文档库 最新最全的文档下载
当前位置:文档库 › 故障电弧诊断总结

故障电弧诊断总结

故障电弧诊断总结
故障电弧诊断总结

研究意义:

电弧故障(Arc Fault)有并联电弧故障和串联电弧故障之分。并联电弧故障表现为电路短路,故障电流大,现有电气保护体系能对其保护;而串联电弧故障因受线路负载限制,其故障电流小,常为5~30A,甚至更低(荧光灯电弧故障电流有效值约为0.1A),以至于现有保护体系无法实现对串联电弧故障保护,是现有电气保护体系的漏洞之一,存在潜在电气安全隐患。串联电弧可分为“好弧”和“坏弧”,如电弧焊机、有刷电机工作时产生的电弧及插拔插座时产生的电弧常称为“好弧”;其他非按人类意愿或控制产生的电弧称为“坏弧”。对电弧故障进行检测时,不应将“好弧”误判为电弧故障,进而切断电源造成不必要损失。

实时准确检测串联电弧故障,并切断故障电路是避免电弧持续燃烧以至于酿成火灾等事故的有效途径。依据电弧发生时所产生的声、光、电、磁等特性,采用实验方法研究电弧特性。以电弧电、磁特征作为检测方法输入,实验研究了电弧故障,分析说明串联电弧与并联电弧,交流电弧与直流电弧之不同;在频域展开电弧特性研究,指出故障电弧特征量多集中在2-200kHz频段。随着电力电子技术发展,非线性负载增多,传统基于电弧“零休”等特性的检测方法已不能满足要求。采用AR参数模型对低压电弧故障进行检测,并给出回路识别参考矢量;采用小波熵分析电弧故障,指出若小波熵值大于0.002则可判定发生电弧故障;基于小波变换模极大值建立电弧故障神经网络模型,以实现电弧故障检测与分类。

注:输入参数的提取可以从一下三个方面:(1)负载正常工作时的电流特性;(2)开关插拔产生的正常电弧电流特性现实中我们在拔、插插头的瞬间也会产生电弧,它们持续的时间短,在瞬间就熄灭了,不连续也不影响线路中设备的正常工作,几乎不会因此产生火灾而威胁环境的安全;(3)故障电弧(接触不良)的电流特性。主要是由于线路绝缘层老化、绝缘损坏或者短路等原因而产生的电弧。这种电弧持续时间长,电弧燃烧时放出大量的热量,对周围环境存在极大的火灾安全隐患,是需要预防制止的电弧,也称为故障电弧。

一、采用高频特性的低压电弧故障识别方法(2016.6)

摘要:针对不同类型负载的电弧故障,提出一种基于小波熵的电弧故障普适性检测方法。运用小波变换提取电弧故障发生时在电流过零点附近产生的高频信号,采用该高频信号的小波熵表征电弧故障的突变信息,并利用最小二乘支持向量机对小波熵进行分类,实现对电弧故障的有效识别。

引言:电弧故障是引起电气火灾的重要原因之一,传统的电弧故障检测方法多基于电弧产生的弧光、弧声、温度等物理参数,但是线路中电弧故障位置的不确定性限制了这些方法的应用。电弧电流测量的便利性使其成为电弧故障检测的理想参数。

传统电弧故障的识别方法主要基于电弧电流的谐波占有率分析法,小波提取电弧电流故障特征的时频分析法以及基于自回归模型参数的识别方法等。其局限性在于:因为电弧故障位置不确定,电弧电压无法测得;负载类型繁多且连接方式不同,难于可靠区分电弧故障与正常负载电弧。

本文运用小波分析提取电弧故障发生时电流过零点附近 1.25 MHz~2.5 MHz 的高频信号,以此高频信号的小波能量熵作为识别参数,借助支持向量机对电弧故障信号进行识别,以期获得具有适应于大多数负载及负载混联时电弧故障识别的普适性检测算法。

1、实验平台搭建

主要由以碳,石墨棒和铜棒为电极的可调式电弧故障发生装置、隔离变压器、电流波形传感器、数据采集系统以及计算机。系统采样频率为5MHz/s。

2.小波熵原理简介

2.1 小波变换

传统的在频域分析方法是傅里叶变换,但其不能反映信号的时域特征,发生电弧故障时信号产生短时高频冲击和微弱的波形突变,经傅里叶变换后,这些时域特征因积分而被踢出,因此傅里叶变换难以提取电弧故障有效信息。小波变换从时域和频域两个方面来反映电弧故障信号时频特征,可以用于辨别电弧故障时电流信号的微小变化。

二、采用小波熵的串联型故障电弧检测方法(2010.12.30)

摘要:一些电气设备正常工作时的电流特性与故障电弧电流的典型特性相似,当设备或线路发生串联型故障电弧时,使得故障电弧的可靠诊断与检测十分困难。提出一种利用小波熵来反应故障电弧电流信号的能量分布,并由此提取故障电弧电流中瞬变信号的方法,实现对故障电弧电流信号中低能量瞬变信号的有效提取,从而为串联型故障电弧的诊断提供依据。

引言:故障电弧它经常发生在绝缘老化或破损的线路和设备中,或者在导体松弛连接等情况下发生。能够描述故障电弧的物理量有很多,比如温度、弧声、弧光、电弧电压等。用于测量这些物理参数的传感器必须安装在故障电弧发生点附近,本文提出以电弧电流作为故障电弧检测和分析的物理参数,提取能用于快速有效诊断故障电弧的特征量。

注:线性负载与非线性负载区别

二者表现出来的区别就是:“二者都施加正弦电压时,线性负载的电流是正弦的,非线性负载的电流是非正弦的。”

线性负载:故障电弧发生时,电弧电流会产生较明显的“零休现象”,而故障电弧发生前电流却不存在这种“零休现象”。可以采用小波分析算法及快速傅里叶变换实现快速诊断。

非线性负载:施加正弦交流电压时波形将发生严重畸变,出现类似前述的电流“零休现象”,因此很难直接利用这一电流特征来诊断故障电弧。利用多分辨分析小波分析理论。

1.小波熵原理简介

1.1 小波变换

在瞬变信号检测领域中,引入小波熵的概念,用来发现信号中微小的异常变化,能够对时频域上能量分布特性进行定量描述。小波熵值表征了信号复杂度在时频的变化情况。

三、低压系统串联故障电弧在线检测方法(2016.4)

摘要:本文首先基于居民用电系统搭建了模拟串联故障电弧的实验平台,以常见家用电器为负载的实验方案并采集到不同条件下的故障电弧信号。基于电弧电流的特性分析。

引言:国内外电弧检测的方法大致可以归纳为三类:①建立电弧模型并通过检测相应的参量检测电弧;②根据电弧发生时所产生的弧光、噪声、辐射、温度等变化检测电弧;③根据电弧发生时的电流、电压波形变化检测电弧。

在家庭供配电线路中,开关操作频繁(正常工作电弧)、设备线路状况复杂,容易发生触头松动、绝缘老

化、击穿、接地故障(故障电弧)等问题,增加了故障电弧发生的概率。由于用电设备分散,利用电弧光、热等物理现象来检测电弧并不现实,适合利用线路电流的变化来检测电弧。

1、利用线路电流检测电弧研究现状

目前的检测方法可以分为三大类:一类基于电弧的某个或某些特征,如基于电弧电流畸变点的小波分析法,基于电弧电流高频谐波的傅里叶分析方法,基于电弧电流上升率的分形法,基于电弧随机性的差值-方均根检测方法;二是对电弧进行整体识别,已有的算法有模型参数法,支持向量机法,神经网络法;三是上述两种方法的组合,基于电弧电流波形的畸变性,通过小波变换的细节系数检测电弧电流的畸变点,进而检测出电弧。然而某些非线性负载正常工作时也存在相似的畸变点,不同负载下的细节系数阈值不统一,需要判断负载的类型;从整体识别的角度,使用神经网络算法对电弧信号进行训练,其特点是识别率较高,但是实时性差,需要对大量数据进行训练。把小波(包)检测和神经网络识别进行结合,以减少模式识别的数据量,提高了检测的实时性,然而其改善程度并不明显。

对燃弧前后的电流数据进行波形分析,在相邻周期波形相减的基础上,利用小波阈值消噪提取到故障电弧特征量,并应用软件对实验数据进行分析,结果表明该检测方法具有很高的识别率。

2、实验装置与数据采集

2.1实验装置

2.2数据采集

数据采集使用示波器,采样速率选择为20k Hz,实验步骤如图2所示,调节示波器的采样速率和延迟时间,使采集到的波形跨越正常、起弧、燃弧、熄弧全过程。

四、电弧故障断路器的故障电弧电流特性研究(实例)(2012.6)

摘要:电弧故障断路器能够发现故障电弧,其工作的关键在于准确辨识故障电弧。研究故障电弧电流同正常电流之间的本质差异,通过不同的数学方法分析电弧和正常情况下电

流数据的特征,为识别故障电弧提供依据。

通过搭建的电弧实验平台,模拟线路中发生串联电弧时的状况,获得了分别单独以纯电阻、调光灯、空调、计算机和调光灯组合作为负载时各自的故障弧电流和正常电流的实测数据(不同负载的故障电弧电流和正常电流)。

对于实测数据,首先进行数据指标的分析,分析了负载在故障电弧和正常两种情形下电流有效值、平均值、峰峰值、平肩部百分比和电流上升率等数据指标之间的差异,找出同一负载两情形下这些指标下的特征。其次,运用傅里叶变换观察两种情况下的频谱特征,并比较发生故障电弧时奇次谐波含量和偶次谐波含量与正常情形时存在的差异。进一歩运用小波变换分析实验数据,根据分解重构后的误差值大小选择合适的小波基函数及分解层数,依据所选择的小波基函数对数据进行去噪声处理,信号故障点的判断,提取小波变换后的能量特征向量,并运用该特征向量作为小波神经网络的输入样本。傅里叶分析结果和小波变化分析结果的故障电弧神经网络辨识方法。

1、对于电弧的一般特性:

(1)电压和电流中均包含大量的高频噪声信号;

(2)电压的波形类似于矩形波;

(3)电弧存在电降,因此对同一电路来讲,非电弧电流幅值一般大于电弧电流,线路存在补偿的情况除外;

(4)非电弧电流的上升率通常小于电弧电流;

(5)每过半个周期,电弧电流先于非电弧电流的零点前熄灭,后于非电弧电流的零点后重燃,在这个区域建立一段幅值接近零且变换不明显的区域,被定义为“平肩部”;

(6)电弧通常也是零星的、短脉冲间穿插着部分正常的电流。对电弧的检测可依据这些特性,研究合适的检测方法。

故障电弧电压电流波形

电弧普遍分为三种形式:串联电弧、并联电弧和对地电弧,如下图所示。若将第三种形式产生的电弧归纳到第二类中,此时分为串联弧和并联电弧。

电弧发生器及测量电路图:

电弧实验实物图:

安装电极部分:

铜棒电极和碳极:

2、实测数据及其处理

比较了两种电流数据的有效值、平均值、峰峰值、平肩部百分比及上升率的差异,即指标分析法。

一般纯电阻负载,正常情形的波形与发生电弧故障时的波形差异明显;但负载位60W和300W的调光灯时,波形变化不是特别明显。

3、数据的小波变换

傅里叶变换是一种全局的分析,因此无法表述信号的时频局部特性,而时频局部特性恰好又是非平稳信号最基本且关键的性质,稳定信号理想的处理工具还是傅里叶变换分析。

傅里叶分析:将信号分解为不同频率的正弦波。

小波分析:将信号分解为不同尺度(比例缩放)、平移(起始位置)的小波。

连续小波变换的5个基本步骤:

1、选取一个小波,将其与原始信号的开始一段进行比较。小波基函数的选取可通过小波分解层数误差比较。

2、计算小波系数C,其值的大小取决于小波与选取信号段的相似程度,越相似其值越大。更精确的是若信号与小波能量都等于1,则C可解释为互相关系数。

注意:系数的大小与所选择小波的形状有关。

3、从左到右平移小波逐段重复步骤1、2的比较,直到完成整个信号的比较。

4、小波伸缩(尺度化),重复步骤1~3。

5、重复1~4步得到所有尺度下的小波系数。

离散小波变换:

连续小波变换的计算量非常大,费时。

第一部滤波:逼近和细节逼近成分对应大尺度低频分量,细节成分对应小尺度高频分量。

原始信号S通过两个互补的滤波器得到两个信号A和D.

使用的原信号为一叠加有高频噪声的实正弦信号,其分解原理图如下,在离散小波分析中采用二取一的”降采样技术”得到分别具有500点的小波系数cD和cA;

Matlab语句如下

s = sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);

[cA,cD] = dwt(s,'db2');db2为小波类型。

离散小波多级分解(Multiple-Level Decomposition)

小波分解树(wavelet decomposition tree)

分解时对逼近系数进行反复分解.

信号的小波分解:

小波重构:小波分解是小波分析的一半,与此相对的另一半是信号的小波重构(reconstruction), 或综合(synthesis) (无信息丢失).称为小波逆变换(IDWT).

下图为信号的小波重构示意图:

由小波分解得到的小波系数重构信号。

信号的小波重构涉及滤波和上采样

上采样:

小波重构中的上采样是在两原数据点间插入零值。

前面所述的是由小波分解系数重构原始信号, 与此类似, 我们也可由小波分解系数重构某一级的逼近和细节信号.

单级重构

多级重构

滤波器与小波形状的联系:

在实际使用小波中,很少直接从构造一个小波开始,而是设计适合的镜像滤波器,进而选定小波函数计出波形.

构造适合db2小波的低通重构滤波器L:

(1)低通滤波器系数可由Matlab中的dbaux命令得到;

(2)若反转该滤波器系数向量, 并且每一偶数样本乘以-1, 则可得到高通重构滤波器H’的系数.

(3)H’上采样( H’系数间隔插零)

(4)上采样向量与原始低通滤波器卷乘

(5)若重复该过程几次, 即上采样并将结果滤波器向量与原始低通滤波器系数卷乘,则可得到以下图案.

不难看出滤波器形状越来越接近db2小波, 这表明小波的形状完全由重构滤波器决定.

二者的重要联系说明:

我们不能任意选择一个形状称之为小波并进行小波分析. 至少当需要对信号进行精确重构时,我们不能选择任意的小波形状. 我们必须选取由积分镜像分解滤波器所决定的形状作为小波.

通过重复上采样并与高通滤波器进行卷积可得到小波函数(小波的波形——细节信号); 重复上采样并与低通滤波器进行卷积可得到尺度函数的近似形状(逼近信号).

小波的多级分解和重构可表示为

这一过程包括两个方面: 信号分解得到小波系数, 由小波系数重构原信号.

4、小波变换后的特征量提取

进一歩的分析实验数据的特性,采用了提取特征量是比较好的方式,能使分析的结果更具普遍性。

通过对分解后的信号釆用单支重构,然后提取每层小波的能量。采用的提取各频段能量的计算公式如下所示:

其中为分解层数,对于本文中计算机数据能量特征提取,此时取为分解重构后的数据长度,近似信号的能量只

需计算分解的最后一层信号的能量,即而总的能量计算公式为:

因此,可得到信号小波变换后的特征向量为;

小波变换最重要的是在众多小波基函数中选择合适的小波基函数,文中给出了常见的小波函数,重点介绍了本文使用的小波函数,并比较了函数各个系列在不同分解层数下的误差,以此为参考,选择合适的分解层数对信号进行了层分解。

采用小波分析统计了负载信号分解后的能量,提取能量特征向量,进一歩说明数据在小波变换后的特征,同时,为后面的进行神经网络的判别提供训练和测试样本。

5、小波神经网络的基本结构(其模型精度具有争议)

小波神经网络是小波分析和神经网络相结合的产物,神经网络与小波函数结合方式为紧致型结构,将神经网络隐含层中神经元的传统激发函数用小波函数来代替。

注意:

1、理论上讲任何一个连续的非多项式、常数函数都可以做为BP的激活函数,而且这都是已经在数学上证明过的问题。

2、但sigmoid函数相对其他函数有它自身的优点,比如说光滑性,鲁棒性,以及在求导的时候可以用它自身

的某种形式来表示。

3、这一点在做数值试验的时候很重要,因为权值的反向传播,要求激活函数的导数。

4、多层就有多个导数,如果用一般的连续函数,这对计算机的存储和运算都是一个问题,此外还要考虑整个

模型的收敛速度,我上面提到连续函数都可以做激活函数。

5、但是相应的Sigmoidal型函数的收敛速度还是比较快的(相同的结构前提下)。

6、还有就是BP在做分类问题的时候,Sigmoidal函数能比较好的执行这一条件,关于连续函数可以做激活函

数的证明,可以在IEEE trans. on neural networks 和NeuralNetworks以及Neural Computating 和Neural

Computation上找到。

五、电流型串联电弧故障检测(2013.10)

摘要:对低压配电线路电弧故障的特征进行分析研究,采用Mallat 算法对低压线路电弧故障电流实施变换,获得各尺度小波变换的小波分量,与正常运行分量相比其故障特征明显,且高尺度的小波分量还可以抑制噪声干扰。还对启动电流和电弧故障的小波分量加以比较。引言:低压配电线路常因接触不良等而出现电弧故障,如果没有及时切断线路,可能导致火灾的发生而电弧故障电流通常在额定范围之内,传统的断路器无法将这类电弧加以准确检测。美国全国电气规程在2008 年强制规定所有的家用线路都必须安装防火灾的AFCI(电弧故障断路器),为了提高AFCI 的可靠性,国内外学者提出了多种电弧故障检测的方法,用短时傅里叶变换分别分析了在阻性负载和计算机负载下,串联电弧电流的基频分量谐波分量变化的特征。采用小波变换对电弧故障电流加以分解结合BP 神经网络提取故障辨识模式,而BP 神经网络的实现需要较多的样本数据。采用SVM( 支持向量机) 对电弧故障进行识别,该方法对阻感性负载有一定的识别能力。计算了电流上升率,通过判断相邻电流的波动程度以辨别额定工作电流和电弧故障电流。

根据国标GB /T 7260-3-2003,电路中可以分为线性负载和非线性负载两类。上述这几种检测方法的辨识泛化能力不强,未能提出一种可适用于多类型负载的检测方案。本研究结合多分辨率分析对配电线路的电流信号实施小波变换,提出一种可以提取电弧故障时的特征,解决配电线路电弧故障与非线性负载正常运行的有效区分,同时防止了负载设备的启动电流引起误判断。

1、电弧故障检测方案与理论分析

1.1故障检测原理

实验线路采用一个自制的电弧发生器来模拟线路发生电弧的现象。将它和各种负载设备串联接入线路,以研究不同负载下发生故障电弧的特性。电弧发生器由一根可移动电极

( 铜棒) 和一根固定电极( 碳棒) 组成。

1.2算法理论分析

利用Mallat 算法实现小波变换进行电弧故障识别,即用不同的分辨率逐级逼近信号函

数:

其中: V 反映了电弧故障电流信号f( t) 的近似分量,W 反映了电流信号的细节分量,因电弧故障电流信号其频谱是有限的,如果选择足够大的尺度空间,可将电流信号用各个尺度下标准正交基的组合将其展开,即:

将电弧故障电流信号f( t) 按Mallat 算法进行逐层二抽取分解,如图3。d为不同尺度下分解出来的高频分量即小波变换值,其包含着电弧故障电流噪声和突变信号信息。而且随着尺度的增大,噪声引起的小波变换模的极大值迅速减少,而表征电弧故障的奇异信号的小波变换值便可突显出来。

2、电弧故障特征的提取

常见负载下,配电线路电弧故障电流一般伴随着几个明显的特征,如电流“零休”现象、电流正负半周不对称、波形失去周期性以及具有丰富的高频谐波等。为了有效地区分负载启动、正常运行与电弧故障状态,选用基于db4 小波函数的Mallat 算法快速分析来提取电弧故障特征值。

六、电气火灾故障电弧探测器的研究(2013)

摘要:建筑物低压配电系统中,现有预防电气火灾的保护装置,主要对过载、短路等引起的过电流及由接地故障产生的剩余电流起到检测作用。当发生易引起电气火灾的串联型故障电弧时,因故障电流值低于传统保护装置的动作阀值,不能全面、有效的预防电气火灾致使我国每年因电气故障引发的火灾,居其他原因引发火灾的首位。

对建筑物低压配电系统中,常引起电气火灾的故障电弧,我国目前还没有颁布明确的标准和规范;现有预防电气火灾的预警装置不能全面有效的检测配电线路上的“串弧”。基于上述原因,本文对建筑物低压配电系统中,易引起电气火灾的故障电弧检测技术进行研究。

1、故障电弧检测的研究现状

为了检测故障电弧,美国学者在年就设计研发出了一种故障电弧断路器(AFCI),该设备可以检测因短路,线路误接,线路老化等引起的故障电弧。加拿大大学的等研究人员在燃弧点附近放置相应的传感器,通过这些传感器来检测故障电弧所产生的电磁福射、噪声和热量,只有当这三种传感器同时都检测到故障信号时,才能确定系统中产生了电弧故障。

电弧电流的频域特性的发现使得在频域领域进行电弧故障的检测成为了可能。后来电弧检测中引入了傅里叶分解、神经网络、小波分析等算法。

由于故障电弧发生的随机性,对于故障电弧的检测具有一定的难度。由于温度,弧光,气压等传统的电弧传感器无法精准的检测到故障电弧的发生位置。另一方面一些电弧是非常微弱和短暂的,比如通常所说的“好弧”它无法导致火灾的发生,它不是本文所提出的故障电弧,这样就会加大我们的检测难度。

2、故障电弧的产生

故障电弧电流“零休”:当故障电弧发生时,在电弧电流过零点的前后一段时间里,故障电弧气隙之间的阻抗会变得很大,这是限制故障电弧电流值的一个重要因素。在电弧电流

的上个周期结束与下半个周期开始的这个时间里,电弧电流并不是一般的正弦波,而是另外的一个规律,那就是电弧电流等于电弧两端电压与电弧阻抗的比值。在这段过零点的一小段时间内,由于阻抗变大,故障电弧电

流就会限制的非常小,几乎为零。下一个半周期同样也会出现相同的现象,在这段时间里我们把这种电流近乎为零的现象称之为电弧电流的“零休现象”。

电弧的零休时间跟许多因素有着很大的关联,一方面,它与气隙内部相关,另一个方面,它与电路的电压,电流以及负载的类型相关。一般情况,电弧的“零休”时间会从几微秒到几十微妙。故障电弧的“零休”现象为故障电弧的研究提供一定的理论基础,也为故障电弧检测技术指出了研究方向。

3、故障电弧实验装置的构建

本实验装置的主要构造分为以下几块:220V(50HZ)纯净交流电源,电弧发生装置,数字示波器,电流传感器。

它包括一个静止的直径为6.4mm碳石墨电极与一个可以移动的铜质电极,静止电极接220V交流电,移动电极可以接至负载。首先可以将两个电极处于一个完全接触的状态,即是一个线路完全闭合状态,这样可以观察到接负载后供电线路的正常情况的电流特性,然后旋转右边的调节器,可以将活动电极慢慢移动使得它与静止电极慢慢分离,当它们的间隙到达的了一定的距离以后电弧就会发生了,电弧发生以后立即停止移动电极确保电弧持续发生。这时候可以观察在接入负载以后供电线路上产生故障电弧时的电流特性。

为了保证采样精度达到实验的要求,该数字示波器的主要参数设定如下表2.1所示:

电弧电流的波形会发生很明显的畸变。于是必须针对这个现象展开研究,观察在供电线路中故障电弧的电流特性会受到哪些因素的影响。本文在实验中将不同类型的负载接入实验的供电线路,然后观察和分析故障电弧产生时零休现象的变化情况。

在建筑电气中,大量的存在着阻感性的负载,所以本文在本次实验中选用阻性,感性,阻感性三种负载进行研究,实验的主要工作有以下几点:

(1)在纯阻性负载的情况下,故障电弧电流的基本特性;

(2)在纯感性负载的情况下,故障电弧电流的基本特性;

(3)在阻感负载的情况下,故障电弧电流的基本特性;

(4)对比以上三种负载下故障电弧的差别与相同点。

4、故障电弧电流数据处理与分析

很多专家都提到,对于故障电弧的检测的难点就在于区分一些热拔插或者特殊负载造成的好弧与故障电弧的差别,因为从直观上看它们都会出现一些共同的特征,这就需要利用小波分析对这个零休时间做一个判别。

七、故障电弧检测的关键技术研究及断路器开发(2013.6)

1、故障电弧发展背景

据相关统计,仅大约电流产生的电弧温度即可达到2000℃-3000℃,足以引燃任何可燃物,而且当电压低至20V时,电弧也可稳定存在,难以熄灭。这种故障电弧常成为电气火灾的点火源。

发生故障电弧时,负载电流通常是非常小的,小于目前电力系统特别是广泛安装在低压配电领域的设备的过电流保护设定值,线路发生故障电弧不在保护的范围之中。所以检测故障电弧时,必须把它和设备正常工作电弧如电焊、电机旋转产生的电弧或开关电器、插拔电器时产生的电弧)的信号及其他相似信号区别开来,提供迅速有效保护的同时,防止误动作的发生,做到检测故障电弧的同时,不影响线路正常工作。

2、故障电弧实验平台

2.1波形储存设备

我们采用Tektronix公司的DPO3000系列的示波器,该示波器为4条通道、100MHZ带宽、所有通道上采样率可以达到2.5GS/s、所有通道具有5M的记录长度。示波器能将记录的点以excel的格式存储在外围储存设备中(如U盘、移动硬盘),如此我们就可以将采集到的数据利用Matlab等软件进行分析。

3、故障电弧实验数据研究分析

利用Daubechies 4阶小波变换在软件中对数据进行处理分析。

低频系数只是重绘了原始波形,波形与原始波形一样,电流值没有改变,只能反映故障电弧波形的概貌,并不能反映故障电弧细节特征;高频系数部分,正常电流和产生故障电弧时的电流波形对应的高频系数区别很明显:正常电流高频系数值很小,故障电弧高频系数在每个周期中都有很大的值,其值大小是正常电流高频系数的十到几十倍,我们可以通过这一特性来判断回路是否有故障电弧发生。

然而,在实际应用中,回路连接的负载各式各样,每种负载的内阻各不相同,这将导致回路中的电流大小也不相同,那么对应小波变换获得的高频系数值会因负载的不同而不同,这给研发适用于多场合、多用途的故障电弧断路器带来了新的挑战。

本课题中采取的解决方案是:在某时刻,利用已经计算得到的高频系数除以该时刻回路中的对应的电流值(等效于低频系数),利用获得的比值大小来判断回路中是否有故障电弧产生。这样做的好处在于无需考虑回路中接了何种负载,只需计算上述的比值就能判断回路中是否有故障电弧产生。

我们可以通过能量的角度来解释高频系数与低频系数比值的物理意义:经小波变换后的低频系数是原信号去除了高频信号后、反应信号概貌的部分;高频系数部分是原信号包含的突变信号、反应信号细节的部分;高频系数与低频系数的比值反应了在某个时刻,单位能量所含的突变信号量,即线路正常工作时,单位能量保护的突变信号很少,比值很小,而线路发生故障电弧时,单位能量中包含了较多的突变信号,比值较大。

八、故障电弧检测技术研究(2016.3)

1、国内外研究现状

针对故障电弧能够造成一系列的危害,由上海电器科学研究院负责起草,中华人民共和国工业和信息化部于2013年12月31日发布了有关故障电弧检测装置的准则《电弧故障检测装置(AFDD)》。该准则规定:自2014 年7 月 1 日开始实施的JB/T11681-2013适用于在所规定的条件下能够实现燃烧的故障电弧电流实现检测。同时该准则还将燃烧的故障电弧电流与火灾危险动作值比较,并适用于当燃烧的故障电弧电流超过动作时断开被保护电路等功能的装置。

另外由公安部沈阳消防科学研究所负责起草并于2014 年 6 月24 日发布了有关故障电弧检测装置的国家标准GB14287.4-2014。该国家标准《电气火灾监控系统》的第四部分关于故障电弧探测装置于2015 年6 月 1 日开始实施。

表明了故障电弧防护技术的研究及其相应的断路器装置的研发与应用已经引起有关科研院所以及消防部门的高度重视。

目前有关故障电弧检测的方法大致上可以分为两类:一类是利用故障电弧发生时所产生的一些物理现象如弧声、高温、弧光、电磁波等特性来识别故障电弧。

另一类故障电弧的检测方法是利用故障电弧发生时线路中的电流、电压等电气特性异常来检测故障电弧。

2、小波分析理论与模式识别算法

2.1小波分析与故障电弧检测中的应用

(1)小波滤波和降噪处理。由于所采集的信号难免受到外界噪声的干扰,运用小波分析的方法能有效去除信号中的干扰,提高采集信号的可信度。

(2)信号的奇异性检测。对信号进行小波分解,小波系数的模极大值对应着信号的奇异点,利用这一性质可以检测信号的奇异性。

(3)信号熵的提取。对采集信号进行小波包子空间分解,提取各个频带的能量熵。根据被测信号在不同的小波分解层次上表现为奇异点位置为对应整齐的性质。此外它还能实现在强噪声污染情况下微弱信号的提取,并反映信号的能量分布情况。

3、故障电弧实验与分析

3.1改进BP 神经网络的设计(将小波变换的模极值作为输入)

BP 神经网络在网络训练的方面还存在几点不足,特别是一些处理时间要求比较短的场合还需要做出改进。

BP 神经网络的缺点主要表现在:某些特殊问题训练时间有可能过长,若在训练过程中权值改变的幅度过大会导致激活函数趋于饱和,进而无法调节神经网络的权值。使用BP 神经网络算法时,神经网络的权值收敛到的最终值并不一定是所期望的最优解,而有可能是局部极小值。另外还有遗忘旧样本。

九、故障电弧模式识别算法的研究(2011)

摘要:采集典型家用电器正常工作、开关断开、开关闭合、产生故障电弧时的电流波形和数据,利用小波分析理论提取能够描述串联型故障电弧特性的特征量作为神经网络的输入量,再用神经网络训练和检验建立的网络模型,进而实现故障电弧的模式识别。

1、小波函数的选择(难点)

目前有几十种小波函数,而且人们还在不断构造新的小波函数和相应的小波滤波器来满足不同小波分析应用的需要。各种小波函数性质各异,有的适合理论推导,如小波、高斯函数小波类有的更适合计算有的时域上有一较长的支撑有的可以得到完全重构有的则不能实现原信号的恢复。

然而,由于小波函数针对不同的工程应用表现出的特性具有复杂性,小波函数的选择目前也是小波分析理论研究的难题,按什么样的原则能够选择最优的小波函数还没有有效的方法。

一般用枚举法来挑选合适的小波(进行比较),当然这种选择不一定是最优的。

合理地挑选小波基函数主要应从以下几个方面来考虑:

(1)紧支性;(2)消失矩;(3)正则性;(4)对称性。

2、小波变换的时频域特性分析

小波变换的高频部分有较高的时间分辨率和较低的频率分辨率,而它的低频部分有较低的时间辨率和较高的频率分辨率。

3、基于小波变换和神经网络的故障电弧模式识别

3.1特征提取

从实验所得到的电弧电流波形,我们可以看到电弧电流在过零点时有一个明显的“零体”区间,而且由于负载和电弧燃烧情况不同,电弧电弧电流信号波形有一明显的突变。

3.2提取特征量

本文用离散小波变换来处理数据。小波重构信号能精确地反决原始信号在时频域上的变化情况,而小波能量谱能反映各个频段能量在总能量中所占比例。

3.3小波函数类型选择

小波函数类型的选择。一般选择与输入波形最匹配的基木小波。提出如下选择方法对于给定输入信一号,首先使用不同基本小波进行小波分解然后对各尺度上的小波系数进行阈值处理,低于阈值的小波系数置零最后选取非零小波系数个数最少的基本小波作为分析用小波。本文用实验样本在不同的小波基函数和分解层数下分解并重构,通过比较它们重构信号和原始信号的偏差来确定最佳的小波基函数和分解层数。

十、光伏系统直流电弧故障特征及检测方法研究(2016)

思路介绍:串联电弧的能量大,对线路和设备危害极大,且易引发火灾事故;但目前的低压断路器、熔断器等装置仅能对过流、短路等故障进行检测和保护,不能对电弧故障起作用,由于串联电弧故障电流较小,难以被保护装置检测到,所以需设置额外的故障电弧检测装置。

在电弧故障发生时,电弧两端的电流会瞬间下降,而两端的电压会瞬间提高。电弧故障发生时,常伴随有某一特定的高频信号,在正常工作情况下该高频信号并不出现,一旦该信号出现,则表明存在电弧故障。不同负载及连接方式不同通常高频信号也会有很大差异,所以需要建立精度较高的模型。

十一、基于改进小波变换的故障电弧检测方法的研究(2016)

1、故障电弧检测方法

在故障电弧的研究和检测方面,国内外主要有三类研究方法:第一类,建立相应的故障电弧数学模型;第二类,利用故障电弧产生时的物理特性作为检测的依据;第三类,利用故障电弧的电压、电流特性作为检测的依据。

上述方法不足:第一类方法数学模型的建立可以使故障电弧检测更加精密,但是需要建立纯粹的数学模型,很多故障电弧的参数无法准确的获得;第二类方法简单易行,但是这类检测方法有一个弊端: 需要将检测的设备安装在故障点的附近,这样才能准确无误的进行检测;第三类方法就是对电力线路中的电流信号进行分析,用快速傅里叶变换、小波分析、小波熵等算法对电流信号进行分析。这类方法通过监测线路中的电流信号,利用不同的检测算法提取故障电弧特征,方法简单、实用,但是缺少故障辨识模型。

十二、基于小波变换的电弧故障检测技术研究(2012.12)

摘要:电弧故障检测是一项线路保护技术,其主要功能是当发生故障电弧时能及时准确地识别出故障电弧并采取一定的措施保护电路,采用这种技术的保护装置叫故障电弧断路器(AFCI)美国发展比较成熟,国内电弧故障检测技术的研究起步晚,AFCI产品在国内市场几乎一片空白。

国内低压配电环境与国外低压配电环境不同,电弧故障检测方法和检测标准不能生搬硬套。本论文针对电弧故障检测技术展开研究,根据研究故障电弧的特性,提出电弧故障检测技术方法,能对常见负载线路出现故障电弧时有比较准确的识别率,同时对线路正常工作时有较低的误判率。

十三、基于小波分析和神经网络的模拟电路故障诊断(2012.4)

1、小波包分解法

多分辨率分析和Mallat算法满足了在某些领域里的信号处理需求,但是其对信号的时频分析仅能在信号的低频段以尺度函数的二进制变换进行分解重构,忽略了高频段,使其不适合应用在有特殊需要的情况。而小波包分解对正交小波变换做了一些改进,是更为精细的一种频带分解与重构方法,能对信号低频和高频同时分解,并且能够给出最合理的小波分解树,自适应地呈现了信号在不同频段应有的合理时频分辨率。

2、多分辨率小波变换与小波包分解的比较

小波分析在高频段的频率分辨率较差,在低频段的时间分辨率较差,为了克服这个缺点,人们在小波分解的基础上提出了小波包分解。小波包分解能够对信号高频率做分解变换,信号的时频分辨率得以提高,符合故障诊断特定情况的信号处理需求。

正交小波分解的过程是原始信号分解成低频和高频成分,然后将低频成分再分解为两部分,分别对应于一个近似系数向量和一个细节系数向量,继续对低频成分分解到具体操作者规定的层数,连续两层的近似系数中缺失的信息由两层中的下层细节系数补充,但是每一层的细节系数向量都不做分解。假使特征频段在高频信号中,则找不到特征信息了。

小波包分解不仅对低频部分做分解变换,而且对每一层的细节系数向量也使用类似于近似系数向量分解的方式再一分为二,高频部分分解的层数与低频部分一样多,便于找到高频成分的有效特征。

3、基于多分辨率分析和小波包的特征量提取

多分辨分析:提取第一层到第N 层的高频小波分解系数,计算总能量。

小波包:提取2N个低频到高频系数。进行重构再计算总能量。

十四、一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法

(2014.6)

摘要:针对交流串联型故障电弧发生时回路电流幅值较小、传统线路保护装置不能有效检测的问题,提出一种基于小波变换能量与神经网络结合且适用于多种典型负载的串联型低压交流故障电弧辨识方法。

利用自制的电弧发生装置模拟产生低压交流故障电弧,获取了6 种典型家用负载情况下电路正常运行及产生串联型故障电弧时回路的电流信号。对采集的信号进行小波分解,将各层细节信号能量的平均值和标准差输入BP 神经网络后构成小波神经网络,实现对不同负载测试样本的辨识。采用粒子群优化算法计算神经网络训练初始值,利用自适应学习率方法提高了训练速度。算法输出结果含义明确,输入层特征量选取合理。实验结果表明,采用该方法进行故障电弧辨识的准确率达到95%以上。

正常工作电流波形、故障电流波形:线性负载(阻性)、非线性负载(开关电源、容性和感性)。

故障诊断分析方法-结课论文

故障诊断分析方法比较 摘要:小波变换作为信号处理的手段,逐渐被越来越多领域的理论工作者和工 程技术人员重视和应用。在机械系统和电气系统中,故障时常发生,为了诊断 系统是否故障,小波分析是很好的方法。小波分析的方法很多,小波的选择也 很多类,为了研究哪种小波分析方法更加适合于故障检测。论文将通过一个例 子来分别采用功率谱、多分辨小波分析和小波包三种方法进行突发性故障诊断,来研究各自的分析特点。并总结在故障发生时,一个更加好的分析方法。 关键词:故障功率谱多分辨分析小波包分析 正文: 在对机械设备进行故障检测时,通常采用对振动信号进行频谱分析找出奇 异点的方法来实现设备监测。傅里叶变换是频谱分析的主要工具,其方法是研 究函数在傅里叶变换后的衰减以推断函数是否具有奇异性及奇异性的大小,但 傅里叶分析只能确定一个函数奇异性的整体性质而难以确定奇异点空间的位置 分布情况,这一局限性导致了频谱分析不能精确的确定信号的奇异性特点,给 进一步分析信号的规律带来了一定的障碍。 而在傅里叶基础上发展而来的功率谱可以识别不同信号的故障信号。将正 常信号的功率谱与运行过程中不断连续收集的信号功率谱进行对比,功率谱异 常就表示机械系统有故障,不同类型的故障会有不同类型的频谱特征,从故障 信号的功率谱中可以识别故障的类型。 然而利用传统的频谱分析方法只能从频谱图上了解故障信号的所包含的频 率成分,而无法确定具体的频率成分的震动形式。无法对具体的频率成分进行 分析,难以直接描述机械的状态。小波分析是近十年发展起来的一门适用于时 变信号分析的新兴工具,它可以把时域信号变换到时间—尺度域中,在不同尺 度下观察不同的局部化特性。在信号突变时,其小波变换后的系数具有模量极 大值,可通过对模的极大值点的检测来确定故障发生的时间点。在从小波基础 上发展的小波包,对各个子小波空间做出更加细致的分解,其对应的频带被进 一步分解,这使得时—频分析能聚焦于任意的细节,在故障诊断时,可从细节 上分析故障。 很多工作系统正常工作时,工作输出点的采样信号是蠕变信号,当由于多 种原因系统系统故障时,输出信号将产生一突变信号(主要表现在幅度和频率 的变化),信号的突变时刻被称为信号的奇异点。这些奇异点数值包含有重要 的故障信息,因此,对突变信号进行检测和处理,是故障诊断的关键。 因此,本文从功率谱、多分辨分析分析和小波包三种方法进行蠕变信号突发性 故障诊断,并比较总结它们的特点。 实例:由于日常机械中很多振动信号都是由不通频率的正弦余弦波组成的,于 是这里选择的原始信号采用的是单一频率正弦波的形式。为了研究上述三种分 析方法,并且由于还未在先研究阶段中未得到研究机械的信号,为了简化分析

喷码机五大常见故障及解决方法

喷码机五大常见故障及解 决方法 Prepared on 22 November 2020

喷码机五大常见故障解决方法: 1.高压故障,原因,高压传感器检测到高压不平衡。 具体原因:a.有异物碰到高压偏转板。b.高压偏转板脏。c.高压传感器本身太灵敏。解决方法:a&b清洗高压偏转板,然后正常开机即可。c.如果是这种情况,可能会经常报高压故障,但是偏转板却很干净。 2.充电故障 具体原因:a.充电槽上有墨水;b.充电墨点检测故障。解决办 法:a.关闭喷码机(包括电源),清洗充电槽。必要时可以拆下充电槽清洗。清洗彻底后,等充电槽干燥后,重新开机。b.这个故障产生的原因较多,首先从墨水开始。确定墨水的粘度,保质期,当然也要看墨水的品质,然后观察分裂,检查墨路压力,调制电压,并适当的做调整,使分裂良好。这样故障一般都能解决。还有可能是充电槽本身损坏。 3.字符缺损原因是有墨点落到了回收管的边缘,造成回收管挂墨 (回收管积墨) 具体原因:a.墨线位置是否正确。b.墨点分裂是否正常。c.墨水是否正常。d.喷码机接地是否有效(经常被客户和一些工程师忽略)。 4.回收管故障回收管传感器没有检测到有墨水流经回收管。 具体原因:a.墨线不正常(根本没有墨线射出,或墨线偏)。b. 回收管路堵塞。c.回收传感器损坏或者未接通。解决办法:a.检

查供墨回路。清洗喷嘴板,做墨线校正工作。b.回收管路堵塞,可以分段检查回收管堵塞位置。c.检查主板上面回收管传感器接头是否未正确安装。更换回收管传感器。 5.墨水粘度故障因为墨水粘度BFT值超标引起。有些情况下,机 器可以正常使用。但是必须做一些检查。否则可能在使用一段时间后,无法正常打印。 原因:a.墨水BFT目前值大于墨水BFT设置值,墨水粘度过高。 b.墨水BFT目前值小于墨水BFT设置值。墨水粘度过低。处理办 法:a.检查溶剂箱是否有溶剂。检查溶剂添加回路是否正常。b. 是否在很短的时间内多次开机,关机。如果没有在很短的时间内多次开机、关机,应检查溶剂添加回路是否正常。

完整版本带式输送机常见故障及处理方法总结汇总.doc

带式输送机常见故障及处理方法 序常见故障故障原因分析处理方法 号 一电动机故障 1 电动机不能1、线路故障1、检查线路 起动或起动2、保护电控系统闭2、检查跑偏、限位、后就立即慢锁沿线停车等保护,事下来3、速度(断带)保故处理完毕,使其复 护安装调节不当位 4、电压下降3、检查测速装置 5、接触器故障4、检查电压 5、检查过负荷继电 器 2 电动机过热1、由于超载、超长1、测量电动机功 度或输送带受卡阻,率,找出超负荷运行 使运行超负荷运行原因,对症处理 2、由于传动系统润2、各传动部位及时 滑条件不良,致使电补充润滑 机功率增加3、清除煤尘 3、在电机风扇进风 4、采用等功率电动 口或径向散热片中机。使特性曲线趋向

堆积煤尘,使散热条 件恶化 4、双电机时,由于 电机特性曲线不一 或滚筒直径差异,使 轴功率分配不匀 5、频繁操作 二液力偶合器 故障 一致,通过调整偶合 器充油量,使两电机 功率合理分配 5、减少操作次数 1漏油:1、易熔合金塞未拧1、用扳手打紧易熔 1、易熔紧塞或注油塞 塞或注油2、注油塞未拧紧2、更换“ O ”型密 塞运转时3、“ O”型密封圈损封圈 漏油坏3、拧紧连接螺栓更 2、液力4、连接螺栓未拧换密封圈和垫圈 偶合器壳紧,轴套端密封圈或 体结合面垫圈损坏 漏油 3、停车 时漏油 2打滑1、液力偶合器内注1、用扳手拧开注油 油量不足塞,按规定补充油量

2、输送机超载2、停止输送机运 3、输送机被卡住转,处理超载部 3、停止输送机,处 理被卡住故障 3 过热1、通风散热不良1、清理通风网眼,清 除堆积压在外罩上的 粉尘 4 电机转动联1、液力联轴器内无1、拧开注油塞,按 轴器不转油或油量过少规定加油或补充油 2、易熔塞喷油量 3、电网电压降超过2、拧下易熔塞,重 电压允许值的范围新加油或更换易熔 合金塞。严禁用木塞 或其它物质代替易 熔塞 3、改善供电质量 5 起动或停车液力联轴器上的弹性联拆去连接螺栓,更换弹 有冲击声轴器材料过度磨损性材料 三减速器故障 1 过热1、减速器中油量过1、按规定时注油 多或过少2、清洗内部,及时 2、油使用时间过长换油修理或更换轴

汽车检测与诊断技术知识点总结复习过程

1.汽车检测与诊断技术是汽车检测技术与汽车故障诊断技术的统称。汽车检测是指为了确定汽车技术状况或工作能力所进行的检查与测量。汽车诊断是指在不解体(或仅拆下个别小件)的情况下,确定汽车的技术状况,查明故障部位及故障原因 2.汽车检测分类 1.安全性能检测 2.综合性能检测 3.汽车故障检测 4.汽车维修检测 汽车维修检测包括汽车维护检测和汽车修理检测,汽车维护检测主要是指汽车二级维护检测,它分为二级维护前检测和二级维护竣工检测。汽车修理检测主要是指汽车大修检测,它分为修理前,修理中及修理后检测 3.随机误差是指误差的大小和符号都发生变化而且没有规律可循的测量误差,不可避免 4.粗大误差是指由于操作者的过失而造成的测量误差 ,可以避免 5.汽车检测系统通常由电源,传感器,变换及测量装置,记录及显示装置,数据处理装置的组成 传感器是一种能够把被测量的某种信息拾取出来,并将其转换成有对应关系的,便于测量的电信号装置 变换及测量装置是一种将传感器送来的电信号变换成易于测量的电压或电流信号的装置 6.检测系统的基本要求:1.具有适当的灵敏度和足够的分辨力 2.具有足够的检测精度另外,检测系统还应具备良好的动态特性 灵敏度是指输出信号变化量与输入信号变化量的比值 分辨力是指检测系统能测量到最小输入量变化的能力,即能引起输出量发生变化的最小输入变化量 7.智能化检测系统的特点:1自动零位校准和自动精度校准 2自动量程切换 3功能自动选择 4自动数据处理和误差修正 5自动定时控制 6.自动故障诊断 7功能越来越强大 8使用越来越方便 8.诊断参数分类 诊断参数可分为三大类:工作过程参数,伴随过程参数,几何尺寸参数 (1)工作过程参数:指汽车工作时输出的一些可供测量的物理量、化学量,或指体现汽车功能的参数,如汽车发动机功率、燃油消耗率、最高车速和制动距离等。从工作参数本身就能表诊断对象总的技术状况,适合于总体诊断 (2)伴随过程参数:伴随过程参数一般并不直接体现汽车或总成的功能,但却能通过其在汽车工作过程中的变化,间接反映诊断对象的技术状况,如工作过程中出现的振动、噪声、发热和异响等。伴随过程参数常用于复杂系统的深入诊断。 (3)几何尺寸参数:几何尺寸参数能够反映诊断对象的具体结构要素是否满足要求,可提供总成、机构中配合零件之间或独立零件的技术状况,如配合间隙、自由行程、圆度和圆柱度等。 9.诊断参数选用原则: (1)单值性 (2)灵敏性 (3)稳定性 (4)信息性 10.诊断参数标准的组成:(1)初始标准值 (2)极限标准值 (3)许用标准值 11.诊断周期 汽车诊断周期是汽车诊断的间隔期,以行使里程或使用时间表示,诊断周期的确定,应满足技术和经济两方面的条件,获得最佳诊断周期。 最佳诊断周期,是能保证车辆的完好率最高而消耗的费用最少的诊断周期。

喷码机五大常见故障及解决方法

喷码机五大常见故障解决方法: 1.高压故障,原因,高压传感器检测到高压不平衡。 具体原因:a.有异物碰到高压偏转板。b.高压偏转板脏。c.高压传感器本身太灵敏。解决方法:a&b清洗高压偏转板,然后正常开机即可。c.如果是这种情况,可能会经常报高压故障,但是偏转板却很干净。 2.充电故障 具体原因:a.充电槽上有墨水;b.充电墨点检测故障。解决办法: a.关闭喷码机(包括电源),清洗充电槽。必要时可以拆下充电槽 清洗。清洗彻底后,等充电槽干燥后,重新开机。b.这个故障产生的原因较多,首先从墨水开始。确定墨水的粘度,保质期,当然也要看墨水的品质,然后观察分裂,检查墨路压力,调制电压,并适当的做调整,使分裂良好。这样故障一般都能解决。还有可能是充电槽本身损坏。 3.字符缺损原因是有墨点落到了回收管的边缘,造成回收管挂墨 (回收管积墨) 具体原因:a.墨线位置是否正确。b.墨点分裂是否正常。c.墨水是否正常。d.喷码机接地是否有效(经常被客户和一些工程师忽略)。 4.回收管故障回收管传感器没有检测到有墨水流经回收管。 具体原因:a.墨线不正常(根本没有墨线射出,或墨线偏)。b.回收管路堵塞。c.回收传感器损坏或者未接通。解决办法:a.检查供墨回路。清洗喷嘴板,做墨线校正工作。b.回收管路堵塞,可以分

段检查回收管堵塞位置。c.检查主板上面回收管传感器接头是否未正确安装。更换回收管传感器。 5.墨水粘度故障因为墨水粘度BFT值超标引起。有些情况下,机器 可以正常使用。但是必须做一些检查。否则可能在使用一段时间后,无法正常打印。 原因:a.墨水BFT目前值大于墨水BFT设置值,墨水粘度过高。b. 墨水BFT目前值小于墨水BFT设置值。墨水粘度过低。处理办法: a.检查溶剂箱是否有溶剂。检查溶剂添加回路是否正常。 b.是否在 很短的时间内多次开机,关机。如果没有在很短的时间内多次开机、关机,应检查溶剂添加回路是否正常。

LTE常见故障总结

LTE常见故障总结 11、System module failure (0010) 32、BTS reference clock missing (1898) 33、Configuration error: Unit initialization failure (0012) 34、Configuration error: Not enough HW for LCR (1868) 45、Configuration error: Power level not supported (4008) 46、Cell configuration data distribution failed (6253) 47、Failure in optical RP3 interface (4064) 58、Failure in optical RP3 interface (0010) 59、Baseband bus failure (3020,1906)5 10、RF module failure (6259,19 11、17 11、1712)5 11、Cell power failure (4090)6 12、GPS Receiver alarm: Control Interface not available (4011)6 13、X2 interface setup failure(6304)6 14、Transport layer connection failure in X2 interface6

15、Failure in replaceable baseband unit7 16、Temperature alarm(0002)7 17、VSWR(1838)7 18、Failure in optical RP3 interface (2004)8 19、GPS时钟盒闪断,时钟信号不正常,无法识别RRU8 20、Failure in optical RP3 interface(2000)8 21、光纤交叉连接8 22、基站始终无法建立S1连接,只到configed状态9 23、GPS时钟盒闪断,时钟信号不正常,无法识别RRU9 24、某一个小区的RRU无法识别9 25、BBU版本无法识别10 26、校准初步排查10 27、本地IP地址和路由正常,ping不通MME和网关11 28、TRS文件始终无法生效11 29、三种疑难告警12 30、远程ping不通基站12 31、风扇告警12 32、BTSlog有link消息,但是pinger始终不亮12 33、驻波问题13 34、pinger正常,但是SM里小区显示橙黄色告警13 35、几个特列13 36、FOSI 和FOSN的光功率范围13

APG典型故障处理小结

APG典型故障处理小结 1、故障:intelligent networks management interface 分析:此告警表明文件系统在处理intelligent networks management interface (INM)接口连接时出错。 此时有两种情况:1、ACTIVE CONNECTION FILE BUFFER表明缓冲区文件有误; 2、INM LOG FILE表明INM的LOG文件处理时出错,此种情况比较常见,LOG FILE因为某些偶然原因被删除后就会出现这种情况,例如有时LARGE RESTART或是RELOAD后丢失此子文件。 处理: 用指令ssmpi:sfn=n+1其中SFN:SUBFILE NAME。n为最后一个INMLOG中的子文件的数目,出现这种情况。APG40中可以用CPFLS -S指令直接查看INMLOG 中的子文件情况。 2、故障:APG40系统中文件无法传到OSSDESTx的问题。 分析:多数此类告警都可以用指令CDHLS -L 查看所有路径的OSSDESTx 的传输类型和参数定义有否正确。大多数都不会有参数丢失的情况,然后用CDHVER 查看告警制定的OSS路径的状态是否OK,否则用指令CDHVER -M 人工修正使状态变为正常,消除告警。 但是有的告警比较特殊例如: AP FILE PROCESSING FAULT CAUSE FILE TRANSFER FAILED TRANSFER QUEUE ALOG DESTINA TION SET OSSDEST ALOG Problem Data Transfer error 分析处理过程:先试着用以上常规的处理方法即以上指令来设法消除此告警:1、用acease无法消除告警

智能故障诊断技术知识总结

智能故障诊断技术知识总结 一、绪论 □ 智能: ■ 智能的概念智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■ 低级智能和高级智能的概念低级智能——感知环境、做出决策和控制行为高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较和推理能力,能根据复杂环境变化做出正确决策和适应环境变化 ■ 智能的三要素及其含义三个基本要素:推理、学习、联想推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □ 故障: ■ 故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况: 1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■ 故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表现出层次性。一般可 分为系统级、子系统级、部件级、元件级等多个层次;高层故障可由低 层故障引起,而低层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互影响,如系统故障常 常由相关联的子系统传播所致。表现为,一种故障可能对应多种征兆,而 一种征兆可能对应多种故障。这种故障与征兆间的复杂关系导致了故障诊 断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性故障的出现通 常都没有规律性,再加上某些信息的模糊性和不确定性,就构成了故障的 随机性。 4可预测性——设备大部分故障在出现之前通常有一定先兆,只要及时捕捉这些征兆信 息,就可以对故障进行预测和防范。 □ 故障诊断: ■ 故障诊断的概念 故障诊断就是对设备运行状态和异常情况做出判断。具体说来,就是在设备没有发生故 障之前,要对设备的运行状态进行预测和预报;在设备发生故障之后,要对故障的原因、 部位、类型、程度等做出判断;并进行维修决策。 ■ 故障诊断的实质及其理解故障诊断的实质——模式识别(分类)问题 ■故障诊断的任务及其含义 故障检测:采用合适的观测方式、在合适部位测取特征信号,即信号测取;采用合适的方法,从特征信号中提取状态征兆,即征兆提取 故障识别:采用合适的状态识别方法与装置,依据征兆而推理识别出设备的有关状

实用电机故障诊断方法总结

交流异步电动机常见故障的分析、诊断及处理 一、异步电动机的故障分析、诊断与处理 电动机的故障大体归纳为电磁的原因和机械的原因两个方面。常见故障分析、诊断与处理如下: 1.异步电动机不能起动: 1.1电动机不能起动,有被拖动机械卡住、起动设备故障和电动机本体故障及其它方面原因: 处理方法:当电动机不能起动的故障时,可使用万用表测量三相电压,若电压太低,应设法提高电压,原因可能有:⑴电源线太细,起动压降太大,应更换粗导线。⑵三角形接线错接成星形接线,又是重载起动,应按三角形接法起动。⑶送电电压太低,应增高电压,达到要求的电压等级。若三相电压不平衡或缺相,说明故障发生在起动设备上。若三相电压平衡,但电动机转速较慢并有异常声响,这可能是负荷太重,拖动机械卡住。此时应断开电源,盘动电动机转轴,若转轴能灵活均衡地转动,说明是负荷过重;若转轴不能灵活均衡地转动,说明是机械卡阻。若三相电压正常而电机不转,则可能是电机本体故障或卡阻严重,此时应使电动机与拖动机械脱开,分别盘动电动机和拖动机械的转轴,并单独起动电动机,即可知道故障所在,作相应的处理。 1.1.1当确定为起动设备故障时,要检查开关,接触器各触头及接线柱的接触情况;检查热继电器过载保护触头的开闭情况和工作电流的调整值是否合理;检查熔断器熔体的通断情况,对熔断的熔体在分析原因后应根据电动机起动状态的要求重新选择;若起动设备内部接线有错,则应按照正确接线改正。 1.1.2 当确定为电动机本体故障时,则应检查定,转子绕组是否接地或轴承是否损坏。绕组接地或局部匝间短路时,电动机虽能起动但会引起熔体熔断而停转,短路严重时电动机绕组很快就会冒烟。 检查绕组接地常采用的方法:用兆殴表检查绕组的对地绝缘电阻,若存在接地故障,兆殴表指示值为零。绕组短路:通常用双臂电桥测直阻的平衡情况,对于绕组接地、匝间短路的处理通常都是重新绕制绕组。 1.1.3其它原因 由于轴承损坏而造成电动机转轴窜位、下沉、转子与定子磨擦乃至卡死时,应更换轴承。 若在严冬无保温,环境较差场所的电动机,应检查润滑脂。 2、鼠笼式电动机起动后转速低于额定值 2.1电动机运行时的转速降低: 2.1.1电源电压;如端电压降低,则电机起动转矩减小,转速降低。若检查是电压太低,则应提高电源电压。电动机接线错误,绕组应是三角形接线而错接成星形的也会使相电压降低。 2.1.2转子电阻;若鼠笼转子导条断裂或开焊,表现为转速和起动转矩下降。导条断裂和开焊,首先可进行直观检查,也可借助于仪表检查。直观检查:就是查看鼠笼导条有没有电弧灼痕,有无断裂和细小裂纹,端环连接是否良好。借助于仪表检查:一种方法是在电动机运行时,看指示电动机定子电流的电流表。在鼠笼转子导条断裂或开焊故障时,电流表指针将来回摆动。对于未装设电流表的电动机,可将电动机的定子绕组串联电流表后接到15-20%Ue(Ue为额定电压)的三相交流电源上,(用三相自耦调压器调压),盘动电动机转轴,随着转子位置不同,定子电流会发生变化,指针突然下降处即导条断裂或开焊处。 2.2若检查是被拖动机械轻微卡住,使转轴转不灵活,也会使电动机勉强拖动负载

关于柴油机故障诊断的总结

关于柴油机故障诊断的总结 关于柴油机故障诊断的总结 关于柴油机故障诊断的总结 柴油发动机应用广泛,处在所属产业链的相对核心的位置。其运行状态的好坏直接关系到成套设备的工作状态。因此,对柴油机运行状态进行实时监测和故障诊断,确保其处于安全、可靠、高效率的工作状态,对提高整套设备的劳动效率,提高产品质量,降低生产成本和能耗具有重大的意义。 柴油机故障诊断和其它类型的机械故障诊断一样,首先必须对故障机理进行研究,以故障信号的检测技术及信号处理技术为基本技术,以故障信号处理和特征提取理论为基本理论,以基于信号处理和特征提取的故障类型识别方法为基本方法。近年来,随着科学技术的发展,柴油机故障诊断技术也经历着从最初的事后维修到定时检测,再到现代故障诊断技术的视情维修。传统的诊断方法虽然简单易行,但是由于其信息量小,精确度不高,成本较高且容易发生误判,故难以满足现代的需求。20世纪80年代,邓聚龙教授提出了灰色系统理论,为研究少数据、贫信息不确定性问题提供了新方法,很好地解决了传统方法的不足之处。进入90年代后,随着人工智能技术的发展,柴油机故障诊断技术进入了智能化的阶段。检测项目增强,软件功能增强,诊断的准确性大为提高。基于专家系统和神经网络的智能化诊断方法为柴油机故障诊断技术的发展提供了新的方向。一、传统的故障诊断技术 传统的柴油机故障诊断技术主要包括热力参数分析法、声振监测、磨粒监测分析法。热力参数分析法中又可以分为通过测定柴油机工作过程的示功图对柴油机

工作过程做综合性的监测的示功图法和利用瞬时转速波动信号对柴油机进行监测和故障诊断的方法。1、热力参数分析法 热力参数分析法是利用柴油机工作时热力参数的变化来判断其工作状态的。这些参数包括气缸压力示功图、排气温度、转速、滑油温度、冷却水进出口温度及排放等。由于这些参数能够很好的反应柴油机的工作情况以及故障特征,具有关联性强、直观且便于分析等优点,因此此种方法得到了广泛的应用。1.1示功图法 示功图是在活塞式柴油机的一个循环中,气缸内气体压力随活塞位移(或气缸内容积)而变化的循环曲线。示功图除了表示作功或耗功的大小以外,还能综合反映了柴油机作出机械功的热力装换过程,故常常用来分析研究以及改善气缸内的工作过程。获取示功图的方法有直接测量法和间接测量法。直接测量法就是直接用压力传感器压力随曲轴转角的变化,然后经过整理表示为曲线形式。间接测量法则通过测量柴油机运行过程中与气缸压力相关的其它量来求的压力而获得示功图的方法。由于间接测量法对柴油机的工作无影响,故目前国内外多采用此方法。虽然这种方法在确定柴油机各类故障时比较全面,但是在现场使用中还存在一些技术问题。如上止点的确定问题、压力传感器的安装及通道效应问题等。 1.2瞬时转速法 柴油机曲轴的瞬时转速波动信号能较理想的反映机器的工作状态和工作质量。通过对瞬时转速波动信号的分析可以得到机器运行状态和相关故障的丰富信息。这种方法的原理是基于柴油机正常工作状态下各缸动力性能的一致性。一旦某一气缸发生故障,这种一致性就会遭到破坏,柴油机的运转平稳性就会变差,转速波动信号将产生严重变形。根据此变形的程度,就能判断出缸内工作过程的好坏。

服务器维修故障诊断思路大全

前言: 相对PC机而言服务器出故障的机率是小多了,但是它的故障给企业也带来了一些影响。作为服务器工程师除要有服务器基础知识以外,还需要具备服务器故障的诊断思路,这样才能最快速的解决问题也可以减少故障停机时间。 本文并不是针对某个厂家服务器故障完全手册,而是根据个人经验总结出来的一些经验思路还有一些总结案例。按照下面思路和方法基本上能够解决目前服务器更换式维修的大多数问题。而且里面的一些操作风险性也不是很大,因为服务器本身就是坏的,最坏的情况下就是它一点都不能工作了呗,(主要确认是否有数据,数据无价啊)而且现在很多厂商都有自己的客服电话关于产品问题打个电话也很方便,所以安心做啦 当然如果服务器在保修期内就打电话让售后工程师上门服务,毕竟顾客就是上帝嘛,但是如果上帝比较着急使用,一般小故障自己解决一下就好了,因为一般报修最快都是第二天(大客户如银行等除外,一般当天还得是晚上才能停机解决) 目录: 一、服务器常见故障分类 二、服务器常见故障现象及其对应排错方法 三、服务器排错基本原则 四、服务器故障需要收集哪些信息 五、服务器硬件故障排错实例 六、服务器软件故障排错实例 七、服务器常见内存故障现象 一、服务器常见故障类型分类: A. 开机无显示 B. 加电BIOS自检阶段故障 C. 系统和软件安装阶段故障和现象 D. 操作系统启动失败 E. 系统运行阶段故障 二、服务器常见故障现象及其对应的排除方法

A.服务器开机无显示(加电无显示和不加电无显示) 1. 检查供电环境 2. 检查电源和故障指示灯(故障指示灯状态,目前很多厂商的服务器都有故障指示灯,或故障诊断卡等。) 3. 按下电源开关时,键盘指示灯是否亮、风扇是否全部转动 4. 是否更换过显示器,尝试更换另外一台显示器 5. 插拔内存,用橡皮擦擦拭一下金手指,如果在故障之前有增加内存,去掉增加的内存尝试 6. 是否添加了CPU,如果有增加CPU尝试去掉 7. 去掉增加的第三方I/O卡包括Raid卡等 8. ClearCMOS (记得使用跳线来清除,尽量不要直接拔电池,每款服务器清除跳线位置不一致,具体找不到电话联系一下厂商客服) 9. 尝试更换主板、内存等主要部件 10.清除静电,将电源线等外插在服务器上的线缆全部拔掉,然后轻按开机键几下 B.加电BIOS自检报错 1. 根据BIOS自检报错信息提示 2. 查看是否外插了第三方的卡或者添加部件,如果有还原基本配置重启 3. 做最小化测试 4. 尝试清除CMOS 5. 看能否正常进入BIOS C. 系统安装阶段故障和现象 1.查看服务器支持操作系统的兼容版本(从厂商能查到兼容性列表) 2.系统安装蓝屏(对蓝屏故障代码诊断) 3.安装在分区格式化的时候找不到硬盘 (阵列驱动没有安装或者没有配置阵列,可以尝试适应引导光盘安装) 4.大于2T的硬盘式应该如何分区(必须使用阵列卡才能实现或者有外插识别卡) (使用阵列卡配置阵列分成一个小于2T的空间,一个大于2T的空间,然后将系统安装在小于2T的上面,安装好系统后在使用GPT方式分区即可) 5.安装过程是死机 (检查兼容性列表---查看硬盘接口选择是否正确---阵列驱动安装是否正确---尝试最小化配置安装检查是否为内存和CPU等问题) 6.引导光盘安装失败

电脑硬件常见的故障检测及处理方法

电脑硬件常见的故障检测及处理方法 掌握一些电脑维修的基本检测方法,是解决电脑故障的必备基础知识。本文总结了电脑使用者在日常的工作、生活中有可能遇到的几种代表性的电脑硬件故障以及处理方法,在遇到电脑故障时,快速判断并处理一些有规律可循的常见故障。 我们在日常生活、工作中肯定会遇到电脑硬件引起的一些故障,这个时候,如果你不懂如何检测及处理硬件故障,则会对我们的生活、工作造成很大的不便;本文就针对我们在使用电脑中常遇到的几种硬件故障,总结了几种代表性的电脑故障及处理方法,希望对大家有一定的帮助; 一、什么是电脑硬件故障 电脑硬件故障是由硬件引起的故障,涉及各种板卡、存储器、显示器、电源等。常见的硬故障有如下一些表现。 ①电源故障,导致系统和部件没有供电或只有部分供电。

②部件工作故障,计算机中的主要部件如显示器、键盘、磁盘驱动器、鼠标等硬件产生的故障,造成系统工作不正常。 ③元器件或芯片松动、接触不良、脱落,或者因温度过热而不能正常运行。 ④计算机外部和内部的各部件间的连接电缆或连接插头(座)松动,甚至松脱或者错误连接。 ⑤系统与各个部件上及印制电路的跳线连接脱落、连接错误,或开关设置错误,而构成非正常的系统配置。 ⑥系统硬件搭配故障,各种电脑芯片不能相互配合,在工作速度、频率方面不具有一致性等。 二、硬件故障的常用检测方法 目前,计算机硬件故障的常用检测方法主要有以下几种。 1.清洁法 对于使用环境较差或使用较长时间的计算机,应首先进行清洁。可用毛刷轻轻刷去主板、外设上的灰尘。如果灰尘已清洁掉或无灰尘,就进行下一步检查。另外,由于板卡上一些插卡或芯片采用插脚形式,所以,震动、灰尘等其他原因常会造成引脚氧化,接触不良。可用橡皮擦去表面氧化层,重新插接好后,开机检查故障是否已被排除。 2.直接观察法 直接观察法即“看、听、闻、摸”。 ①“看”即观察系统板卡的插头、插座是否歪斜,电阻、电容引脚是否相碰,表面是否烧焦,芯片表面是否开裂,主板上的铜箔是否烧断。还要查看是否有异物掉进主板的元器件之间(造成短路)。也应查看板上是否有烧焦变色的地方,印制电路板上的走线(铜箔)是否断裂等。 ②“听”即监听电源风扇、硬盘电机或寻道机构等设备的工作声音是否正常。另外,系统发生短路故障时常常伴随着异常声响。监听可以及时发现一些事故隐患,帮助在事故发生时即时采取措施。 ③“闻”即辨闻主机、板卡中是否有烧焦的气味,便于发现故障和确定短路所在处。 ④“摸”即用手按压管座的活动芯片,查看芯片是否松动或接触不良。

一次现场故障处理的总结

一次实际现场故障处理的总结 2011年7月27日,北京西便门邮政一台安装红旗DC5sp4的服务器在早上运行时ORACLE报错,不能读一个表,导致ORACLE不能正常运行,然后直接影响这台服务器的正常运行。其管理员查看系统内存占用过大,要求红旗公司派下现场给予处理。 经我们现场检查,发现其ORACLE运行时内存共占用54GB左右,而其总的物理内存 为64GB。然而待服务器重启后,还未启动ORACLE,内存就被ORACLE用户的进程占用了49GB左右。现场初步判断应该是ORACLE配置的问题。建议让ORACLE公司派人来检查一下问题。我们同时收集了该服务器运行信息回公司分析。第二天给予明确回复。 28日,对昨天下现场工作进行分析总结。 通过这第一次下现场,从中学到不少实用技巧,发现售后服务工作需要有比较全面的 知识和技术,才能对故障现象进行深入准确地分析,发现问题,并提出解决或建议方案。 首先,检查系统运行状态主要用到的命令有如下四个: 一、ps命令 ps-ef&&显示所有进程,并用ASCII字符显示树状结构,表达程序间的 相互关系。ps-ef|wc-l&&统计当前共有多少个进程在运行。 ps-ef|grep oracle&&查看与oracle有关的所有进程信息。 具体命令解释如下: 1)ps a显示现行终端机下的所有程序,包括其他用户的程序。 2)ps-A显示所有程序。 3)ps c列出程序时,显示每个程序真正的指令名称,而不包含路径,参数或常驻服 务的标示。 4)ps-e此参数的效果和指定?参数相同。 5)ps e列出程序时,显示每个程序所使用的环境变量。 6)ps f用ASCII字符显示树状结构,表达程序间的相互关系。 7)ps-H显示树状结构,表示程序间的相互关系。 8)ps-N显示所有的程序,除了执行ps指令终端机下的程序之外。 9)ps s采用程序信号的格式显示程序状况。 10)ps S列出程序时,包括已中断的子程序资料。 11)ps-t<终端机编号> 指定终端机编号,并列出属于该终端机的程序的状况。 12)ps u 以用户为主的格式来显示程序状况。 13)ps x 显示所有程序,不以终端机来区分。 最常用的方法是ps-aux,然后再利用一个管道符号导向到grep去查找特定的进程,然 后再对特定的进程进行操作。

智能故障诊断技术知识总结复习课程

智能故障诊断技术知 识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较 和推理能力,能根据复杂环境变化做出正确决策和适应 环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况:

1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表 现出层次性。一般可分为系统级、子系统级、部件级、 元件级等多个层次;高层故障可由低层故障引起,而低 层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互 影响,如系统故障常常由相关联的子系统传播所致。表 现为,一种故障可能对应多种征兆,而一种征兆可能对 应多种故障。这种故障与征兆间的复杂关系导致了故障 诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性 故障的出现通常都没有规律性,再加上某些信息的模糊 性和不确定性,就构成了故障的随机性。

计算机网络故障的一般识别和解决方法要点

目录 前言 (2) 课题研究的背景 (3) 研究目的 (4) 课题研究主要内容 (5) 逻辑类故障 (6) 物理类故障 (9) 计算机网络中具体故障具体分析 (11) 关于网络故障方面一些常见的问题及解决方法 (15) 个人总结................................................................................................................................... 参考文献...................................................................................................................................

致谢............................................................................................................................................. 前言 在当今这个计算机网络技术日新月异,飞速发展的时代里,计算机网络遍及世界各个角落,应用在各行各业,普及到千家万户,它给人们可谓带来了诸多便利,但是网络故障的普遍存在,也给网络用户带来了很多的烦恼,笔者对常见的网络故障进行了分类和排查方法的介绍,相信对你有所帮助。根据常见的网络故障归类为:物理类故障和逻辑类故障两大类

课题研究的背景 自从网络技术运用的20多年以来,全世界网络得到了持续快速的发展,中国的网络安全技术在近几年也得到快速的发展,这一方面得益于从中央到地方政府的广泛重视,另一方面因为网络安全问题日益突出,网络安全企业不断跟进最新安全技术,不断推出满足用户需求、具有时代特色的安全产品,进一步促进了网络安全技术的发展。从技术层面来看,目前网络安全产品在发展过程中面临的主要问题是:以往人们主要关心系统与网络基础层面的防护问题,而现在人们更加关注应用层面的安全防护问题,安全防护已经从底层或简单数据层

免疫组化操作方法原理步骤以及常见问题处理大总结

免疫组化操作方法、原理、步骤以及常见问题处理大总结 1、方法操作不难,最大的难处是出现异常结果时如何解决?这就需要掌握免疫组化实验原理,每一步知道为什么这样做,这样你才敢大胆地改革先前的不对的方法步骤。如抗体孵育条件主要是抗体浓度、温度、时间,这三者一般是相互成反比的(相对),其中浓度是最重要的先决条件,温度决定反应的速度、时间决定反应的量。就拿温度来说,可以有4度、室温、37度,我推荐4度最佳,反应最温和,背景较浅;而37度反应速度较快,时间较短;室温我不太提倡,除非你每次都把环境温度控制在一定的范围,否则,尽量选择前两者。 2、免疫组化最大的优势是定位和定性。相比于其他蛋白检测方法,免疫组化具有定性灵敏度高、定位较直接准确,是定位检测分析首选方法。尤其对于有些因子的转位研究十分有用。 3、免疫组化结果定量分析的前提是高质量的染色切片。免疫组化结果也能定量分析,但必须是背景染色浅而特异性染色较深的情况下,分析最为准确,这种原则可能也是我们日常审稿时判定研究结果的必备条件。 4、免疫组化实验一定要设置阳性对照和阴性对照。阳性对照一般是用肯定表达这种抗原的切片来做;阴性对照一般是用PBS或非一抗替代一抗来进行反应,其余步骤均一致。前者是排除方法和实验系统有无问题;后者是排除有无一抗外的非特异性染色。 5、免疫组化的应用广泛,是当前实验研究的最重要方法之一。如今发SCI论文时,明显感觉仅靠量化的数据来发文章很难,加一些形态学数据或图片,老外十分欢迎,可能是怕你学术造假吧。当然也不能做假阳性或假阴性结果。 6、免疫组化技术掌握与否的鉴定标准是同一切片或不同切片中不同抗原均从摸索浓度或条件而做出优良的染色切片。我在平时带教中就发现许多研究生把我已经摸索很成熟的反应条件、浓度、方法步骤,重复运用于同一性质的切片和同一种抗体,做出来后就觉得自己已经掌握了免疫组化方法,更换一种抗体后,居然连二抗的种属来源都拿错了。失败往往促进你去思考试验原理和过程,成功有时也加快你自傲。 7、实验方法需要动手+动脑。如今我还不敢说我在免疫组化什么都知道。我只所以今天敢在这里说这说那,这是因为我经过了反复的动手+动脑,把理论原理运用于实践,在把实践中发现的问题带到理论知识中去解决,最终把理论与实践融会贯通。 一、概念和常用方法介绍 1、定义用标记的特异性抗体对组织切片或细胞标本中某些化学成分的分布和含量进行组织和细胞原位定性、定位或定量研究,这种技术称为免疫组织化学(immunohistochemistry)技术或免疫细胞化学(immunocytochemistry)技术。 2、原理根据抗原抗体反应和化学显色原理,组织切片或细胞标本中的抗原先和一抗结合,再利用一抗与标记生物素、荧光素等的二抗进行反应,前者再用标记辣根过氧化物酶(HRP)或碱性磷酸酶(AKP)等的抗生物素(如链霉亲和素等)结合,最后通过呈色反应或荧光来显示细胞或组织中化学成分,在光学显微镜或荧光显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞爬片或组织切片上原位确定某些化学成分的分布和含量。 3、分类 1)按标记物质的种类,如荧光染料、放射性同位素、酶(主要有辣根过氧化物酶和碱性磷酸酶)、铁蛋白、胶体金等,可分为免疫荧光法、放射免疫法、免疫酶标法和免疫金银法等。2)按染色步骤可分为直接法(又称一步法)和间接法(二步、三步或多步法)。与直接法相比,间接法的灵敏度提高了许多。3)按结合方式可分为抗原-抗体结合,如过氧化物酶-抗过氧化物酶(PAP)法;亲和连接,如卵白素-生物素-过氧化物酶复合物(ABC)法、链霉菌抗生物素蛋白-过氧化物酶连结(SP)法等,其中SP法是比较

LTE常见故障总结

L TE-FZHA(RL25)常见故障总结 目录 LTE-FZHA(RL25)常见故障总结 (1) 1.System module failure (0010) (3) 2.BTS reference clock missing (1898) (3) 3.Configuration error: Unit initialization failure (0012) (3) 4.Configuration error: Not enough HW for LCR (1868) (4) 5.Configuration error: Power level not supported (4008) (4) 6.Cell configuration data distribution failed (6253) (4) 7.Failure in optical RP3 interface (4064) (5) 8.Failure in optical RP3 interface (0010) (5) 9.Baseband bus failure (3020,1906) (5) 10.RF module failure (6259,1911、1711、1712) (5) 11.Cell power failure (4090) (6) 12.GPS Receiver alarm: Control Interface not available (4011) (6) 13.X2 interface setup failure(6304) (6) 14.Transport layer connection failure in X2 interface (6) 15.Failure in replaceable baseband unit (7) 16.Temperature alarm(0002) (7) 17.VSWR(1838) (7) 18.Failure in optical RP3 interface (2004) (8) 19.GPS时钟盒闪断,时钟信号不正常,无法识别RRU (8) 20.Failure in optical RP3 interface(2000) (8) 21.光纤交叉连接 (8) 22.基站始终无法建立S1连接,只到configed状态 (9) 23.GPS时钟盒闪断,时钟信号不正常,无法识别RRU (9) 24.某一个小区的RRU无法识别 (9) 25.BBU版本无法识别 (10) 26.校准初步排查 (10) 27.本地IP地址和路由正常,ping不通MME和网关 (11) 28.TRS文件始终无法生效 (11) 29.三种疑难告警 (12) 30.远程ping不通基站 (12) 31.风扇告警 (12) 32.BTSlog有link消息,但是pinger始终不亮 (12) 33.驻波问题 (13) 34.pinger正常,但是SM里小区显示橙黄色告警 (13) 35.几个特列 (13) 36.FOSI 和FOSN的光功率范围 (13) 37.不同频段RRU类型 (13)

相关文档
相关文档 最新文档