文档库 最新最全的文档下载
当前位置:文档库 › 信息论与编码第八章 近世代数基础

信息论与编码第八章 近世代数基础

《抽象代数基础》习题解答

《抽象代数基础》习 题 答 解 于延栋编 盐城师范学院数学科学学院二零零九年五月

第一章 群 论 §1 代数运算 1.设},,,{c b a e A =,A 上的乘法”“?的乘法表如下: 证明: ”“?适合结合律. 证明 设z y x ,,为A 中任意三个元素.为了证明”“?适合结合律,只需证明 )()(z y x z y x ??=??. 下面分两种情形来阐明上式成立. I.z y x ,,中至少有一个等于e . 当e x =时,)()(z y x z y z y x ??=?=??; 当e y =时,)()(z y x z x z y x ??=?=??; 当e z =时,)()(z y x y x z y x ??=?=??. II .z y x ,,都不等于e . (I)z y x ==.这时,)()(z y x e x x z z e z y x ??=?===?=??. (II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ??=?==?=??. (III)z y x ,,中有且仅有两个相等. 当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =?=??)(,z u x z y x =?=??)(,从而,)()(z y x z y x ??=??.同理可知,当z y =或x z =时,都有)()(z y x z y x ??=??. 2.设”“?是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=n i i a 1为: 111a a i i =∏=,111 1+=+=????? ??=∏∏r r i i r i i a a a . 证明: ∏∏∏+==+==???? ??????? ??m n k k m j j n n i i a a a 1 11.

信息论与编码问题详解

《信息论与编码(第二版)》雪虹答案 第二章 2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。 解:状态图如下 状态转移矩阵为: 1/21/201/302/31/32/30p ?? ?= ? ??? 设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3 由1231WP W W W W =??++=?得1231132231231112331223231W W W W W W W W W W W W ?++=???+=???=???++=?计算可得1231025925625W W W ?=???=???=?? 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。画出状态图,并计算各状态的稳态概率。 解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p == (0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源 同时掷一对均匀的子,试求: (1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵; (5)“两个点数中至少有一个是1”的自信息量。 解: bit P a I N n P bit P a I N n P c c N 17.536log log )(36 1 )2(17.418log log )(362)1(36 662221111 616==-=∴====-=∴== =?==样本空间: * (3)信源空间: bit x H 32.436log 36 16236log 36215)(=??+?? =∴

bit x H 71.3636 log 366536log 3610 436log 368336log 366236log 36436log 362)(=??+?+?+??= ∴++ (5) bit P a I N n P 17.111 36 log log )(3611333==-=∴== ? 如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。 (1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。 解: ! bit a P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481 )(:)1(48 1 i i i i i ==-=∴=-=∴= ∑=落入任一格的概率 bit b P b P b b P b I b P A i 55.547log )(log )()(H 47 log )(log )(47 1 )(:B ,)2(48 1i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bit AB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()() (log )(47 1 481)()3(47481 =?=-=-=∴?=∑?=是同时落入某两格的概率 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。问这两个回答中各含有多少信息量平均每个回答中各含有多少信息量如果你问一位女士,则她的答案中含有多少平均信息量 解:

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

(完整版)信息论与编码概念总结

第一章 1.通信系统的基本模型: 2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等 第二章 1.自信息量:一个随机事件发生某一结果所带的信息量。 2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示 3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。所以信源平均功率和熵功率之差称为连续信源的剩余度。信源熵的相对率(信源效率):实际熵与最大熵的比值 信源冗余度: 0H H ∞=ηη ζ-=1

意义:针对最大熵而言,无用信息在其中所占的比例。 3.极限熵: 平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。 4. 5.离散信源和连续信源的最大熵定理。 离散无记忆信源,等概率分布时熵最大。 连续信源,峰值功率受限时,均匀分布的熵最大。 平均功率受限时,高斯分布的熵最大。 均值受限时,指数分布的熵最大 6.限平均功率的连续信源的最大熵功率: 称为平均符号熵。 定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )() ()()()()()(=≤∴≤≤

若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为 1log 22 ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源 的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理: 离散信源无失真编码的基本原理 原理图 说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信 源表示为: X L =(X 1X 2……X L ) 其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。 (2)信源编码后,编成的码序列长度为k,可以用k 次扩展信宿符号表示为: Y k =(Y 1Y 2……Y k ) 称为码字/码组 其中,每一位Y i 都取自同一个原始信宿符号集合: Y={y 1,y 2,…y m } 又叫信道基本符号集合(称为码元,且是m 进制的) 则最多可编成m k 个码序列,对应m k 条消息 定长编码:信源消息编成的码字长度k 是固定的。对应的编码定理称为定长信源编码定理。 变长编码:信源消息编成的码字长度k 是可变的。 8.离散信源的最佳变长编码定理 最佳变长编码定理:若信源有n 条消息,第i 条消息出现的概率为p i ,且 p 1>=p 2>=…>=p n ,且第i 条消息对应的码长为k i ,并有k 1<=k 2<=…<=k n

信息论与编码第一章答案

第一章信息论与基础 1.1信息与消息的概念有何区别? 信息存在于任何事物之中,有物质的地方就有信息,信息本身是看不见、摸不着的,它必须依附于一定的物质形式。一切物质都有可能成为信息的载体,信息充满着整个物质世界。信息是物质和能量在空间和时间中分布的不均匀程度。信息是表征事物的状态和运动形式。 在通信系统中其传输的形式是消息。但消息传递过程的一个最基本、最普遍却又十分引人注意的特点是:收信者在收到消息以前是不知道具体内容的;在收到消息之前,收信者无法判断发送者将发来描述何种事物运动状态的具体消息;再者,即使收到消息,由于信道干扰的存在,也不能断定得到的消息是否正确和可靠。 在通信系统中形式上传输的是消息,但实质上传输的是信息。消息只是表达信息的工具,载荷信息的载体。显然在通信中被利用的(亦即携带信息的)实际客体是不重要的,而重要的是信息。 信息载荷在消息之中,同一信息可以由不同形式的消息来载荷;同一个消息可能包含非常丰富的信息,也可能只包含很少的信息。可见,信息与消息既有区别又有联系的。 1.2 简述信息传输系统五个组成部分的作用。 信源:产生消息和消息序列的源。消息是随机发生的,也就是说在未收到这些消息之前不可能确切地知道它们的内容。信源研究主要内容是消息的统计特性和信源产生信息的速率。 信宿:信息传送过程中的接受者,亦即接受消息的人和物。 编码器:将信源发出的消息变换成适于信道传送的信号的设备。它包含下述三个部分:(1)信源编码器:在一定的准则下,信源编码器对信源输出的消息进行适当的变换和处理,其目的在于提高信息传输的效率。(2)纠错编码器:纠错编码器是对信源编码器的输出进行变换,用以提高对于信道干扰的抗击能力,也就是说提高信息传输的可靠性。(3)调制器:调制器是将纠错编码器的输出变换适合于信道传输要求的信号形式。纠错编码器和调制器的组合又称为信道编码器。 信道:把载荷消息的信号从发射端传到接受端的媒质或通道,包括收发设备在内的物理设施。信道除了传送信号外,还存储信号的作用。 译码器:编码的逆变换。它要从受干扰的信号中最大限度地提取出有关信源输出消息的信息,并尽可能地复现信源的输出。 1.3 同时掷一对骰子,要得知面朝上点数之和,描述这一信源的数学 模型。 解:设该信源符号集合为X

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

信息论与编码第五章答案

设信源1 234567()0.20.190.180.170.150.10.01X a a a a a a a p X ????=???? ???? (1) 求信源熵H(X); (2) 编二进制香农码; (3) 计算平均码长和编码效率. 解: (1) 7 21222222()()log () 0.2log 0.20.19log 0.19 0.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol ==-=-?-?-?-?-?-?-?=∑ (2) (3) 7 1 ()0.230.1930.1830.1730.153 0.140.0173.141 ()()/ 2.609 3.14183.1% i i i K k p x H X H X K R η===?+?+?+?+?+?+?====÷=∑ 对习题的信源编二进制费诺码,计算编码效率. 解:

a i p(a i )编码码字k i a1 0002 a2 1 00103 a310113 a4 1 0102 a5 1 01103 a6 1 011104 a7111114 对信源编二进制和三进制哈夫 曼码,计算各自的平均码长和编码效率. 解: 二进制哈夫曼码: x i p(x i)编码码字k i s61 s50 s41 s30 s21 x10102 x21112 x300003

x410013 x500103 s11 x6001104 x7101114 三进制哈夫曼码: x i p(x i)编码码字k i s31 s20 s11 x1221 x20002 x31012 x42022 x50102 x61112 x72122

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

信息论与编码(曹雪虹_张宗橙)第二、三章答案

2-1.解:该一阶马尔可夫信源,由转移概率构成的转移矩阵为: 对应的状态图如右图所示。设各符号稳定概率为:1p ,2p ,3p 则可得方程组: 1p = 211p +312p +313p 2p =211p +323p 3p =3 22p 1p +2p +3p =1 解得各符号稳态概率为: 1p = 2510,2p =259,3p =25 6 2-2.解:该马尔可夫信源的符号条件概率矩阵为: 状态转移概率矩阵为: 对应的状态图如右图所示。

设各状态的稳态分布概率为1W ,2W ,3W ,4W ,则可得方程组为: 1W =0.81W +0.53W 2W =0.21W +0.53W 3W =0.52W +0.24W 4W =0.52W +0.84W 1W +2W +3W +4W =1 解得稳定分布的概率为: 1W = 145,2W =142,3W =142,4W =14 5 2-3.解:(1)“3和5同时出现”事件的概率为: p(3,5)= 18 1 故其自信息量为: I(3,5)=-㏒2 18 1 =4.17bit (2)“两个1同时出现”事件的概率为: p(1,1)= 36 1 故其自信息量为: I(1,1)=- ㏒2 36 1 =5.17bit (3)两个点数的各种组合构成的信源,其概率空间为: 则该信源熵为: H(x 1)=6× 36 1 lb36+15×181lb18=4.337bit/事件 (4)两个点数之和构成的信源,其概率空间为:

则该信源的熵为: H(x 2)=2× 361 lb36+2×181lb18+2×121lb12+2×91lb9+2×365lb 536+6 1lb6 =3.274bit/事件 (5)两个点数中至少有一个是1的概率为: p(1)= 36 11 故其自信息量为: I(1)= -㏒2 36 11 =1.7105bit 2-7.解:(1)离散无记忆信源的每个符号的自信息量为 I(x 1)= -㏒2 83 =1.415bit I(x 2)= -㏒241 =2bit I(x 3)= -㏒241 =2bit I(x 4)= -㏒28 1 =3bit (2)由于信源发出消息符号序列有12个2,14个0,13个1,6个3,故该消息符 号序列的自信息量为: I(x)= -㏒2( 8 3)14 (41)25 (81)6 =87.81bit 平均每个符号携带的信息量为: L H (x)= 45 ) (x I =1.95bit/符号 2-10 解:用1x 表示第一次摸出的球为黑色,用2x 表示第一次摸出的球为白色,用1y 表示第二次摸出的球为黑色,用2y 表示第二次摸出的球为白色,则 (1)一次实验包含的不确定度为: H(X)=-p(1x )lbp(1x )-p(2x )lbp(2x )=- 13lb 13-23lb 2 3 =0.92 bit (2)第一次实验X 摸出的球是黑色,第二次实验Y 给出的不确定度: H(Y|1x )=-p(1y |1x )lb p(1y |1x )-p(2y |1x )lb p(2y |1x ) = - 27lb 27-57lb 57 = 0.86 bit (3)第一次实验X 摸出的球是白色,第二次实验Y 给出的不确定度:

信息论与编码试题集与答案(新)

一填空题(本题20分,每小题2分) 1、平均自信息为 表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。 平均互信息 表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。 2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。 3、最大熵值为。 4、通信系统模型如下: 5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。 7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。 8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。 9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。 按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。 按照信息的地位,可以把信息分成客观信息和主观信息。 人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。 信息的可度量性是建立信息论的基础。 统计度量是信息度量最常用的方法。 熵是香农信息论最基本最重要的概念。 事物的不确定度是用时间统计发生概率的对数来描述的。 10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。 11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对

数的负值 。 12、自信息量的单位一般有 比特、奈特和哈特 。 13、必然事件的自信息是 0 。 14、不可能事件的自信息量是 ∞ 。 15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。 16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。 17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。 18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。 19、对于n 元m 阶马尔可夫信源,其状态空间共有 nm 个不同的状态。 20、一维连续随即变量X 在[a ,b]区间内均匀分布时,其信源熵为 log2(b-a ) 。 21、平均功率为P 的高斯分布的连续信源,其信源熵,Hc (X )=eP π2log 21 2。 22、对于限峰值功率的N 维连续信源,当概率密度 均匀分布 时连续信源熵具有最大值。 23、对于限平均功率的一维连续信源,当概率密度 高斯分布 时,信源熵有最大值。 24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值P 和信源的熵功率P 之比 。

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源 同时掷一对均匀的子,试求: (1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵; (5)“两个点数中至少有一个是1”的自信息量。 解: bit P a I N n P bit P a I N n P c c N 17.536log log )(361 )2(17.418log log )(362)1(36 662221111 616==-=∴====-=∴== =?==样本空间: (3)信源空间:

bit x H 32.436log 36 16236log 36215)(=??+?? =∴ (4)信源空间: bit x H 71.3636 log 366536log 3610 436log 368336log 366236log 36436log 362)(=??+?+?+??= ∴++ (5) bit P a I N n P 17.111 36 log log )(3611333==-=∴== 如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。 (1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。 解: bit a P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481 )(:)1(48 1 i i i i i ==-=∴=-=∴= ∑=落入任一格的概率Θ bit b P b P b b P b I b P A i 55.547log )(log )()(H 47 log )(log )(47 1 )(:B ,)2(48 1i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知Θ

近世代数课后习题参考答案(张禾瑞)-4

近世代数课后习题参考答案 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2 是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是n m 2 是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12 =ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2 ' 2 2 1ε ε = 即2 '2 1εε=

但2 22 b a +=ε 是一正整数,同样2 ' ε也是正整数, 因此,只有12 =ε 反之,若12 2 2 =+=b a ε ,则0,1=±=b a 或1,0±==b a 这些显然均是单位 此外,再没有一对整数b a ,满足122=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52 =α 的I 的元α一定是素元。 事实上,若52 =α 则0≠α 又由α)1(也不是单位 若2 2 2 5,λβ α βλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-1 2 是α的相伴元 λλ β ?=?=152 2 是单位βαλβ?=?-1 是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2 2 25λβ= 这样,2 β只可能是25,5,1 当52=β由)1(β是单位 当152 2 =?=λ β 由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52 =β 的情形 5,2 2 2 =+=+=b a bi a β β可能的情形是 ???==21b a ??=-=21b a ???-==21b a ???-=-=21 b a ???==12b a ? ??-==12b a ???=-=12b a ???-=-=12 b a 显然)2)(2(5i i -+= 由(2)知52 =β 的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 ,

《信息论与编码理论》(王育民李晖梁传甲)课后习题问题详解高等教育出版社

信息论与编码理论习题解 第二章-信息量和熵 2.1解: 平均每个符号长为:15 4 4.03 12.03 2= ?+?秒 每个符号的熵为9183.03log 3123log 3 2=?+?比特/符号 所以信息速率为444.34 15 9183.0=?比特/秒 2.2 解: 同步信号均相同不含信息,其余认为等概, 每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=?比特/秒 2.3 解:(a)一对骰子总点数为7的概率是 36 6 所以得到的信息量为 585.2)36 6(log 2= 比特 (b) 一对骰子总点数为12的概率是36 1 所以得到的信息量为 17.536 1 log 2 = 比特 2.4 解: (a)任一特定排列的概率为 ! 521 ,所以给出的信息量为 58.225! 521 log 2 =- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为 1352 13 13521344!13C A =? 所以得到的信息量为 21.134 log 1313 52 2=C 比特. 2.5 解:易证每次出现i 点的概率为 21 i ,所以

比特比特比特比特比特比特比特398.221 log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21 log )(26 12=-==============-==∑ =i i X H x I x I x I x I x I x I i i i x I i 2.6 解: 可能有的排列总数为 27720! 5!4!3! 12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y 图中X 表示白杨或白桦,它有???? ??37种排法,Y 表示梧桐树可以栽 种的位置,它有???? ??58种排法,所以共有???? ??58*???? ??37=1960种排法保证没有 两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特 2.7 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地; Z=0表示学过英语,Z=1表示未学过英语,由此得

信息论与编码(第二版)曹雪虹(最全版本)答案

《信息论与编码(第二版)》曹雪虹答案 第二章 一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =, ()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。 解:状态图如下 状态转移矩阵为: 1/21/2 01/302/31/32/30p ?? ?= ? ??? 设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3 由1231WP W W W W =??++=?得1231132 231231 112331223231W W W W W W W W W W W W ?++=???+=???=???++=? 计算可得1231025925625W W W ?=???= ?? ?=?? 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =,(0|11)p =,(1|00)p =, (1|11)p =,(0|01)p =,(0|10)p =,(1|01)p =,(1|10)p =。画出状态图,并计算各状态的稳态概 率。 解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p == (0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == u 1 u 2 u 3 1/2 1/21/3 2/32/3 1/3

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

最新信息论与编码第五章答案

5.1 设信源1 234567()0.20.190.180.170.150.10.01X a a a a a a a p X ????=???? ???? (1) 求信源熵H(X); (2) 编二进制香农码; (3) 计算平均码长和编码效率. 解: (1) 7 21222222()()log () 0.2log 0.20.19log 0.19 0.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol ==-=-?-?-?-?-?-?-?=∑ (3) 7 1 ()0.230.1930.1830.1730.153 0.140.0173.141 ()()/ 2.609 3.14183.1% i i i K k p x H X H X K R η===?+?+?+?+?+?+?====÷=∑ 5.2 对习题5.1的信源编二进制费诺码,计算编码效率. 解:

5.3对信源编二进制和三进制 哈夫曼码,计算各自的平均码长和编码效率. 解: 二进制哈夫曼码: x i p(x i)编码码字k i s61 s50.610 s40.391 s30.350 s20.261 x10.20102 x20.191112 x30.1800003 x40.1710013 x50.1500103 s10.111 x60.1001104 x70.01101114 三进制哈夫曼码: x i p(x i)编码码字k i s31 s20.540 s10.261 x10.2221 x20.190002 x30.181012 x40.172022

相关文档
相关文档 最新文档