射光纤的激光反射到出射光纤中,再传输至光电探测器(或光电计数器),并经过模数转换,形成有规律的电脉冲信号,电脉冲信号的频率与涡轮的转速成一定比例。再进行后期信号解析处理,就可以推算出被测流体的流量。

第八章

1、一个霍尔元件在一定的电流控制下,由公式 UH=IB/(ned)知其霍尔电势与电场强度B 、金属电板单位体积内电子数n 、单位电子所带电荷e 和金属电板的厚度d 等四个因素有关。

2、在实际应用中,一般要求霍尔元件灵敏度越大越好,由于霍尔元件的厚度d 与K H 成反比,因此,霍尔元件的厚度越小其灵敏度越高。当霍尔元件的宽度b 加大,或者

b L 减小时,载流子在偏转过程中损失将加大,将会使U H 下降,所以通常引入形状效应加以修正。金

属的迁移率和电阻率均很低,而不良导体电阻率虽高,但迁移率极小。半导体迁移率很高,电阻率适中,是制造霍尔元件的较理想材料。霍尔系数:K=1/(n*q)式中,n 为载流子密度,一般金属中载流子密度很大,所以金属材料的霍尔系数系数很小,霍尔效应不明显;而半导体中的载流子的密度比金属要小得多,所以半导体的霍尔系数系数比金属大得多,能产生较大的霍尔效应,故霍尔元件不用金属材料而是用半导体。

5、产生负阻现象的原因是高阻硅的热平衡载流子较少,注入的载流子未填满复合中心之前,不会产生较大的电流,当填满复合中心之后,电流才开始急增,同时i 区压降减少,表现为负阻特性。

6、不会。

第九章

1、单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。

3、1).MOS 二极管气敏器件

MOS 二极管气敏元件是在 P 型半导体硅片上,利用热氧化工艺生成一层厚度为 50~ 100nm 的二氧化硅(SiO2),然后在其上层蒸发一层钯(Pd)的金属薄膜,作为栅电极,如图 9-8(a) 所示。由于 SiO2 层电容Ca 固定不变,而 Si 和 SiO2 界面电容Cs 是外加电压的函数,其等效电路见图 9-8(b)。由等效电路可知,总电容 C 也是栅偏压的函数。其函数关系称为该类 MOS 二极管的 C-V 特性。由于钯对氢气(H2)特别敏感,当钯吸附了 H2 以后,会使钯的功函数降低,导致 MOS 管的 C-V 特性向负偏压方向平移,如图 9-8(c)所示。根

据这一特性就可用于测定 H2 的浓度。

2).钯-MOS 场效应晶体管气敏器件钯-MOS 场效应晶体管(Pd-MOSFET)的结构与普通MOSFET 结构,参见图 9-9。从图可知,它们的主要区别在于栅极 G。Pd-MOSFET 的栅电极材料是钯(Pd),而普通 MOSFET 为铝(Al)。因为 Pd 对 H2 有很强的吸附性,当 H2 吸附在 Pd 栅极上,引起 Pd 的功函数降低。根据 MOSFET 工作原理可知,当栅极(G)、源极(S)之间加正向偏压 VGS,且 VGS > VT (阈值电压)时,则栅极氧化层下面的硅从 P 型变为 N 型。这个 N 型区就将源极和漏极连接起来,形成导电通道,即为 N 型沟道。此时,MOSFET 进入工作状态。若此时,在源(S)漏(D)极之间加电压 VDS,则源极和漏极之间有电流流通(IDS)。IDS 随 VDS 和 VGS 的大小而变化,其变化规律即为 MOSFET 的 V-A 特性。当 VGS <VT 时,MOSFET 的沟道未形成,故无漏源电流。VT 的大小除了与衬底材料的性质有关外,还与金属和半导体之间的功函数有关。Pd-MOSFET气敏器件就是利用 H2 在钯栅极上吸附后引起阈值电压 VT 下降这一特性来检测 H2 浓度。

7、(1) 电容式湿敏元件

高分子电容式湿敏元件是利用湿敏元件的电容值随湿度变化的原理进行湿度测量的。具

有感湿的高分子聚合物,例如,乙酸-丁酸纤维素和乙酸-丙酸纤维素等,做成薄膜,实验证明,它们具有迅速吸湿和脱湿的能力。薄膜覆盖在叉指形金电极(下电极)上,然后在感湿薄

膜表面上再蒸镀一层多孔金属膜(上电极),如此结构就构成了一个平行板电容器,如图9-17(a)所示。当环境中的水分子沿着上电极的毛细微孔进入感湿膜而被吸附时,湿敏元件的电容值与相对湿度之间具有正比关系,线性度约为± 1%,如图 9-17(b)所示。

(2) 石英振动式湿敏元件

在石英晶片的表面涂敷聚胺脂高分子膜,当膜吸湿时,由于膜的重量变化而使石英晶片

振荡频率发生变化,不同的频率就代表不同程度的湿度。这种湿敏元件,在 0~50℃,元件

检湿范围是 0%RH~100%RH,误差为± 5%RH。

9、通过XCT-102设定所需的恒温值后接通电源开关S,当铂电阻RT(安装在电热器旁,与XCT-102配套使用,分度号Ptl00)感知的温度低于设定值时,XCT-102的接线端子“中”与“低”接通,SSR的输入端(+、-端)得电,输出端(~、~端)闭合,电热器通电升温:当温度达到设定值时,端子“中”与“低”自动断开,SSR的输入端失电,输出端开路,电热器断电,进入恒温状态;一段时间后温度略降,端子“中”与“低”再度接通,电路重复上述工作过程,使温度恒定在设定值。

SSR可选用JG型,额定输出电压为交流220V,额定输出电流根据所用电热器的功率大小而选定。因SSR采用密闭封装,无机械触点,电路通、断时也无电弧产生。它的输入端和输出端通过红外光耦合,电气上完全隔离,因此安全可靠,使用寿命长。其输入端所需的直流驱动电压(DC12V)可由XCT-102内部现成的DC12V电源提供,按附图把端子“中”和SSR 的“-”端分别接入XCT-102内的DC12V电源即可。

第十章

1、希尔霍夫定律指不同物体对辐射能的吸收系数不同,在单位面积和单位时间内发射出来的辐射能,侧重不同物体,物体为变量;

斯忒藩-玻尔兹曼定律是指物体温度越高,它辐射出来的能量越大,侧重不同温度,温度为变量;

维恩位移定律是指物体峰值辐射波长λm 与物体自身的绝对温度 T 成反比。侧重辐射波长和物体温度的关系,温度为变量。

3、若投射到探测器上的红外辐射功率所产生的输出电压正好等于探测器本身的噪声电压,这个辐射功率就叫做噪声等效功率(NEP)。设入射辐射的功率为 P,测得的输出电压为

Uo ,然后除去辐射源,测得探测器的噪声电压为U N,则按比例计算,要Uo= U N的辐

射功率为 : r P

NEP U U

U N N O == 探测率D*实质上就是当探测器的敏感元件具有单位面积,放大器的带宽为 1Hz 时,单位功率辐射所获得的信噪比。 f S r NEP f S U D N

?=?=* (cm Hz /W) 7、所谓放射性同位素就是原子序数相同,原子质量不同的元素。同位素在没有外力的作用下,能自动发生衰变,衰变中释放出α、β、γ 和 X 射线。其衰减规律为

e J t J λ-=

0 式中 J 、J 0 分别为 t 和 t 0 时刻的辐射强度;λ 为衰变常数。

9、答:核辐射探测器的作用是将核辐射信号转换成电信号,从而探测出射线的强弱和变化。对于一定的放射源和一定的材料就有一定的μ和ρ,则测出J 和0J 。即可计算确定该材料的厚度t 。放射源一般用β、X 或γ射线。当射线经过有裂纹、沙眼等缺陷的被测物体时,由于密度不同,使接收器收到的射线强度和其他部分不同。

第十一章

1、若将两块光栅(主光栅、指示光栅)叠合在一起,并且使它们的刻线之间成一个很小的角 度θ 。由于遮光效应,两块光栅的刻线相交处形成亮带,而在一块光栅的刻线与另一块光栅的缝隙相交处形成暗带,在与光栅刻线垂直的方向,将出现明暗相间的条纹,这些条纹就称为莫尔条纹。 条纹间距 B 与栅距 W 和夹角θ 有如下关系: θθθW W

W B =≈=2

22sin 2

4、利用光学分解技术(插值法)提高分辨率的方法。

例如,若码盘已具有 14 条(位)码道,在 14 位的码道上增加 1 条专用附加码道,如图11-12所示。附加码道的扇形区的形状和光学的几何结构与前 14 位有所差异,且使之与光学分解器的多个光敏元件相配合,产生较为理想的正弦波输出;通过平均电路进一步处理,消除码盘的机械误差,从而获得更理想的正弦或余弦信号。附加码道输出的正弦或余弦信号,在插值器中按不同的系数叠加在一起,形成多个相移不同的正弦信号输出。各正弦波信号再经过零比较器转换为一系列脉冲,从而细分了附加码道的光电元件输出的正弦信号,于是产生了附加的低位的几位有效数位。图 11-12 所示的 19 道光电编码器的插值器产生 16 个正弦波信号。每两个正弦信号之间的相位差为8

π,从而在 14 位编码器的最低有效数位间隔内插入了32 个精确等分点,即相当于附加 5 位二进制数的输出,使编码器的分辨率从214- 提高到219-,角位移小于3”。

5、脉冲盘式编码器又称为增量编码器。增量编码器一般只有三个码道,它不能直接产生若 干位的编码输出,故它不具有绝对码盘码的含义,这是脉冲盘式编码器与绝对编码器的不同 之处。

脉冲盘式编码器的圆盘上等角距地开有两道缝隙,内外圈(A ,B)的相邻两缝距离错开半 条缝宽;另外在某一径向位置,一般在内外两圈之外,开有一狭缝,表示码盘的零位。在它 们的相对两侧面分别安装光源和光电接收元件,如图 11-13 所示。当转动码盘时,光线经过透光和不透光的区域,每个码道将有一系列光电脉冲由光电元件输出,码道上有多少缝隙就将有多少个脉冲输出。

设计不会。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

《传感器原理与应用习题解答》

第1章传感器的技术基础 1.传感器的定义是什么? 答:传感器最早来自于“sensor”一词,就是感觉的意思。随着传感器技术的发展,在工程技术领域中,传感器被认为是生物体的工程模拟物。而且要求传感器不但要对被测量敏感,还要就有把它对被测量的响应传送出去的功能,也就是说真正实现能“感”到,会“传”到的功能。 传感器是获取信息的一种装置,其定义可分为广义和狭义两种。广义定义的传感器是指那些能感受外界信息并按一定规律转换成某种可用信号输出的器件和装置,以满足信息的传输、处理、记录、显示和控制等要求。这里的“可用信号”是指便于处理、传输的信号,一般为电信号,如电压、电流、电阻、电容、频率等。狭义定义的传感器是指将外界信息按一定规律转换成电量的装置才叫传感器。 按照国家标准GB7665—87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。 国际电工委员会(IEC)将传感器定义为:传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号。美国测量协会又将传感器定义为“对应于特定被测量提供有效电信号输出的器件”。传感器也称为变换器、换能器或探测器。如前所述.感受被测量、并将被测量转换为易于测量、传输和处理的信号的装置或器件称为传感器。 2.简述传感器的主要分类方法。 答:(1)据传感器与外界信息和变换效应的工作原理,可分为物理传感器、化学传感器和生物传感器三大类。 (2)按输入信息分类。传感器按输入量分类有力敏传感器、位置传感器、液面传感器、能耗传感器、速度传感器、热敏传感器、振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

传感器原理与应用重点

第一章测量技术基础 检测系统的基本概念 检测系统(测试系统 /测量系统 1、定义:确定被测对象的属性和量值为目的的全部操作 2、被测对象:宇宙万物(固液气体、动物、植物、天体…… 3、被测信息:物理量(光、电、力、热、磁、声、… 化学量(PH 、成份… 生物量(酶、葡萄糖、… 4检测技术是实验科学的一部分, 主要研究各种物理量的测量原理和信号分析处理方法。 检测技术是信息技术的重要组成部分, 它所研究的内容是信息的提取与处理的理论、方法和技术。 5信息与信号 信息是指客观世界物质运动的内容。 如:天气较冷、某处地震、刀具发生了磨损、李四病了。 信号是指信息的表现形式。 如:刀具磨损,切削力会加大;李四病了,可能会发烧;等等。 6检测技术是进行各种科学实验研究和生产过程参数测量必不可少的手段, 起着人的感官的作用。

简单的检测系统可以只有一个模块, 如玻璃管温度计。它直接将被测温度变化转化为液面示值。没有电量转换和分析电路,很简单,但精度低,无法实现测量自动化。 为提高测量精度和自动化程度, 以便于和其它环节一起构成自动化装置, 通常先将被测物理量转换为电量,再对电信号进行处理和输出。 B ……在电工、电子等课程中讲授,大多数不属于本课程的范围。 检测系统的组成 一般说来,检测系统由传感器、中间变换装置和显示记录装置三部分组成。 传感器将被测物理量 (如噪声 , 温度检出并转换为电量,中间变换装置对接收到的电信号用硬件电路进行分析处理或经 A/D变换后用软件进行信号分析,显示记录装置则将测量结果显示出来,提供给观察者或其它自动控制装置。 第二章传感器概述 传感器的组成和分类 一、传感器定义 传感器是一种以一定的精确度把被测量转成与之有确定关系的, 便于应用的某种物理量的测量装置。 传感器名称:变送器、变换器、探测器、敏感元件、换能器、一次仪表、探头等 二、传感器的组成 三、传感器的分类 按被测参数分类:温度、压力、位移、速度等

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

传感器原理与应用复习题及答案【精选】

《传感器原理与应用》试题及答案 一、名词解释 1.传感器2.传感器的线性度3.传感器的灵敏度4.传感器的迟滞5.绝对误差6.系统误差7.弹性滞后8.弹性后效9.应变效应10.压电效应11.霍尔效应12.热电效应13.光电效应14.莫尔条纹15.细分 二、填空题 1.传感器通常由、、三部分组成。 2.按工作原理可以分为、、、。 3.按输出量形类可分为、、。 4.误差按出现的规律分、、。 5.对传感器进行动态的主要目的是检测传感器的动态性能指标。 6.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 7.传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 8.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为rs= 。 9.为了测得比栅距W更小的位移量,光栅传感器要采用技术。 10.在用带孔圆盘所做的光电扭矩测量仪中,利用孔的透光面积表示扭矩大小,透光面积减小,则表明扭矩。 11.电容式压力传感器是变型的。 12.一个半导体应变片的灵敏系数为180,半导体材料的弹性模量为1.8×105Mpa,其中压阻系数πL为Pa-1。 13.图像处理过程中直接检测图像灰度变化点的处理方法称为。 14.热敏电阻常数B大于零的是温度系数的热敏电阻。 15.若测量系统无接地点时,屏蔽导体应连接到信号源的。 16.目前应用于压电式传感器中的压电材料通常有、、。 17.根据电容式传感器的工作原理,电容式传感器有、、三种基本类型 18.热敏电阻按其对温度的不同反应可分为三类、、。 19.光电效应根据产生结果的不同,通常可分为、、三种类型。 20.传感器的灵敏度是指稳态标准条件下,输出与输入 的比值。对线性传感器来说,其灵敏度是。 21.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式传感器、应变式传感器等(任填两个)。 22.采用热电阻作为测量温度的元件是将的测量转换为的测量。23.单线圈螺线管式电感传感器主要由线圈、和可沿线圈轴向

传感器原理与应用实验指导书解析

传感器原理与应用 实 验 指 导 书 自动化工程学院

目录 1实验一应变片单臂电桥性能实验 1实验二应变片半桥性能实验 1实验三应变片全桥性能实验 实验四压阻式压力传感器测量压力特性实验 实验五差动变压器的性能实验 实验六差动变压器测位移特性实验 1实验七电容式传感器测位移特性实验 1实验八线性霍尔传感器测位移特性实验 1实验九开关式霍尔传感器测转速实验 1实验十磁电式转速传感器测转速实验 1实验十一光电传感器测量转速实验 实验十二电涡流传感器测量位移特性实验 实验十三被测体材质对电涡流传感器特性影响实验实验十四被测体面积对电涡流传感器特性影响实验* 实验十五气敏传感器实验 实验十六湿度传感器实验

CSY-2000型传感器与检测技术实验台 说明书 一、实验台的组成 CSY-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。 1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关数显表。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载保护功能,在排除接线错误后重新开机恢复正常工作。主机箱右侧面装有供电电源插板及漏电保护开关。 2、振动源(动态应变振动梁与振动台):振动频率3Hz~30Hz可调(谐振频率9Hz~12 Hz左右); 3、转动源:手动控制0转/分~2400转/分、自动控制300~2200转/分。 4、温度源:常温~200℃。 5、气压源:0~20Kpa(连续可调)。 6、传感器:基本型有箔式应变片(350Ω)传感器(秤重200g)、扩散硅压力传感器(20Kpa)、差动变压器(±4mm)、电容式位移传感器(±2.5mm)、霍尔式位移传感器(±1mm)、霍尔式转速传感器(2400转/分)、磁电转速传感器(250转/分~2400转/分)、压电式传感器、电涡流传感器(1mm)、光纤位移传感器(1mm)、光电转速传感器(2400转/分)、集成温度(AD590)传感器(室温~120℃)、K热电偶(室温~150℃)、E热电偶(室温~150℃)、Pt100铂电阻(室温~150℃)、Cu50铜电阻(室温~100℃)、湿敏传感器(10~95%RH)、气敏传感器(50~2000ppm)等。 7、调理电路(实验模板):基本型有电桥及调平衡网络、差动放大器、电压放大器、电荷放大器、电容变换器、电涡流变换器、光电变换器、温度变换器、移相器、相敏检波器、低通滤波器。增强型增加相应的配套实验模板。 8、实验台:尺寸为1600×800×750mm。实验台桌上预留了计算机及示波器安放位置。 二、电路原理

传感器原理与应用心得

传感器原理与应用心得 张宝龙电信工二班201400121099 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电感式传感器的结构、工作原理及应用。 传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律

将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件和变换元件两部分组成,。 通过最近的学习,是我了解到在实际中使用传感器的选择一定要慎重。我们可以根据测量对象与测量环境确定传感器的类型。其次,当我们在选择传感器时要注意传感器的灵敏度,频率响应范围,线性范围,稳定性,精度等。 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 通过对这门课的学习开阔了我的视野,让我了解了以前没有了解的东西。在老师的指导下让我明白了学习要有自觉性,要自己积极主动地去学习。

传感器原理与应用习题及答案

《第一章传感器的一般特性》 1 试绘制转速和输出电压的关系曲线,并确定: 1)该测速发电机的灵敏度。 2)该测速发电机的线性度。 2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。 3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少? 4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大? 5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。 6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。 《第二章应变式传感器》 1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小。 2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。 在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。

《传感器原理及应用》实验大纲

《传感器原理及应用》实验教学大纲 课程编号:课程名称:《传感器原理及应用》 课程总学时:54学时总学分:学分 实验学时:8学时实验学分:学分 适应专业:01电子信息工程 编写人:陈欣波编写日期:2000年7月 一、实验课程的目的与任务 传感器原理及应用是实现生产过程自动化的重要手段,通过本课程实验的学习,使学生更好地掌握在生产生活中广泛使用的各类传感器结构、工作原理和特性等,进一步加强学生独立分析、解决问题的能力,同时注意培养学生实事求是、严肃认真的科学作风和良好的实验习惯,为今后工作打下良好的基础。 二、实验教学基本要求 本课程是《传感器原理及应用》课程的一个实践环节,通过实验教学,使学生进一步巩固所学理论知识,提高其分析和解决问题的能力。具体要求如下: 1.进一步巩固和加深对基本理论知识的理解,提高综合应用所学知识、独立设计的 能力。 2.学会自己独立分析问题、解决问题,具有一定的创新能力。 3.能正确使用实验仪器设备,掌握工作原理。 4.能独立撰写实验报告、准确分析实验结果、得出实验结论。 5.课前做好预习,上课严格安装实验步骤认真完成实验内容。 三、实验项目与内容提要

注:开设的实验项目可根据实验室具体设备和条件等进行适当地调整。 四、实验报告格式及要求 (一)、实验报告格式: 攀枝花学院实验报告 实验课程:实验项目:实验日期: 院系:电信班级:姓名: 学号:合作人:指导教师: 成绩: [实验目的和要求] [实验仪器、设备与材料] [实验原理] [实验步骤] [实验原始记录] [实验数据计算结果] 1.相关公式: 2.数据计算: 3.数据分析: 4.实验结论: [实验结果分析,讨论实验指导书中提出的思考题,写出心得与体会] (二)、实验报告要求: 1.实验名称、学生姓名、班号和实验日期; 2.实验目的和要求; 3.实验仪器、设备与材料; 4.实验原理; 5.实验步骤; 6.实验原始记录; 7.实验数据计算结果;

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

最新传感器原理与应用习题解答》

传感器原理与应用习 题解答》

第1章传感器的技术基础 1.传感器的定义是什么? 答:传感器最早来自于“sensor”一词,就是感觉的意思。随着传感器技术的发展,在工程技术领域中,传感器被认为是生物体的工程模拟物。而且要求传感器不但要对被测量敏感,还要就有把它对被测量的响应传送出去的功能,也就是说真正实现能“感”到,会“传”到的功能。 传感器是获取信息的一种装置,其定义可分为广义和狭义两种。广义定义的传感器是指那些能感受外界信息并按一定规律转换成某种可用信号输出的器件和装置,以满足信息的传输、处理、记录、显示和控制等要求。这里的“可用信号”是指便于处理、传输的信号,一般为电信号,如电压、电流、电阻、电容、频率等。狭义定义的传感器是指将外界信息按一定规律转换成电量的装置才叫传感器。 按照国家标准GB7665—87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。 国际电工委员会(IEC)将传感器定义为:传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号。美国测量协会又将传感器定义为“对应于特定被测量提供有效电信号输出的器件”。传感器也称为变换器、换能器或探测器。如前所述.感受被测量、并将被测量转换为易于测量、传输和处理的信号的装置或器件称为传感器。 2.简述传感器的主要分类方法。 答:(1)据传感器与外界信息和变换效应的工作原理,可分为物理传感器、化学传感器和生物传感器三大类。

(2)按输入信息分类。传感器按输入量分类有力敏传感器、位置传感器、液面传感器、能耗传感器、速度传感器、热敏传感器、振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器等。这种分类对传感器的应用很方便。 (3)按应用范围分类。根据传感器的应用范围的不同,通常分为工业用、民用、科研用、医用、军用传感器等。按具体使用场合,还可分为汽车用、舰船用、航空航天用传感器等。如果根据使用目的的不同,还可分为计测用、监测用、检查用、控制用、分析用传感器等。 3.传感器主要由哪些部分组成?并简单介绍各个组成部分。 答:传感器的核心部件是敏感元件,它是传感器中用来感知外界信息和转换成有用信息的元件。传感器一般由敏感元件、传感元件和基本转换电路三部分组成。 图1-1传感器的组成 (1)敏感元件直接感受被测量,并以确定的关系输出某一物理量。 (2)传感元件将敏感元件输出的非电物理量转换成电路参数量或电量。 (3)基本转换电路将电路参数转换成便于测量的电量。基本转换电路的类型又与不同的工作原理的传感器有关。因此常把基本转换电路作为传感器的组成环节之一。 4.传感器的静态特性的参数主要有哪些? 答:表征传感器的静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞、重复性、稳定性、漂移、阈值等。 5.传感器未来发展的方向主要有哪些? 答:(1)开发新材料

传感器原理与应用实验指导书

《传感器原理与应用》实验指导书 朱蕴璞王芳编写 孔德仁审定 南京理工大学 二〇〇九年九月

实验须知 1.传感器实验仪是贵重实验设备,请在每个实验前认真阅读实验指导书,尤

其是每个实验最后的实验注意事项。 2.实验仪器电源的开关原则: 连接测量线路,确认准确无误后,开启仪器电源; 实验完毕,关闭仪器电源,拆除测量线路。 3.稳压电源不可对地短路。 4.实验过程中,心要细、动作要轻,不可有强制性机械动作出现。5.实验严格按操作规程进行,否则,出现损坏责任自负。 6.实验完毕,请一切恢复到实验前的状态,然后离开实验室。

目录 实验一传感器静态标定实验 (3) 实验二应变式传感器特性实验 (10) 实验三电感式、涡流式、电容式、霍尔式位移传感器特性实验 (14) 实验四重量测量实验(选做) (25) 实验五转速测量实验 (29) 实验六温度实验 (34)

实验一 传感器静态标定实验 (注:“压力传感器的静态标定及特性指标的求取”与“光纤位移传感器静态标定及特性指标求取“两实验取其一。) 压力传感器的静态标定及特性指标的求取 1、实验目的 掌握压力传感器静态标定的基本方法以及压力传感器的静态特性指标的求取。 2、实验内容 (1)组建压力测试系统; (2)学习压力测试系统的标定过程; (3)计算压力测试系统静态特性指标。 3、实验原理及方法 4活塞压力计一台,数字万用表一只,动态电阻应变仪一台,压力表一只。 5、实验步骤 (1)反复排除活塞压力计油腔内的空气,最后将压力泵手轮摇出。 (2)把压力传感器装在活塞压力计的联接螺帽上,关闭油杯。 (3)传感器输出接入可调零的桥盒,电桥输出接入数字万用表。当输出量很小,无法直接用万用表测得时,可先将传感器接入动态电阻应变仪桥盒(注意电桥的连接),桥盒的另一端连线接应变仪输入(选择一个通道);将应变仪专用电源接好;电阻应变仪电压输出接数字万用表。(说明:后者标定是整个系统标定,所求得的指标也为系统指标) (4)压力表指示为零时,开启仪器电源(注意:开启仪器电源前应变仪各通道应处于关闭状态),将应变 图 1 压力传感器标定系统原理框图

传感器技术及应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际中信息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与内容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体内容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学内容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学内容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

传感器原理与应用习题课后答案_第2章到第8章

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第2章 电阻式传感器 2-1 金属应变计与半导体应变计在工作机理上有何异同?试比较应变计各种灵敏系数概念的不同物理意义。 答:(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。 (2)对于金属材料,灵敏系数K0=Km=(1+2μ)+C(1-2μ)。前部分为受力后金属几何尺寸变化,一般μ≈,因此(1+2μ)=;后部分为电阻率随应变而变的部分。金属丝材的应变电阻效应以结构尺寸变化为主。 对于半导体材料,灵敏系数K0=Ks=(1+2μ)+πE 。前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE>>(1+2μ),因此K0=Ks=πE 。半导体材料的应变电阻效应主要基于压阻效应。 2-2 从丝绕式应变计的横向效应考虑,应该如何正确选择和使用应变计?在测量应力梯度较大或应力集中的静态应力和动态应力时,还需考虑什么因素? 2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。 答:电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。在工作温度变化较大时,会产生温度误差。 补偿办法:1、温度自补偿法 (1)单丝自补偿应变计;(2) 双丝自补偿应变计 2、桥路补偿法 (1)双丝半桥式;(2)补偿块法 2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。 答:原因:)(211)(44 433221144332211R R R R R R R R R R R R R R R R U U ?+?+?+?+?-?+?-?=? 上式分母中含ΔRi/Ri ,是造成输出量的非线性因素。无论是输出电压还是电流,实际上都与ΔRi/Ri 呈非线性关系。 措施:(1) 差动电桥补偿法:差动电桥呈现相对臂“和”,相邻臂“差”的特征,通过应变计合理布片达到补偿目的。常用的有半桥差动电路和全桥差动电路。 (2) 恒流源补偿法:误差主要由于应变电阻ΔRi 的变化引起工作臂电流的变化所致。采用恒流源,可减小误差。 2-5 如何用电阻应变计构成应变式传感器?对其各组成部分有何要求? 答:一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性敏感元件构成传感器,用以对任何能转变成弹性元件应变的其他物理量作间接测量。 要求:非线性误差要小(<%~%),力学性能参数受环境温度影响小,并与弹性元件匹配。 2-6 现有栅长3mm 和5mm 两种丝式应变计,其横向效应系数分别为5%和3%。欲用来测量泊松比μ=的铝合

相关文档
相关文档 最新文档