文档库 最新最全的文档下载
当前位置:文档库 › INS位置精度对GPS整周模糊度解算影响分析

INS位置精度对GPS整周模糊度解算影响分析

INS位置精度对GPS整周模糊度解算影响分析
INS位置精度对GPS整周模糊度解算影响分析

万方数据

万方数据

万方数据

万方数据

万方数据

INS位置精度对GPS整周模糊度解算影响分析

作者:谢宏飞, 郝金明, 刘伟平, 刘帅, XIE Hongfei, HAO Jinming, LIU Weiping, LIU Shuai 作者单位:信息工程大学导航与空天目标工程学院,河南郑州,450052

刊名:

全球定位系统

英文刊名:Gnss World of China

年,卷(期):2013,38(1)

本文链接:https://www.wendangku.net/doc/7b6031844.html,/Periodical_qqdwxt201301013.aspx

GPS基线解算的优化及平差的方法技巧

GPS数据处理 GPS基线解算的优化及平差的方法技巧 摘要:对影响GPS基线解算质量的主要因素进行分析和研究,结合实例阐明基于南方GPS后处理软件的GPS基线解算的优化技术和方法。以及对GPS 解算数据平差处理的方法与技巧。 关键词:GPS基线解算;固定解;浮动解;残差曲线;优化,数据传输、数据分流、观测数据的平滑、滤波、平差计算、同步环、异步环、重复基线。GPS接收机采集记录的是GPS接收机天线至卫星的伪距、载波相位和卫星星历等数据。GPS数据处理就是从原始观测值出发得到最终的测量定位成果,其数据处理过程大致可划分为数据传输、格式转换(可选)、基线解算和网平差以及GPS网与地面网联合平差等四个阶段。 181

GPS测量数据处理的流程如图所示。 GPS测量数据处理流程 一、引言 根据GPS外业观测和基线数据处理的实际情况,即使通过选取恰当的点位来保证良好的观测条件,进行星历预报来保证观测到的卫星数目及星座的图形强度,但在实际的基线解算过程中,时常会遇到基线只有浮动解而无固定解。在此情况下,对基线解算进行优化处理后通常能够得到固定解,从而提高基线质量,避免或减少返工重测现象。 二、影响GPS基线解算结果的几个因素及其对策 182

影响GPS基线解算质量的因素较多也较为复杂,如卫星的周跳、星历误差、对流层及电离层影响、多路径误差、无线电干扰、不明因素影响及起算点误差过大等都会影响基线解算。 应对措施 1基线起点坐标不准确的应对方法 要解决基线起点坐标不准确的问题,可以在进行基线解算时,使用坐标准确度较高的点作为基线解算的起点,较为准确的起点坐标可以通过进行较长时间的单点定位或通过与WGS-84坐标较准确的点联测得到;也可以采用在进行整网的基线解算时,所有基线起点的坐标均由一个点坐标衍生而来,使得基线结果均具有某一系统偏差,然后,再在GPS网平差处理时,引入系统参数的方法加以解决。 2卫星观测时间短的应对方法 卫星整周模糊度难以确定的影响。由于个别或少数卫星观测时间太短,而导致这些卫星的整周模糊度难以准确确定。对于参与解算的卫星,其整周模糊度不能确定,必将对这一组同步观测的基线解算带来影响。 对于卫星观测时间过短,是非常容易识别的,因观测时间短,则观测记录的数据量就会小。解算基线时观察卫星相位跟踪图,能直观地看到观测到的各颗卫星的出、没时间。当基线无固定解时,在基线报告中可以看到各颗卫星的整周模糊度及其误差。若某颗卫星的观测时间太短,则可以删除该卫星的观测数据,不让它们参加基线解算,这样可以保证基线解算结果的质量。 183

手持GPS参数设置及全国各地坐标转换参数复习过程

如何设置手持GPS相关参数及全国各地坐标转换参数一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安80坐标系,其椭球的参数为:地球长半轴 a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298.298.257222101。 (三)手持GPS的参数设置 要想测量点位的北京54、西安80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域内(该区域不宜过大),从当地测绘部门收集1至两个已知点的北京54、西安80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定

第六章GPS基线解算

第六章 GPS 基线解算 第1节 G PS 基线解算的基本原理 GPS 基线向量表示了各测站间的一种位置关系,即测站与测站间的坐标增量。GPS 基 线向量与常规测量中的基线是有区别的,常规测量中的基线只有长度属性,而GPS 基线向量则具有长度、水平方位和垂直方位等三项属性。GPS 基线向量是GPS 同步观测的直接结果,也是进行GPS 网平差,获取最终点位的观测值。 一、 观测值 基线解算一般采用差分观测值,较为常用的差分观测值为双差观测值,即由两个测站的原始观测值分别在测站和卫星间求差后所得到的观测值。双差观测值可以表示为下面的形式: n m f f trop ion f f N dd dd dd v dd ,)()()()(?+++=+λρρρφ 其中: (...)dd 为双差分算子(在测站i ,j 和卫星m ,n 间求差); )(f dd φ为频率f 的双差载波相位观测值; f v 为频率f 的双差载波相位观测值的残差(改正数); ρ为观测历元t 时的站星距离; ion ρ为电离层延迟; trop ρ为对流层延迟; f λ为频率f 的载波相位的波长; n m f N ,为整周未知数。 若在某一历元中,对k 颗卫星数进行了同步观测,则可以得到k -1个双差观测值;若在整个同步观测时段内同步观测卫星的总数为l 则整周未知数的数量为l -1。 在进行基线解算时,ion ρ和trop ρ一般并不作为未知参数,而是通过某些方法将它们消除1。因此,基线解算时一般只有两类参数,一类是测站的坐标参数1 ,3C X ,数量为32;另一 1 如用模型改正或双频改正。 2 在基线解算时将基线的一个端点的坐标作为已知值固定,解求另一个点。固定的点称为起点,待求的点

GPS安装说明

GPS安装调试说明 1、GPS概述 1.1概述 本系统用于表面位移监测采用GPS全自动监测方式,所采用的设备为广州南方测绘仪器有限公司生产的GPS接收机及其配套设施(GPS天线、软件等)。 通过采用多台高精度型GPS接收机及其配套设施(GPS天线、软件等),来采集观测点坐标数据,通过多点GPS高精度解算技术来解算GPS观测点的坐标,从而达到实时监测坝体表面位移(如位移方向、位移速率、累计位移等)的目的。 1.2设备参数 : NETS2型GPS接收机实物图

正面 背面 技术参数: 设备名称NETS2 监测精度平面:±2.5mm,高程:±5.0mm 初始化时间初始化时间<10秒;初始化可靠性>99.9%工作电压外接直流电,宽输入范围12 ~15V 尺寸:20.5cm长×13cm宽×5.3cm高 重量:1.1kg 电压:外接直流电,宽输入范围12 ~ 15V 主机功耗:3.0W

防震:坚固铝合金外壳加塑胶圈,抗1米自然跌落 防水:用水冲洗无任何伤害 防尘:完全防止粉尘进入 等级:IP67 接口:一个电源接口,两个RS232接口,一个10/100M以太网接口,一个ANT接口,支持网络远程控制 工作环境:工作温度:-45℃~ +65℃存储温度:-65℃~ +85℃1.3标准配置 其他:供电、通讯、防雷等根据现场情况进行配置。 2、安装说明 2.1硬件设备 GPS主机及适配器、GPS天线、GPS天线电缆及天线罩、串口线 供电:220VAC(市电)或12VDC(太阳能供电) 通讯:百兆收发器及适配器(或GPRS通讯模块或无线网桥) 防雷:电源防雷器、天馈浪涌保护器、信号浪涌保护器 2.2工具及辅材 工具:钳子、剪刀、螺丝刀等

基线解算

GPS 基线解算阶段的关键问题
黄 勇
【摘要】:本文简述了在 GPS 静态定位测量中基线解算的质量控 制指标,详细分析了影响 GPS 基线解算结果的主要因素,给出了 判别这些因素方法, 并对如何消除这些因素的影响提出了相应的 处理措施。

GPS 基线解算阶段的关键问题
GPS 基线解算阶段的关键问题
黄 勇
【摘要】:本文简述了在 GPS 静态定位测量中基线解算的质量控制指标,详细分 析了影响 GPS 基线解算结果的主要因素,给出了判别这些因素方法,并对如何消 除这些因素的影响提出了相应的处理措施。 【关键词】:GPS 基线解算 质量控制 因素 措施
GPS 静 态 定 位 在 测 量 中 主 要 用 于 测 定 各 种 用 途 的 控 制 点 。 其 中 较 为 常 见 的 方 面 是 利 用 GPS 建 立 各 种 类 型 和 等 级 的 控 制 网 ,在 这 些 方 面 GPS 技 术 已 基 本 上 取 代 了 常 规 的 测 量 方 法 ,成 为 了 主 要 手 段 。 较 之 于 常 规 方 法 , GPS 在 布 设 控 制 网 方 面 具 有 测量精度高;选点灵活、不需要造标、费用低;全天侯作业; 观测时间短;操作简便等优点。 基 线 解 算 是 GPS 网 观 测 数 据 处 理 过 程 的 重 要 环 节 ,基 线 解 算 质 量 的 好 坏 直 接 关 系 到 各 条 基 线 的 观 测 精 度 ,从 而 影 响 整 个 控 制 网 的 精 度 。因 此 基 线 解 算 质 量 控 制 以 及 基 线 解 算 过 程 中 数 据 的 处 理 方 法 是 整 个 控 制 网 数 据 处 理 的 关 键 点 。结 合 GPS 定 位 原 理 和 实 际 经 验 对 于 GPS 基 线 解 算 阶 段 需 要 解 决 的 一 些 关 键 问 题作以下论述。
1

整周模糊度的解算

GPS精密定位 周跳检测与修复(Cycle slip detection and repair) 完整的载波相位是由初始整周模糊度N、计数器记录的整周数INT和接收机基频信号与收到到卫星信号的小于一周部分相位差Δφ。Δφ能以极高的精度测定,但这只有在N和INT都正确无误地确定情况下才有意义。卫星在观测中失锁后,造成接收机载波整周计数INT误差,这种现象称为周跳。当重新捕获卫星后,周跳给计数器造成的偏差即为中断期间丢失的整周数,小周跳可以通过检测方法发现后并加以修复,大的周跳或较长时间的失锁,周跳不易修复,需要重新固定整周模糊度。周跳的探测及修复对于用载波相位精密定位至关重要,成功的修复才能获得高精度的结果。 周跳产生的原因: 1.卫星信号暂时阻断; 2.仪器线路暂时故障; 3.外界环境的突变干扰,如电离层、动态变化。 检测周跳的主要方法: 1.屏幕扫描法 观测值中出现周跳后。相位观测值的变化率就不再连续。凡曲线出现不规则的突然变化时,就意味着在相应的相位观测值中出现了整周跳变。早期进行GPS相位测量的数据处理时,就是靠作业人员坐在计算机屏幕前依次对每个站、每个时段、每个卫星的相位观测值的变化率的图像进行逐段检查来探测周跳,然后再加以修复。这种方法比较直观,在早期曾广泛使用。但由于工作繁琐枯燥乏味,而且需反复进行,所以这种手工编辑方法目前正逐步被淘汰,而很少使用了。 2.高次差或多项式拟合法 由于卫星和接收机间的距离在不断变化,因而载波相位测量的观测值INT+Δφ也随时间在不断变化。但这种变化应是有规律的、平滑的。周跳将破坏这种规律性。根据这一特性就能将一些大的周跳寻找出来(尤其是对采样率较高的数据)。 一般来说,一个测站S对同一卫星J的相位观测量,对不同历元间相位观测值取至4至5次差之后,距离变化对整周数的影响已可忽略,这时的差值主要是由于振荡器的随机误差而引起的,因而应具有随机的特性见下表。但是,如果在观测过程中产生了周跳现象,那么便破坏了上述相位观测量的正常变化规率,从而使其高次差的随机特性也受到破坏。我们利用上述性质便可以发现周跳现象。下面以观测量为例,如果在历元t5的观测值中有100周的周跳,则观测量的各阶差值中4次差的异常与历元t5观测值的周跳是相应的。某一历元的周跳发现后,可根据该历元前或后的正确观测值,利用高次差值公式外 载波相位观测量及差值

手持GPS参数设置及全国各地坐标转换参数

如何设置手持GPS相关参数及全国各地坐标转换参数 一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS 系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的54、80及国家2000公里网坐标系,属于平面高斯投影坐标系统。54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴 a=6378245m;扁率F=1/298.2。80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298. 257222101。 (三)手持GPS的参数设置

要想测量点位的54、80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域(该区域不宜过大),从当地测绘部门收集1至两个已知点的54、80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ 的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(54坐标系△A=-108、△F=0.0000005),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。

手持GPS参数设置方法

摘要:GPS所使用的坐标系统是WGS-84坐标系统,而我们使用的地图资源大部分都属于1954年北京坐标系或1980年西安坐标系。不同的坐标系统给我们的使用带来了困难,于是就出现了如何把WGS-84坐标转换到1954北京坐标系或1980西安坐标系上来的问题。从理论上讲,不同坐标系之间存在着平移和旋转的关系,要使手持GPS所测量的数据转换为自己需要的坐标,必须求出两个坐标系(WGS-84和北京54坐标系或西安80坐标系)之间的转换参数。由于求算转换参数专业性较强,因此,多数初用者不知如何进行GPS的参数的求得和设置。其实关键要解决两个问题,其一是自定义坐标格式(User UTM Grid)的确定;其二是自定义坐标系统(User)投影参数的确定。 关键词:GPS;坐标格式;坐标系统;投影分带;转换参数。 GPS(Global Positioning System)即全球卫星定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时地进行三维导航定位和测速。随着GPS定位技术的发展,从最初的军用已发展到民用领域,并已得到广泛的应用和普及。 在GPS定位技术的应用和发展过程中,根据不同的市场需求,由厂家生产出了各种不同型号和用途的接收机,其中,市场销量最大、使用人数最多、使用者大多专业性不强的导航型手持GPS在使用过程中存在的问题较多,最主要的问题是手持GPS所使用的坐标系统是WGS-84坐标系统,而我们使用的地图资源大部分都属于1954年北京坐标系或1980年西安坐标系。不同的坐标系统给我们的使用带来了困难,于是就出现了如何把WGS-84坐标转换到1954北京坐标系或1980西安坐标系上来的问题。从理论上讲,不同坐标系之间存在着平移和旋转的关系,要使手持GPS所测量的数据转换为自己需要的坐标,必须求出两个坐标系(WGS-84和北京54坐标系或西安80坐标系)之间的转换参数。由于求算转换参数专业性较强,因此,多数初用者不知如何进行GPS的参数的求得和设置。下面针对这部分使用人员就一些关键问题介绍如下。 一、自定义坐标格式(User UTM Grid)的确定 当我们使用一部新的GPS或到一个新的工区工作时,首先要做的是对手中的GPS进行参数设置,而参数设置第一步就是确定工区自定义坐标格式(User UTM Grid)。确定自定义坐标格式中最重要的一项是工作区中央子午线经度的确定,这是因为在使用国家或地方坐标系统时,这是一个经常需要变更的参数。那么如何方便快捷的完成这一设置呢?一般来说当我们计划完成一项新的工作或进行一项工程施工时,都事前划定一个行进路线或工作区域,同时配合使用地形图或设计图,这就为我们确定工作区中央子午线经度提供了最基本条件。 在研究如何利用地形图或给定坐标来确定工作区中央子午线经度之前我们有必要大致了解一下地形图的投影分带问题。 地球总体上是以大地体表示的,为了能进行各种运算,又以参考椭球体来代替大地体。要将椭球面上的图形描绘在平面上,需要采用地图投影的方法。我国在建立统一的平面直角坐标系统时,规定在大地控制测量和地形测量中采用高斯投影。为了使投影误差不致影响测图精度,规定以经差6°或3°为准来限定高斯投影范围,每一投影范围就叫做一个投影带。如图1所示从起始子午线开始,自西向东以经差6°化为一带,将整个地球划分成60个投影带并顺序编号,叫做高斯6°投影带(简称6°带)。6°带各带的中央子午线,其经度分别为3°、9°……123°、129°……357°。每一投影带两侧的子午线叫做分带子午线,6°带的分带子午线的精度为0°、6°……120°、126°、132°……。

GPS基线解算精度分析

GPS基线解算精度分析 摘要:本文主要通过是建立在实验的上分析影响不同长度基线解算精度的因素。在熟悉TGO这款软件的同时进行实验分析影响基线解算精度的因素,进而掌握GPS基线解算是的一些简单技巧。 关键词:基线TGO精度RMS 作者简介:黄纪晨(1985-),男,硕士研究生,毕业于河海大学,先在新疆维吾尔自治区交通规划勘察设计研究院任职,主要从事星导航与定位和精密工程测量等方面的研究工作 GPS定位技术在测量中的应用日益深入广泛,随着该技术的不断发展,对GPS测量精度的要求越来越高。对于GPS控制网而言,提高基线解算精度是提 高GPS网点精度的基础。 本文使用Trimble提供的TGO进行解算,对不同长度基线的解算精度做简单的对比介绍。根据TGO的特点主要从卫星高度角设置、对流层模型选择、电离层改正进行实验对比。本文所采用的数据是来自三个不同的控制网的具有典型长度的基线,同样选择了Trimble 5700接收机所测数据。 选择的基线长度不同的六条基线,为了对比方便设置基准为: Bern是高精度的基线解算软件,其的解算结果作为参考假设为真值,实验数据以对比RMS为主,同时注意水平精度和垂直精度,以及ΔL,ΔL是TGO 的基线解算结果和Bern解算结果之差的绝对值。 1、卫星高度角的设置 增加卫星高度角是为了剔除一些观测质量不佳的数据,比如高大建筑物遮挡造成的不佳。从信号质量来讲,增加高度角都会剔除一些质量不佳的数据。 实验分为Trimble默认的13和30度数下的解算精度进行对比。其中使用L1频率固定解算,对流层改正模型使用Saastamoine模型,电离层设置为对于10Km 以上的基线加入电离层改正。

手持GPS参数设置及全国各地坐标转换参数17597

如何设置手持GPS相关参数及全国各地坐标转换参数、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手 持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系 所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1 / 298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面 高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫 斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安 80坐标系,其椭球的参数为:地球长半轴 a=6378140m ;扁率F=1 /298.257。国家2000坐标系,其椭球的参 数为:地球长半轴 a=6378137m ;扁率 F=1 /298.298.257222101。 (三)手持GPS 的参数设置 要想测量点位的北京 54、西安80及国家2000公里网高精度坐 标数据,必须学习坐标转换的基础知识,并分别科学设置手持 GPS 的各项参数。 首先,在手持式GPS 接收机应用的区域内(该区域不宜过大), 从当地测绘部门收集 1至两个已知点的北京 54、西安80或国家 2000坐标系统的坐标值;然后在对应的点位上读取 WGS84坐标 系的坐标值;之后采用《万能坐标转换》软件,可计算出 DY 、DZ 的值。 将计算出的DX 、DY 、DZ 三个参数与DA 、DF 、中 投影比例、东西偏差、南北偏差等六个常数值输入 GPS 接收机。 将GPS 接收机的网格转换为“ UserGrid ”格式,实际测量已知点 的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进 行比较, 二者相差较大时要重新计算或查找出现问题的原因。 细过程可查看《万能坐标转换》软件的【手持 GPS 参数设置】界 面。 (四)自定义坐标系统(User )投影参数的确定 DX 、 央经线、

7.4-整周跳变的探测与修复

7.4 整周跳变的探测与修复 GPS 载波相位测量,只能测量载波滞后相位1周以内的小数部分,不能测量载波滞后相位的整周数)(0N 。其后的载波滞后相位整周数变化值(始后周数),是通过多普勒积分由电子计数器累计读得的。由于GPS 信号接收机自身故障或GPS 信号意外中断,导致载波锁相环路的短暂失锁,而引起多普勒计数的短暂中断;当载波锁相环路重新锁定后,多普勒计数又重新开始,以致造成载波滞后相位整周数变化值(始后周数)的不连续计数。这种多普勒计数的中断现象,称为整周跳变,简称为周跳(cycle slip )。 当GPS 载波相位观测值没有发生周跳时,卫星一次通过的载波滞后相位整周数是连续的,各时元(历元)的观测值都会含有一个共同的整周未知数,即时元1t 的整周模糊度0N ,当发生周跳时,其后所有的载波相位观测值都会含有一偏差?,该偏差就是中断期间所丢失的整周计数,即周跳后的载波相位观测中含有未知数?+0N 。 所谓周跳的探测就是利用观测的信息来发现周跳。在探测出周跳后,利用观测信息来估计丢失的周数?,从而修正周跳后的载波相位观测值,称为周跳的修复。在探测出周跳之后,也可将?+0N 视为周跳后的整周模糊度而利用平差的原理解求出这个未知参数,这是一个整周模糊度的求解问题。 静态定位中,由于接收机静止不动,周跳的探测与修复问题已得到了很好的解决。在动态环境下,由于动态接收机在不断地运动中,周跳的探测与修复比静态定位要困难得多。 由于GPS 信号接收机能提供多种观测信息,利用这些观测信息本身的相互关系(无需轨道信息),可以对周跳进行探测和修复,目前主要有下列方法。 (1)根据有周跳现象的发生将会破坏载波相位测量的观测值???+)(Int 随时间 而有规律变化的特性来探测周跳(高次差或多项式拟合法) (2)利用载波相位及其变化率的多项式拟合来探测、修复周跳(多项式拟合法); (3)利用伪距和载波相位观测值组合来探测、修复周跳(伪距/载波组合法); (4)利用双频载波相位组合观测值探测、修复周跳(电离层残差法)。 7.4.1用高次差或多项式拟合法 此种方法是根据有周跳现象的发生将会破坏载波相位测量的观测值???+)(Int 随时间而有规律变化的特性来探测的。GPS 卫星的径向速度最大可达s km /9.0.因而整周计数每秒钟可变化数千周。因此,如果每15s 输出一个观测值的话,相邻观测位间的差值可达数万周,那么对于几十周的跳变就不易发现。但如果在相邻的两个观测值间依次求差而求得观

gps 基本原理及基线解算

城市GPS控制网施测质量控制措施探讨 【摘要】本文作者在深入研究全球定位系统(GPS)静态定位原理的基础上,结合多年生产实践经验,就城市GPS控制网的布网原则、等级划分、作业方法及成果整理要求进行了探讨。通过全面质量控制以确保城市GPS控制网测量成果符合现行测量规范的要求。 【关键词】GPS 基线向量约束平差 全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航定位系统。该系统以其全能性(陆地、海洋、航空和航天)、全球性、全天候、连续性和实时性的导航定位功能,已被广泛地应用于各种等级精度的城市控制测量中。如何对城市GPS控制网施测进行有效的质量监控,将会直接影响到成果的测量精度。为此,笔者结合多年的生产实践经验,就如何有效保证城市GPS控制网测量精度制定了一套质量控制措施,以供城市测量GPS用户参考。 一、技术标准 ※中华人民共和国国家标准《全球定位系统(GPS)测量规范》GB/T 18314-2001 ※中华人民共和国行业标准《全球定位系统城市测量技术规范》CJJ 73-97 ※中华人民共和国测绘行业标准《全球定位系统(GPS)测量型接收机检定规程》CH 8016-95 ※中华人民共和国测绘行业标准《测绘产品检查验收规定》CH 1002-95 二、专业技术设计 (一)等级划分 根据《全球定位系统(GPS)测量规范》和《全球定位系统城市测量技术规程》中规定的城市各级GPS 控制网相邻点间平均距离,要求在城市GPS控制网布设时,其相邻点间平均距离应符合表1要求。同时,允许相邻点的最小距离可为平均距离的1/3~1/2,最大距离可为平均距离的2~3倍。考虑到南方地区丘陵、山地地形复杂,因此,在南方地区布设C级GPS控制网时,其平均边长限制可根据实际情况适当放宽到20~25公里,同时规定边长超过25公里的同步环应增测一个时段,以确保GPS测量数据的质量。 城市各级GPS控制网平均边长表1(单位:km) (二)精度设计 根据GPS控制网相邻点间基线长度精度计算公式: 式中:σ为标准差,单位mm; d为相邻点间距离,单位mm。 计算得到各级GPS控制网最弱边相对中误差限差,同时规定了观测相应等级GPS控制网时所选GPS 接收机标称精度不应低于表2的要求。布设一级、二级GPS控制网时,由于边长通常都较短,如用最弱边相对中误差来评定控制网精度则很难达到要求,因此,《全球定位系统城市测量技术规程》中规定了当边长小于200米时,则以其边长中误差应小于20毫米为限差要求。 城市各级GPS控制网最弱边相对中误差表2

GPS操作流程及基线解算

第八章GPS操作流程和基线解算 第一节GPS系统组成 一、设备 GPS系统由空间卫星部分、地面监控部分和用户接收部分三部分组成,如图6.1所示。 1、空间卫星部分 (1)GPS卫星星座。设计星座:21—3,即 21颗正式的工作卫星加3颗活动的备用卫星。6 个轨道面,平均轨道高度20200km,轨道倾角 55°,周期11h58min(顾及地球自转,地球与 卫星的几何关系每天提前4min重复一次)。保证 在24h,在高度角15°以上,能够同时观测到4~ 8颗卫星。 (2)GPS卫星。GPS卫星的作用是发送用 于导航定位的信号等。主要设备是原子钟(2台 铯钟、2台铷钟)、信号生成与发射装置。类型有试验卫星B1oCk I和工作卫星BloCkⅡ。 (3)GPS卫星由洛克韦尔国际公司空间部研制。卫星重774kg(包括310kg燃料),采用铝蜂巢结构,主体呈柱形,直径为l。5m。星体两侧装有两块双叶对日定向太阳能电池帆板,全长5.33m,接受日光面积7.2㎡。对日定向系统控制两翼帆板旋转,使板面始终对准太阳,为卫星不断提供电力,并给三组15AH镉镍蓄电池充电,以保证卫星在地影区能正常工作。在星体底部装有多波束定向天线,这是一种由12个单元构成的成形波束螺旋天线阵,能发射L,和L。波段的信号,其波束方向图能覆盖约半个地球。在星体两端面上装有全向遥测遥控天线,用于与地面监控网通信。此外,卫星上还装有姿态控制系统和轨道控制系统。工作卫星的设计寿命为7年。从试验卫星的工作情况看,一般都能超过或远远超过设计寿命。第一代卫星现已停止工作。第二代卫星用于组成GPS工作卫星星座,通常称为GPS工作卫星。BloCkⅡA的功能比BloCkⅡ大大增强,表现在军事功能和数据存储容量。BloCkⅡ只能存储供45天用的导航电文,而BloCkⅡA则能够存储供180天用的导航电文,以确保在特殊情况下使用GPS卫星。第三代卫星尚在设计中,以取代第二代卫星,改善全球定位系统。其特点是:可对自己进行自主导航;每颗卫星将使用星载处理器,计算导航参数的修正值,改善导航精度,增强自主能力和生存能力。据报道,该卫星在没有与地面联系的情况下可以工作6个月,而其精度可与有地面控制时的精度相当。 2、地面监控部分 (1)地面监控部分的分布。 1)主控站1个,地点在美国科罗拉多州法尔孔空军基地。 2)监测站5个,分别在夏威夷、美 国科罗拉多州法尔孔空军基地、阿松森群 岛(大西洋)、迪戈加西亚(印度洋)和 卡瓦加兰(太平洋)。

GPS整周模糊度的求解方法解析

GPS整周模糊度的求解方法 摘要:高精度GPS定位,必须采用相位观测量。接收机纪录的只是相位差的小数部 分,而初始的整周部分N 是初始观测历元卫星和观测站间距离相对于载波波长的整数,称为整周模糊度,是未知的。在GPS定位中,得到模糊度初值后,如何选择合适的搜索准则和解算方法将直接影响定位的效率。本文分析了几种常用的整周模糊度的求解算法的优缺点,并详细讲解了整周模糊度的求解的具有较大优势的新方法。 关键字:GPS,整周模糊度;伪距法;经典待定系数法;多普勒法;快速模糊度解算 法,整周模糊度函数法,多历元,最小二乘 引言:关于整周模糊度的重要性及意义 高精度GPS 定位,必须采用相位观测量。接收机纪录的只是相位差的小数部分,而初始的整周部分N是初始观测历元卫星和观测站间距离相对于载波波长的整数,称为整周模糊度,是未知的。由载波相位测量定位原理可知,以载波观测量为根据的精密测量中,初始整周模糊度的确定是定位的一个关键问题。准确与快速地解算整周模糊度对保障定位精度、缩短定位时间、提高GPS 定位效率都具有极其重要的意义。因此,要将观测值转换为站星间距离,已取得高精 度的定位结果,必须预先解得模糊度的大小。很明显,当以载波相位观测量为依据,进行精密相对定位时,整周未知数的确定,是一个关键问题。 目前确定解算模糊度的方法有很多种,如经典待定系数法、快速模糊度分解法(FARA)、最小二乘搜索法、LAMBDA方法等,下面就几种模糊度解算方法进行阐述。 确定整周模糊度的传统方法: 整周模糊度求解的理论及其实用研究是近一、二十年的研究热点和难点。许多学者提出了一些解算方法,其中快速模糊度解算法、整周模糊度函数法、经典待定系数法、多普勒法(三差法)、伪距法为常用的方法。 1. 快速模糊度解算法(FARA) 快速模糊度解算法FARA是一种基于统计检验的算法.首先用一组相位观测数据进行双差解,求解出实数的双差相位模糊度和位置参数.然后,根据解的统计信息,建立置信区间,对每一组落在该置信区间的模糊度组合进行检验,找出一组既能满足统计检验,又具有最小方差的模糊度组合作为正确的模糊度解'". FARA的采样时间很短,利用少量观测量进行初次平差计算所求得的基线和模糊度参数的精度并不高,与它们最接近的整数不一定就是正确的整周模糊度.但是大约有99%的可能性,正确的整数是落在置信区间内的.因此,将全部模糊度参数的候选值排列组合起来.正确的一组整数组合必然在其中,接着通过各种检验,将不正确的整数组合先行剔除,将可能正确的少数组合保留下来,将保留下来的整数组合作为已知值代人重新进行平差计算,计算的一组整数组合所产生的单位权方差应为最小,根据这一原理将正确的一组整周模糊度挑选出来. 2. 整周模糊度函数法 模糊度函数法AFM是利用模糊度的整数特性来确定模糊度的一种方法。他将载波相位残差转化为复平面上的一个函数,然后利用余弦函数对2郑州倍数的不敏感性,则对应函数值最大的搜索网络点为要求之解。找到该解后,即可由观测值确定整周模糊度。 模糊度函数法确定整周模糊度的方法按以下3歩进行:确定未知点的初始化坐标,简历搜索空间;逐点搜索;固定模糊度。 该方法的缺点是:搜索空间极大,计算量非常庞大,计算时间较长;难以满足动态实时的要求。 3.经典待定系数法 把整周未知数当做平差计算中的来加以估计和确定有两种方法。 (1) 整数解 整周未知数从理论上讲应该是一个整数,利用这一特性能提高解的精度。短基线定位时一般

GPS数据处理参数设置及基本手段

GPS数据处理参数设置及基本手段 1.在GPS处理栏里对天线高有误的测站点击属性,更改天线高。 2.GPS处理栏目中右键点击“处理参数”,在“概要”中勾选“显示 高级参数”;在“附加输出”中勾选“残差”;在“自动处理”中勾选“Re-Compute already computed baselines”,即选取“重新计算已经计算的基线”选项,以保证每次都计算处理基线。见下图 2、在平差栏中右键点击“配置-一般参数”项,对标准差中“计算使用”项选取“仅对GPS观测值应用缺省设置”。见下图

3、在“GPS处理栏”中全部选择,进行处理,在“结果”栏中得到每一条基线处理结果,在模糊度状态为是的情况下进行存储,然后逐个对基线点右键进行“分析”,得到如下图所示残差结果,注意在“类型”中选“双差”、在“相位”中选“L2”或“L1”,观察标准差值,一般为2~5cm为正常,否则应在卫星窗口中对标准差大的卫星的时间段适当进行剔除修改。修改完毕还应重新处理比对残差结果。 4、一般来说GPS成果如果一次性通过平差,F检验较小或是较为理想,则没有太多必要对卫星进行修改,毕竟在基线较多时,修改工作量较大,但效果并不十分明显。理论上F检验值越小平差结果越可靠,但同时网和环平差结果中的指标才是规范中规定的硬指标。 注:网平差结果中的GPS基线向量残差数据中的“残差PPM”为:残差/边长*1000000。 如何解决工程测量中大面积GPS控制网

因椭球因素造成精度损失的问题 1、在84坐标系统下进行基线解算、平差、得到84经纬度坐标; 2、新建投影,采用高斯投影,中央子午线应选用离隧道中间最近的, 不一定要正好是3度带或1.5度带的整带度数,带宽可有1.5或1度,东方向加上500公里。 3、新建坐标系,坐标系投影采用第2步新建的投影,椭球采用北京 54椭球; 4、新建项目,将第3步新建的坐标系赋予该项目。在新建项目中新 建控制点,采用地方坐标中的大地坐标,选用“经度、纬度、高程”格式,高程采用正常高,即实际标高。输入距离控制网中心最近的控制点或自定的坐标起算点(最好在控制网中央区域选点)在平差后的84坐标系统中的经纬度坐标(可用手工在第1步中抄下来); 5、采用经典三维法进行投影匹配,在匹配时,注意在配置选项中的 经典三参数标签中选择3个平移选项。得到最终成果(即为投影到北京54椭球大地水准面上的坐标系统,也可进行坐标转换,整体转换为地方格网坐标。如果没有出现所要的数据项,则在点选项卡中点右键,在视图中勾上所要的数据即可。) 6、ASCII文件,假设为 beijing54_BLH.txt。 7、新建椭球、更改长半轴a值(目的是将控制网投影到施工面上,

GPS整周模糊度

GPS整周模糊度的计算与确定 引言 精密型GPS信号接收机一般都具有伪距和载波相位两种基本观测量。相对于伪噪声码观测量而言,GPS载波相位观测量能提供非常精确的相对定位。但由于GPS载波相位测量存在整周模糊数较难解算的问题,致使它在快速定位及导航中的应用受到了限制。因此,快速而准确地求解GPS载波相位测量的整周模糊度就成了它在快速定位及导航中应用的关键问题。整周模糊度求解的理论及其实用研究是近一、二十年的研究热点和难点。许多学者提出了一些解算方法,其中双频P码伪距法、整周模糊度函数法、最小二乘搜索法和整周模糊度协方差法应用较广泛。 整周模糊度的确定是GPS载波相位测量中的关键问题,其原因如下:精确地、不足一周的相位与修复周跳后的正确整周记数只有在与正确的整周模糊度配合使用才有意义。整周模糊度参数一旦出现问题,就将导致大量的卫地距出现系统性的粗差,从而严重影响定位的精度和可靠性,正确确定整周模糊度N是获得高精度定位结果的必要条件。在大量对精确确定整周模糊度的计算研究中不断推出了新的计算算法。 几种整周模糊度的确定方法: (一)快速求解整周模糊度 伪距双差方程经过线性化之后如下[2], (1) 其中,ρ表示实际观测值与计算值之差,A表示系数阵,δx表示坐标增量,v表示模型误差和测量噪声,N(·)表示正态分布,QDΨ表示伪距测量的协方差阵。由式(1),根据最小二乘原理可得 (2) 对于载波相位,其双差模型线性化之后可得[3] (3) 其中,l表示实际观测值与计算值之差,λ表示L1载波波长,N表示载波相位双差模糊度,w 表示模型误差和测量噪声,QDφ表示载波相位测量的协方差阵。由式(2)、(3),可得整周模糊度的浮点解N^。 (4) 由式(4)根据协因数传播定律,此时整周模糊度N^的协方差阵QN^为 (5) 其中表示坐标增量的协方差阵;

GPS四参数设置

GPS四参数设置 。 南方RTK使用中参数的求取及分类 一、控制点坐标库的应用 GPS 接收机输出的数据是WGS-84经纬度坐标,需要转化到施工测量坐标,这就需要软件进行坐标转换参数的计算和设置,控制点坐标库就是完成这一工作的主要工具。 控制点坐标库是计算四参数和高程拟合参数的工具,可以方便直观的编辑、查看、调用参与计算四参数和高程拟合参数的校正控制点。在进行四参数的计算时,至少需要两个控制点的两套坐标系坐标参与计算才能最低限度的满足控制要求。高程拟合时,使用三个点的高程进行计算时,控制点坐标库进行加权平均的高程拟合;使用4到6个点的高程时,控制点坐标库进行平面高程拟合;使用7个以上的点的高程时,控制点坐标库进行曲面拟合。控制点的选用和平面、高程拟合都有着密切而直接的关系,这些内容涉及到大量的布设经典测量控制网的知识,在这里没有办法多做介绍,建议用户查阅相关测量资料。 利用控制点坐标库的做法大致是这样的:假设我们利用A、B 这两个已知点来求取参数,那么首先要有A、B 两点的GPS 原始记录坐标和测量施工坐标。 A、B 两点的GPS原始记录坐标的获取有两种方式:一种是布设静态控制网,采用静态控制网布设时后处理软件的GPS 原始记录坐标;另一种是GPS 移动站在没有任何校正参数起作用的Fixed(固定解)状态下记录的GPS 原始坐标。其次在操作时,先在控制点坐标库中输入A 点的已知坐标,之后软件会提示输入A 点的原始坐标,然后再输入B 点的已知坐标和B 点的原始坐标,录入完毕并保存后(保存文件为*.cot文件)控制点坐标库会自动计算出四参数和高程拟合参数。 1.1、校正参数

类似于PDOP值的描述整周模糊度精度的指标因子

AMBIGUITY DILUTION OF PRECISION: AN ADDITIONAL TOOL FOR GPS QUALITY CONTROL P.J.G. Teunissen, D. Odijk and C.D. de Jong Department of Mathematical Geodesy and Positioning Delft University of Technology Thijsseweg 11, Delft 2629 JA The Netherlands Abstract Integer carrier phase ambiguity resolution is often a prerequisite for high precision GPS positioning. It applies to a great variety of GPS models, including those which are used in hydrographic applications and marine positioning. Since the quality of kinematic GPS positioning depends critically on whether the correct integer ambiguities are used or not, it is of importance to have easy-to-compute diagnostics available that measure the expected success rate of ambiguity resolution. In this contribution we will introduce and analyse such an ambiguity dilution of precision (ADOP) measure. In contrast to the traditional way in which DOP-measures are introduced, our ADOP is defined such that it is invariant for the class of admissible ambiguity transformations. It does not depend on the arbitrary choice of reference satellite when constructing the double differenced ambiguities. Since the GPS ambiguities are known to be highly correlated, the ADOP is constructed such that it not only captures the precision but also the correlation characteristics of the ambiguities. We will present the ADOP s for a variety of GPS models and show their behaviour by graphical means. These models include single-baselines as well as kinematic networks such as those used for attitude determination and seismic streamer positioning. It is also shown how the ADOP can be used to bound the success rate of ambiguity resolution. 1. Introduction GPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of the double-difference carrier phase data as integers. It is the key to high precision GPS relative positioning. Once the integer ambiguities are resolved, the carrier phase measurements will start to act if they were very precise pseudorange (code) measurements. As a consequence the remaining parameters in the model, such as the baseline components, can be estimated with a comparable high precision. Ambiguity resolution applies to a great variety of GPS models currently in use. These models may range from single-baseline models used for kinematic positioning to multi-baseline models used for studying geodynamic phenomena. An overview of these and other GPS models, together with their applications in surveying, navigation and geodesy, can be found in textbooks such as (Hofmann-Wellenhof et al., 1997), (Kleusberg and Teunissen, 1996), (Leick, 1995), (Parkinson and Spilker, 1996) and (Strang and Borre, 1997). Also in hydrography and marine geodesy, the use of high precision GPS positioning, based on ambiguity resolution, has gained momentum. This not only holds true for the more traditional surveying tasks, but also for applications such as attitude determination and the positioning of seismic streamer networks, see e.g. (Lachapelle et al., 1994), (Zinn and Rapatz, 1995), (Cross, 1994). Surveyors and hydrographers alike have always been aware of the importance of quality control (see e.g. the UKOOA recommendations). They know that a mere adjustment of redundant data is not enough. Proper testing procedures, enabling one to check for errors in the data and/or errors

相关文档