文档库 最新最全的文档下载
当前位置:文档库 › 三角形关系定理的巧用

三角形关系定理的巧用

三角形关系定理的巧用
三角形关系定理的巧用

三角形三边关系定理的巧用

安徽李庆社

三角形三边关系的定理“三角形两边之和大于第三边”即对于△ABC,其三边为a,b,c.根据定理应有a+b>c,a+c>b,b+c>a.如果我们要确定三条线段能否组成三角形,必须满足a+b>c,a+c>b,b+c>a.三者缺一不可,一定不能仅仅根据其中“任意”两边之和大于第三边就断定该三条边组成三角形,但是如果把三条线段长分别代入以上三个不等式,既显得麻烦,又比较费时间,这个定理的应用有一定技巧,今介绍给初学几何的学生,希望能有帮助.

怎样应用三角形三边关系定理呢?

1、如果已知c是a、b、c三线段中最大的线段,那么只要满足a+b>c就可以断定三线段能构成三角形,而不必再考虑a+c>b和b+c>a了.

例1下列有三组线段,判定哪组的三线段构成三角形?

(1)a=3,b=8,c=4.(2)a=5,b=6.c=11.(3)a=10,b=5,c=6.

解(1)因为三线段中b最大,且a+c=3+4=7<8=b所以该三线段a,b,c不能构成三角形.

(2)因为三线段c最大,且a+ b= 11=c所以这三线段a.b,c不能构成三角形.

(3)因为三角形中a最大,且b+c=11>10=a所以这三线段a,b,c能构成三角形.

=____.

分析:求值式需要先研究被开方式的底数和绝对值内的式子的正、负情况,再去掉根号和绝对值符号,就可求出结果.

解:∵a、b、c是△ABC的三边,由三角形三条边的关系,有

a<b+c,b<c+a,c<a+b,

即a-b-c<0,b-c-a<0,c-a-b<0.

|b-c-a|=-(b-c-a),

|c-a-b|=-(c-a-b).

∴求值式=[-(a-b-c)]+[-(b-c-a)]+[-(c-a-b)]=a+b+c.

2、在等腰三角形中,应考虑三边的特殊性,要区别腰与底的关系,在已知两边求三角形的周长时要讨论解的情况.

例3一个等腰三角形的两条边长分别是10cm和5cm,求这个三角形的周长.

分析:在给出的条件中,没有确定等腰三角形的腰和底,所以10cm长的边既可能是底,也可能是腰,于是本题有两解.

解(1)当腰长10cm时,则底长5cm时,等腰三角形的周长是25cm.

(2)当底长10cm时,则腰长5cm,然而两腰之和等于底边(5+5=10),所以此三角形不存在.

答:这个三角形的周长是25cm.

3、若三线段能构成三角形且已知其中两线段的长.求第三线段的取值范围时,要把三边关系定理与其推论(三角形两边的差小于第三边)同时运用.

例4已知三角形的两边长为 8cm,20cm,求第三边长x的取值范围?

解:根据三角形三边关系定理及推论得:

20-8<x<20+8

12<x<28

答:第三边长x的取值范围在12cm到28cm之间(不包括12cm和28cm).

例5已知如图:D、E是△ABC内两点.

求证 AB+AC>BD+DE+EC.

证明:把线段DE向两边延长交AB于F点,交AC于G点.

根据三角形两边之和大于第三边得

AF+AG>FG即AF+AG>FD+DE+EG,

又FB+FD>BD,EG+GC>EC

∴AF+AG+FB+FD+EG+GC>FD+DE+EG+BD+EC 又∵AF+FB=AB,AG+GC=AC,

∴AB+AC+ED+EG>FD+DE+EG+BD+EC,

即AB+AC>BD+DE+EC.

练习:

(答:2(a+b+c))

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状 1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若 cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定 2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC (A )一定是锐角三角形. (B )一定是直角三角形. (C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 4、在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 6、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 7、在△ABC 中,若c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边, 且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状. 10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。 11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

解三角形(1)---正弦定理

解三角形(1)---正弦定理 【定理推导】 如图1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。思考: (1)∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? (2)显然,边AB 的长度随着其对角∠C 的大小的增大而增大,能否用一个 等式把这种关系精确地表示出来? 如图1-2,在Rt ?ABC 中,设BC=a 、AC=b 、AB=c ,根据锐角三角函数 中正弦函数的定义,有a sinA c =,sin b B c =,又sin 1c C c ==, 则a b c c sinA sinB sinC ===,从而在直角三角形ABC 中, sin sin sin a b c A B C ==。 思考:那么对于任意的三角形,以上关系式是否仍然成立?(分为锐角三角形和钝角三角形两种情况) 如图1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则:sin sin a b A B = , 同理可得 sin sin c b C B = ,从而 sin sin a b A B = sin c C = 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。 证法二:(向量法)过点A 作j AC ⊥ ,由向量的加法可得AB AC CB =+ 则 ()j AB j AC CB ?=?+ ∴j AB j AC j CB ?=?+? ()()0 0cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即 sin sin = a c A C 证明三:(外接圆法)如图所示,∠A =∠D ,∴ 2sin sin a a CD R A D ===, 同理:sin b B =2R ,sin c C =2R 同理,过点C 作⊥ j BC ,可得sin sin =b c B C ,从而a b c sinA sinB sinC == 类推:当?ABC 是钝角三角形时,以上关系式仍然成立。 从上面的探究过程,可得以下定理: c b a C B A (图1-2) c b a C B A (图1-3) c b a C B A j C B A (图1-1) a b c O B C A D

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

正余弦定理与解三角形整理(有答案)

正余弦定理考点梳理: 1. 直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三边之间的关系:a2+b2=c2。(勾股定理) A (2)锐角之间的关系:A+B=90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 C B 2. 2.斜三角形中各元素间的关系: a 如图6-29 ,在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。 (1)三角形内角和:A+B+C=_____ (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 3. 正弦定理: a b c 2R 。(R为外接圆半径)sin A sin B sin C a b c = ==2R的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C=a∶b∶c; (2) a b == sin A sin B c = sin C a+b+c =2R; sin A+sin B+sin C (3) a=2R sin_ A,b=2R sin_ B,c=2R sin_ C; a b c (4)sin A=,sin B=,sin C=. 2R 2R 2R 4. 三角形面积公式:S=1 2 ab sin C= 1 1 bc sin A=ca sin B. 2 2 5. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的两倍。 2 2 2 a b c 2bccos A 2 2 2 b a c 2accosB 2 2 2 c b a 2ba cosC 或 cos A cos B cos C 2 2 2 b c a 2bc 2 2 2 a c b 2ac 2 2 2 b a c 2ab 余弦定理的公式:. 6. (1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

2020年高考数学复习利用正余弦定理破解解三角形问题专题突破

2020 年高考数学复习利用正余弦定理破解解三角形问题专题突破 考纲要求: 1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题 1 2.会利用三角形的面积公式解决几何计算问题S ab sin C . 2 基础知识回顾: a b c 1. ===2R,其中R 是三角形外接圆的半径. sin A sin B sin C 由正弦定理可以变形:(1) a∶b ∶c=sin A∶sin B∶sin C;(2) a=2 Rsin A,b=2Rsin B,c=2Rsin C. 2 .余弦定理:a2=b 2+c2-2 bccos A,b 2=a2+c2-2accos B,c2=a2+b2-2abcos C. b 2+c2-a2a2+c2-b2a2+b 2-c2 变形:cos A =,cos B=,cos C= 2bc 2ac 2ab 4. 三角形常用的面积公式 1 1 1 1 abc (1)S=a·h a(h a表示a边上的高).(2) S=absinC =acsinB =bcsinA = 2 2 2 2 4R

1 (3)S=2r(a+b+c)(r 为内切圆半径).应用举例: 类型一、利用正(余)弦定理解三角形 【例1】已知中,,点在边上,且.(1 )若,求; (2 )求的周长的取值范围. 【答案】(1 );(2 ). 所以: 中,利用正弦定理得:

由于: 则: ,, 由于:,则:, 得到:, 所以的周长的范围是:. 【点睛】 本题考查了用正弦定理、余弦定理解三角形,尤其在求三角形周长时解题方法是利用正弦定理将边长转化为角的问题,然后利用辅助角公式进行化简,求出范围,一定要掌握解题方法。 【例2】已知在中,所对的边分别为,. (1 )求的大小; (2)若,求的值. 【答案】(1 )或(2)1

利用正余弦定理解三角形资料

复习课: 解三角形 枣庄十八中 秦真 教学目标 重点:能够运用正弦定理余弦定理并结合三角形有关知识解决与三角形面积,形状有关的问题。 难点:如何选择适当的定理,公式,方法解决有关三角形的综合问题. 能力点:定理公式方法的适当选取,培养学生自主解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:在用正弦定理解三角形问题中会出现判断几解问题中易出现错误 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.正弦定理: 2sin sin sin a b c R A B C ===,其中R 是三角形外接圆半径. 2.余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+- ,2 2 2 2cos c a b ac C =+- , 222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 3.111 sin sin sin 222 ABC S ab C bc A ac B ?= == 4.在三角形中大边对大角,反之亦然. 5.射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+

6.三角形内角的诱导公式 (1)sin()sin A B C +=,cos()cos A B C +=-,tan tan()C A B =+,cos sin 22 c A B +=,sin cos 22 C A B +=,... 在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ·tanB ·tanC; 7.解三角形常见的四种类型 (1)已知两角A 、B 与一边a ,由A+B+C=180°及 sin sin sin a b c A B C == ,可求出角C ,再求,b c . (2)已知两边,b c 与其夹角A ,由2 2 2 2cos a b c bc A =+-,求出a ,再由余弦定理,求出角B 、C. (3)已知三边,,a b c ,由余弦定理可求出角A 、B 、C. (4)已知两边a 、b 及其中一边的对角A ,由正弦定理 sin sin a b A B = ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由 sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表: 8. 三、【范例导航】 题型(一):正、余弦定理 1正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以 计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角. 例1.在?ABC 中,已知a =c = ,45B =o ,求b 及A ;

如何正确理解正余弦定理解三角形

1.1 正弦定理和余弦定理教案(共两课时) 教学目标 根据教学大纲的要求,结合学生基础和知识结构,来确定如下教学目标: (一)知识目标 (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; (2) 会运用正弦定理与三角形内角和定理解三角形的两类基本问题。 (3) 掌握余弦定理的两种表示形式; (4) 掌握证明余弦定理的向量方法; (5) 会运用余弦定理解决两类基本的解三角形问题。 (二)能力目标 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。 (三)情感目标 (1) 培养学生在方程思想指导下处理解三角形问题的运算能力; (2) 培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、余弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 教学重点 正弦定理、余弦定理的探索和证明及其基本应用。 教学难点 (1) 正弦定理和余弦定理的证明过程。 (1) 已知两边和其中一边的对角解三角形时判断解的个数。 (2) 勾股定理在余弦定理的发现和证明过程中的作用。 教学方法 启发示探索法,课堂讨论法。 教学用具 粉笔,直尺,三角板,半圆,计算器。 、教学步骤 第一课时正弦定理 (一) 课题引入 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。 A

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? (图1.1-1) (二) 探索新知 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角 三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (让学生进行讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b = , b a 从而 sin sin a b A B = sin c C = A D B (图1.1-3) 让学生思考:是否可以用其它方法证明这一等式? 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 两边同除以abc 21 即得:A a sin =B b sin =C c sin 证明三:(外接圆法) 如图所示,∠A=∠D ∴ R CD D a A a 2sin sin === (R 为外接圆的半径) 同理 B b sin =2R ,C c sin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

正弦定理解三角形

利用正弦定理解三角形 利用正弦定理可以解决以下两类有关三角形问题: 1、已知三角形的两角和任意一边,求三角形其他两边与角。 2、已知三角形的两边和其中一边的对角,求三角形其他边与角。 例题设计一: 已知△ABC,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1)。 (1)∠A=60°∠B=45° a=10 (2)∠A=45°∠B=105° c=10 (1)属于已知三角形的两角和其中一角的对边,先由三角形内角和定理知∠C=180°-∠A-∠B=75°,然后由正弦定理直接得:b===≈8.2,c==≈11.2 (2)为已知两角和另一角的对边,这时先利用∠A+∠B+∠C=π,求出另一角∠C=30°,然后由正弦定理得:a=== b=== 这两道例题均选自教材,使学生明确在三角形中已知两角和任意一边时,这样的三角形是唯一确定的。学会用方程思想分析正弦定理解决问题。 习题设计一: 设计意图:巩固当堂内容 已知在△ABC中,c=10, ∠A=45°,∠C=30°,求a、b和∠B.

解:∵,∴a=,∠B=180°- (∠A+∠C)=180°-(45°+30°)=105°,∵,∴ b ==20sin75°=20×=5+5. 例题设计二: 已知△ABC中,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1) (1) a=3 b=4 ∠A=30° (2) a=b=6 ∠A=120° (3) a=2 b=3 ∠A=45° (1)由正弦定理得sinB===,再由三角形内角和定理 知∠B的范围为:0°<B<150°,∴∠B≈41.8°或∠B≈138.2°,再根据“三角形中大边对大角”知 b=4>a=3,∴∠B>∠A, ∴∠B≈41.8°或∠B≈138.2°; 当∠B≈41.8°时,∠C≈180°-30°-41.8°=108.2°, c==≈5.7; 当∠B≈138.2°时,∠C≈180°-30°-138.2°≈11.8°,

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

正弦定理余弦定理解三角形

第一篇 正弦定理和余弦定理 【知识清单】 一、三角形有关性质 (1)在△ABC 中,A +B +C =π;a +b >c ,a -b b ?sin A >sin B ?A >B ; (2)三角形面积公式:S △ABC =12ah =12ab sin C =1 2ac sin B =1sin 2 bc A ; (3)在三角形中有:sin 2A =sin 2B ?A =B 或2 A B π += ?三角形为等腰或直角三角形; sin(A +B )=sin C ,()cos cos A B C +=-,sin A + B 2=cos C 2 . 定理 正弦定理 余弦定理 内容 2sin sin sin a b c R A B C === 2222sin a b c bc A =+- 2222sin b a c ac B =+- 222 2sin c a b ab C =+- 变形 形式 ①2sin a R A =,2sin b R B =,2sin c R C =; ②sin 2a A R =,sin 2b B R =,sin 2c C R =; ③::c sin :sin :sin a b A B C =; ④sin sin +sin sin a b c a A B C A ++=+. 222cos 2b c a A bc +-=; 222cos 2a c b B ac +-= ; 222cos 2a b c C ab +-= 解决 的问题 ①已知两角和任一边,求另一角和其他两条边. ②已知两边和其中一边的对角,求另一边和其他两角. ①已知三边,求各角; ②已知两边和它们的夹角,求第三 边和其他两个角. 三、解斜三角形的类型 (1)已知两角一边,用正弦定理,有解时,只有一解; (2)已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ?中, A 为锐角 A 为钝角或直角 图 形 关系式 sin a b A < sin a b A = sin b A a b << a b ≥ a b > 解个数 无解 一解 两解 一解 一解 上表中,为锐角,时,无解;为钝角或直角时,或均无解.

2017年高考试题:正余弦定理解三角形

2017年高考文科数学新课标Ⅰ卷第11题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知0)cos (sin sin sin =-+C C A B ,2=a ,2=c ,则=C ( ) A. 12π B.6π C.4π D.3 π 本题解答:0cos sin sin sin )sin(0)cos (sin sin sin =-++?=-+C A C A C A C C A B 0sin sin cos sin 0cos sin sin sin cos sin cos sin =+?=-++?C A A C C A C A A C C A 4 31tan 1cos sin cos sin 0sin cos π = ?-=?-=? -=?=+?A A A A A A A A 。 根据正弦定理得到: 21222 2sin sin sin sin =? ==?=a A c C C c A a ,C 是锐角6 π=?C 。 2017年高考理科数学新课标Ⅰ卷第17题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知ABC ?的面积为A a sin 32 。 (Ⅰ)求C B sin sin ; (Ⅱ)若1cos cos 6=C B ,3=a ,求ABC ?的周长。 本题解答:(Ⅰ)ABC ?的面积为 A a sin 32222sin 2 3 sin 3sin 21a A bc A a A bc =?=? 3 2 sin sin 1sin sin 23sin sin sin sin 2322=?=?=?C B C B A A C B 。 (Ⅱ)61cos cos 1cos cos 6=?=C B C B ,3261sin sin cos cos 32sin sin -=-?=C B C B C B 3 21cos 21cos 21)cos(π =?=?-=-?-=+?A A A C B 。 根据余弦定理得到:921 29cos 22222222=-+??-+=?-+=bc c b bc c b A bc c b a ①。 根据(Ⅰ)得到:898 9 3)23(23sin 232222=?=?=??=bc bc bc a A bc ②。 ②代入①中得到:3382172)(17982222222=?+=++=+?=+?=-+bc c b c b c b c b ABC c b ??=+?33的周长为:333+=++c b a 。 2017年高考文科数学新课标Ⅱ卷第16题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 若A c C a B b cos cos cos 2+=,则=B 。 本题解答:根据射影定理得到:b A c C a =+cos cos ,b B b A c C a B b =?+=cos 2cos cos cos 2

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

高考冲刺 正弦、余弦定理及解三角形_基础

正弦、余弦定理及解三角形 【考纲要求】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 【知识网络】 【考点梳理】 要点一、三角形中的边与角之间的关系 约定:ABC ?的三个内角A 、B 、C 所对应的三边分别为a 、b 、c . 1.边的关系: (1) 两边之和大于第三边:a b c +>,a c b +>,c b a +>; 两边之差小于第三边:a b c -<,a c b -<,c b a -<; (2) 勾股定理:ABC ?中,2 2 2 90a b c C +=?=?. 2.角的关系: ABC ?中,A B C π++=,222C B A ++=2 π (1)互补关系: sin()sin()sin A B C C π+=-= cos()cos()cos A B C C π+=-=- tan()tan()tan A B C C π+=-=- (2)互余关系: sin sin()cos 2222A B C C π+=-= cos cos()sin 2222A B C C π+=-= tan tan()cot 2222 A B C C π+=-= 3.直角三角形中的边与角之间的关系 Rt ABC ?中,90C =?(如图) ,有: c c C c b B c a A ==== 1sin ,sin ,sin , cos ,cos ,cos 0b a A B C c c ===. 要点二、正弦定理、余弦定理 1.正弦定理:在—个三角形中,各边和它所对角的正弦的比相等.即: 应用 解三角形 正弦定理 余弦定理

正弦定理

课题:正弦定理 授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。A 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中,sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

微专题2 正余弦定理与解三角形

微专题2正余弦定理与解三角形 一、单项选择题 1. 在△ABC中,已知(b+c)sin C=a sin A-b sin B,则角A的大小为() A. π 6 B. π 3 C. 2π 3 D. 5π 6 2. 在△ABC中,若AB=3, BC=13,AC=4,则边AC上的高为() A. 3 2 B. 32 2 C. 33 2 D. 3 3 3. 《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深对今天的几何学和其他学科仍有深刻的影响.如图所示是《易经》中记载的几何图形——八卦图.图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为8m,代表阴阳太极图的圆的半径为2m,则每块八卦田的面积约为() (第3题) A. 32m2 B. 37m2 C. 42m2 D. 84m2 4. 在四边形ABCD中,∠ABC=150°,3AB=2BC, AC=13,BD⊥AB, CD=3,则四边形ABCD的面积为() A. 3+1 B. 23+2 C. 73 2 D. 7 3 二、多项选择题 5. 在△ABC中,根据下列条件解三角形,其中有一解的有() A. b=7, c=3, C=30° B. b=5, c=4, B=45°

C. a =6, b =33, B =60° D. a =20, b =30, A =30° 6. 如图,在△ABC 中,3(a cos C +c cos A )=2b sin B ,且∠CAB =π3.若D 是△ ABC 外一点,DC =1, DA =3,下列说法中正确的有( ) (第6题) A. ∠B =π3 B. ∠BCA =π3 C. 四边形ABCD 面积的最大值为532+3 D. 四边形ABCD 的面积无最大值 三、 填空题 7. 在△ABC 中,c =2, C =π3, sin B =2sin A ,则△ABC 的面积为________. 8. 在△ABC 中,a =2, b =2, sin B +cos B =2,则角A 的大小为________. 9. 在△ABC 中,a =4, a sin B =3b cos A ,若S △ABC =43,则b 2+c 2=________. 10. 在△ABC 中,2B =A +C ,下列说法中正确的有________.(填序号) ① B =π3; ② 若b 2=ac ,则△ABC 为等边三角形; ③ 若a =2c ,则△ABC 为锐角三角形; ④ 若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则3A =C ; ⑤ 若tan A +tan C +3>0,则△ABC 为钝角三角形. 四、 解答题 11. 在△ABC 中,b =6, cos B =427. (1) 若A =30°,求△ABC 的面积; (2) 若点M 在线段BC 上,连接AM ,若CM =4, AM =27,求c 的值.

相关文档
相关文档 最新文档