文档库 最新最全的文档下载
当前位置:文档库 › 大学物理B作业教材

大学物理B作业教材

大学物理B作业教材
大学物理B作业教材

第一章质点运动学

1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得,

y=4t 2-8 可得: y=x 2

-8 即轨道曲线

(2)质点的位置 : 22(48)r ti t j =+-

由d /d v r t = 则速度: 28v i tj =+

由d /d a v t = 则加速度: 8a j =

则当t=1s 时,有 24,28,8r i j v i j a j =-=+=

当t=2s 时,有 48,216,8r i j v i j a j =+=+=

2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速

度为0v ,求运动方程)(t x x =.

解: kv dt

dv

-= ??-=t v

v kdt dv v 001 t

k e v v -=0

t k e v dt

dx

-=0 dt e

v dx t

k t

x

-??

=0

00

)1(0

t k e k

v x --=

3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ?

?=v

v 0

d 4d t

t t v 2=t 2

v d =x /d t 2=t 2

t t x t

x

x d 2d 0

20

??

= x 2= t 3 /3+10 (SI)

4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:

(1)小球的运动方程;

(2)小球在落地之前的轨迹方程;

(3)落地前瞬时小球的d d r t ,d d v t ,t

v

d d .

解:(1) t v x 0= 式(1)

2gt 21h y -= 式(2) 201()(h -)2

r t v t i gt j =+

(2)联立式(1)、式(2)得 2

2

v 2gx h y -=

(3)0d -gt d r

v i j t

= 而落地所用时间 g

h

2t = 所以

0d d r v i j t =

d d v g j t =- 2

202y 2x )gt (v v v v -+=+= 21

20

212202)2(2])([gh v gh g gt v t g dt dv +=+=

5、 已知质点位矢随时间变化的函数形式为22r t i tj =+

,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)d 22d r

v ti j t

=

=+ d 2d v a i t == 2)11

2

2

2

2[(2)4]2(1)v t t =+=+

d d t v

a t

=

= 1

22

22+=

-=

t a a a t n

第二章质点动力学

1、(牛顿定律)质量为M 的气球以加速度a 匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。若气球仍能向上加速,求气球的加速度减少了多少?

解:f

为空气对气球的浮力,取向上为正。

分别由图(a )、(b)可得:

F Mg Ma -=

1()()F M m g M m a -+=+

则11()

,Ma mg m a g a a a a m M m M

-+==-=++

2、 (牛顿定律) 两个圆锥摆,悬挂点在同一高度,具有不同的悬线长度,若使它们运动时两个摆球离开地板的高度相同,试证这两个摆的周期相等.

证:设两个摆的摆线长度分别为1l 和2l ,摆线与竖直轴之间的夹角分别为1θ和2θ,摆线中的张力分别为1F 和2F ,则

0cos 111=-g m F θ ① )sin /(sin 112

1111θθl m F v = ②

解得: 1111cos /sin θθgl =v

第一只摆的周期为

g

l l T 1

11

1

11cos 2sin 2θπ

θπ==

v

同理可得第二只摆的周期 g

l T 2

22cos 2θπ

= 由已知条件知 2211cos cos θθl l = ∴ 21T T = 习题2.1—2.6

习题2.1一颗子弹在枪筒里前进时所受的合力大小为3/1044005t F ?-=,子弹从枪口射出时的速率为m/s 300。设子弹离开枪口处合力刚好为零。求:(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ;(3)子弹的质量。

解:(1)由3/1044005t F ?-=和子弹离开枪口处合力刚好为零,则可以得到:03/1044005=?-=t F 算出t=0.003s 。

(2)由冲量定义:

33

35520

400410/3400210/3

0.6I Fdt t dt t t N s ==-?=-?=???()

(3)由动量定理: 习题2.2 质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求:

(1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.

解:(1)取子弹与物体为研究对象,子弹前进方向为x 轴正向, 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v ' 有 m v 0 = m v +M v '

v ' = m (v 0 - v )/M =3.13 m/s

T =Mg+M v 2/l =26.5 N

(2) s N 7.40?-=-=?v v m m t f (设0v 方向为正方向) 负号表示冲量方向与0v 方向相反.

习题2.3一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1 m 要漏去0.2 kg 的水.求水桶匀速地从井中提到井口,人所作的功.

习题2.2图

M

0v

30

0.60.6/3000.002I Fdt P mv N s

m kg ==?==?==?

所以:

解:选竖直向上为坐标y 轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量 即: 00.2107.8 1.96F P P ky mg gy y ==-=-=- 人的拉力所作的功为: 0

d d H

W W F y ==??=10

(107.8 1.96)d =980 J y y -?

习题2.4 如图所示,质量m 为 0.1 kg 的木块,在一个水平面上和一个劲度系数k 为20 N/m 的轻弹簧碰撞,木块将弹簧由原长压缩了x = 0.4 m .假设木块与水平面间的滑动摩擦系数μ 为0.25,问在将要发生碰撞时木块的速率v 为多少?

解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械能的增量.由题意有 222

1

21v m kx x f r -=- 而

mg f k r μ=

木块开始碰撞弹簧时的速率为

s m m

kx gx k 83.522

=+=

μv

习题2.5某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的

关系为 F =52.8x +38.4x 2(SI )求:

(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.

(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.

解:(1) 外力做的功

(2) 设弹力为F ′

1122

2

'1v d d 312

x x x x m F x F x W J

==-==??

?1

v 5.34ms -==习题2.4图

习题2.6两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。A 紧靠墙。今用力推B 块,使弹簧压缩0x 然后释放。(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;(2)弹簧的最大伸长量。

解:

2

020222

121kx v m = v v 2)(2102m m m += 所以m

k

x v 3430

=

(2)22122

022212121v m m kx v m )(++= 计算可得:02

1x x =

3、(变力作功、功率、质点的动能定理)设76()F i j N =-

(1)当一质点从原点运动到

3416(m)r i j k =-++

时,求F 所作的功;

(2)如果质点到r 处时需0.6s ,试求F 的平均功率;(3)如果质点的质量为1kg ,试求动能的变化。

解:(1)0

F dr ??

r A=0

(76)()i j dxi dyj dzk -?++? r =0

76dx dy -??-34

=45J =-,做负功

(2)45

750.6

A P W t === (3)0r k E A mgj dr ?=+-??

= -45+40mgdy -? = -85J

4、(机械能守恒、动量守恒)如图所示,一个固定的光滑斜面,倾角为θ,有一个质量为m 小物体,从高H 处沿斜面自由下滑,滑到斜面底C 点之后,继续沿水平面平稳地滑行。设m 所滑过的路程全是光滑无摩擦的,试求:(1)m 到达C 点瞬间的速度;(2)m 离开C 点的速度;(3)m 在C 点的动量损失。 解:(1)由机械能守恒有 2

12

c mgH mv =

带入数据得c v =AC 方向 (2)由于物体在水平方向上动量守恒,所以

cos c mv mv θ=

,得o s v θ=,方向沿CD 方向

(3)由于受到竖直的冲力作用,m 在C

点损失的动量p θ?=,方向竖直向下。

第三章刚体的运动

1、如题图所示,一根均匀细铁丝,质量为m ,长度为L ,在其中点O 处弯成120θ=?角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。 解:(1)对x 轴的转动惯量为:

2

02

220

1

(sin 60)32

L

x M J r dm l dl ML L ===?? (2)对y 轴的转动惯量为:

习题2.6图

20222015()(sin 30)32296

L

y M L M J l dl ML L =??+=?

(3)对Z 轴的转动惯量为:2211

2()32212

z M L J ML =???= 2、一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω.设它所受阻力矩与转动角速度成正比,即M k ω=-(k 为正的常数),求圆盘的角速度从0ω变为01

2

ω时所需的时间. 解:根据转动定律: M J β= d J

k dt ωω=- d k

dt J

ωω=- ∴ 两边积分:

002

01

d d t

k

t J

ωωωω=-??

得 (ln 2)t J k = 3、一轴承光滑的定滑轮,质量为 2.00,M kg =,半径为0.100,R m =一根不能伸长的轻绳,

一端固定在定滑轮上,另一端系有一质量为 5.00,m kg =的物体,如图所示.已知定滑轮的

转动惯量为21

2

J MR =

,其初角速度 010.0/,rad s ω=方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到0ω=时,物体上升的高度; 解:(1) ∵ mg T ma -= R J T β= R a β=

∴ ()2

2

22281.7/122

mgR mgR mg rad s mR J m M R mR MR β=

===+++ 方向垂直纸面向外

(2) ∵ βθωω220

2

-= 当0ω= 时, rad 612.0220

==

β

ω

θ 物体上升的高度2

6.1210 m h R θ-==?

4、一质量为15,M kg =、半径为0.30,R m =的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量21

2

J MR =

).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量8.0,m kg =的物体.不计圆柱体与轴之间的摩擦,求: (1) 物体自静止下落,5 s 内下降

的距离;(2) 绳中的张力.

解: mg T ma -= R J T β= R a β=

2210.6752J MR kg m ==?∴ 222

5.06/mgR a m s mR J

==+ 因此(1)下落距离 21

63.32

h at m ∴

== (2) 张力 37.9T mg ma N =-=

5、如图所示,设两重物的质量分别为1m 和2m ,且12m m >,定滑轮的半径为r ,对转轴

3题图

的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度

解:作示力图.两重物加速度大小a 相同,方向如图. 111m g T m a -= ①

222T m g m a -= ② 12T r T r J β-= ③

a r β= ④ 消去T 1,T 2得: ()()J

r m m gr m m ++-=

22121β 开始时系统静止,故t 时刻滑轮的角速度. ()()J

r m m grt m m t ++-=

=22121 βω

6、如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 (1) 设杆的线l

m

=

λ,在杆上取一小质元dx dm λ= gdx dmg df μλμ== g x d x dM μλ=

考虑对称 m g l

g x d x M l

μμλ?

==20

4

1

2 (2) 根据转动定律dt

d J JB M ω

== ?

?=-t

w Jd Mdt 0

ω

0212141ωμml mglt -=-

所以 g

l t μω30= 7、如图所示,长为l 的轻杆,两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为l 3

1

l 3

2

.轻杆原来静止在竖直位置。今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,

碰后以02

1

v 的速度返回,试求碰撞后轻杆所获得的角速度。 解:角动量守衡

022021

322)3()32(32v ml m l m l l mv ?-?+=ωω l

v 230=ω 8、一均质细杆,长1L m =,可绕通过一端的水平光滑轴O 在铅垂面内自由转动,如图3-28所示。开始时杆处于铅垂位置,今有一子弹沿水平方向以

110v m s -=?的速度射入细杆。设入射点离O 点的距离为3

4

L ,

子弹的质量为细杆质量的1

9

。试求:(1)子弹和细杆开始共同运

动的角速度。(2)子弹和细杆共同摆动能到达的最大角度。

解(1)子弹打进杆的过程中子弹和杆组成的系统角动量守恒,设子弹开始时的角速度为0ω,弹和杆一起共同运动的角速度为ω,则由角动量守恒定律得:

0(J J J ωω=+子子杆) ①

又23()9416m L m

J =

?=子 ② 2133

m J mL ==杆 ③

01040

333144

v L ω=

==

? ④把②③④式代入①式并解得:40

/19

rad s ω=

⑤ (2)设子弹与杆共同摆动能达到最大角度为θ角,在摆动的过程中杆和子弹及地球组成的系统机械能守恒,则由机械能守恒定律得,

13311((cos )(cos )294422

mg J J L L mg L L ωθθ+=-+-2子杆) ⑥ 把②③⑤式及10g =,L=1代入⑥式解得:cos 0.8962θ=。即26.3rad θ=

第四章振动与波动

振动部分:习题4.2、4.4、4.5

习题4.2一物体沿x 轴做简谐运动,振幅为0.06 m ,周期为2.0 s ,当t = 0时位移为0.03m ,且向x 轴正方向运动。求:(1)t = 0.5 s 时,物体的位移、速度和加速度;(2)物体从x = -0.03m 处向x 轴负向运动开始,到平衡位置,至少需要多少时间?

解: (1)由题意知A = 0.06m 、12T s ωππ-==由旋转矢量(a)图可确定初相则0?π=-,振动方程为

1

(0.06)cos ()x m s t ππ-??=-??

习题4.2 (b) 图

习题4.2 (a) 图

当t = 0.5s 时质点的位移、速度、加速度分别为

(0.06)cos(23)0.052x m m

ππ=-=11(0.06)sin(20.094v dx dt m s m s πππ--==-?-=-?22222(0.06)cos(23)0.513a d x dt m s m s πππ--==-?-=-?

(2)质点从x =-0.03 m 运动到平衡位置的过程中,旋转矢量从(b)图中的位置M 转至位置N ,矢量转过的角度(即相位差)56??=π。该过程所需时间为

0.833t s ?

ω

??=

=

习题4.4 某质点振动的x-t 曲线如题图所示.求:(1)质点的振动方程; (2)质点到达P 点相应位置所需的最短时间.

00001x=Acos(ωt+φ)

t=0,x =A/2,v >0πφ=-3

ππt=1s,ωt-=32

5πω=

6

5ππx=0.1cos(

t-)m

63

2P 0500.463

0.4t

t t s

p p p P s

ππ

ω?∴+=

-

==∴ 解:()设所求方程为:从图中可见,由旋转矢量法可知;又故:()点的相位为即质点到达点相应状态所要的最短时间为

习题4.5一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。求:(1)振动表达式;(2)s 5.0=t 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。

解:由题已知 A=12×10-2m ,T=2.0 s ∴ ω=2π/T=πrad ·s -1

习题4.4图

又,t=0时,cm x 60

=,00v > ∴由旋转矢量图,可知:3

0πφ-=

故振动方程为)(3

cos

12.0π

π-=t x

(2)将t=0.5 s 代入得

m t x 103.06cos 12.03cos 12.0==-=π

ππ)(

s m t v /189.06cos 12.03sin 12.0-==--=π

πππ)( 222/03.16

cos 12.03cos 12.0s m t a -=-=--=π

ππππ)( 方向指向坐标原点,即沿x 轴负向.

(3)由题知,某时刻质点位于cm 6-=x ,且向x 轴负方向运动

即x 0=-A/2,且v <0,故φt =2π/3,它回到平衡位置需要走5π/6,所以: ∴t=Δφ/ω=(5π/6)/(π) =5/6s

习题4.5图

1、两个物体同方向作同方向、同频率、同振幅的简谐振动,在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动,试利用旋转矢量法求它们的相位差.(旋转矢量法、相位差) 解:由于2/10A x =、100v <可求得:4/1π?= 由于2/20A x =、200v >可求得:4/2π?-= 如图5-10所示,相位差:12/2???π?=-=

2、一物体质量为0.25kg ,在弹性力作用下作简谐振动,弹簧的劲度系数1

25k N m -=?,如果起始振动时具有势能0.06 J 和动能0.02 J ,求 (1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度. 解:(1) 2

2

1kA E E E p K =+= 1/2[2()/]0.08K p A E E k m =+= (2)

222

1

21v m kx = ; 2k m ω= 22222sin ()m x m A t ωωω?∴=+ 2222222sin ()[1cos ()]x A t A t A x ω?ω?=+=-+=-

222A x =

,0.0566x A m ∴=±=±

(3) 过平衡点时,0x =,此时动能等于总能量

22

1

v m E E E p K =

+= 1/2[2()/]0.8/K p v E E m m s =+=± 3、 一弹簧振子,弹簧的劲度系数为k=25N/m,当物体以初动能0.2J 和初势能0.6J 振动时,求: (1) 振幅是多大? (2) 位移多大时,其势能和动能相等? (3) 位移是振幅的一半时,势能是多大?

解: (1) 弹簧振子的总机械能为2

12k p E E E kA =+=

,

故0.253A m == (2) 21124p k E E E kA ==

= 221124kx kA =

0.1792

x A m =±=± (3) 2

2110.20224

p A E kx k

J === 4、两个同方向的简谐振动的振动方程分别为:2

11

410cos 2()(),8

x t SI π-=?+

221

310cos 2()()4

x t SI π-=?+求:(1)合振动的振幅和初相;(2)若另有一同方向同频率

的简谐振动23510cos(2)()x t SI π?-=?+,则?为多少时,31x x +的振幅最大??又为多少时,32x x +的振幅最小?(合振动)

1题

解:(1))2cos(21?π+=+=t A x x x

按合成振动公式代入已知量,可得合振幅及初相为

2210 6.4810A m --=

=?

4sin(/4)3sin(/2)

1.124cos(/4)3cos(/2)

arctg

rad ππ?ππ+==+

所以,合振动方程为))(12.12cos(1048.62SI t x +?=-π (2)当π??k 21=-,即4/2ππ?+=k 时,31x x +的振幅最大. 当π??)12(2+=-k ,即2/32ππ?+=k 时,32x x +的振幅最小.

波动部分:习题4.7、4.8、4.10

习题4.7有一平面简谐波在介质中传播,波速u = 100 m/s ,波线上右侧距波源O (坐标原点)为75.0 m 处的一点P 的运动方程为

]

2/)s 2cos[()m 30.0(1p ππ+=-t y 。求(1)波向x 轴正

方向传播时的波动方程;(2)波向x 轴负方向传播时的波动方程。

解:(1)设以波源为原点O ,沿x 轴正向传播的波动方程为 ()[]0cos ?ω+-=x t A y

将 u = 100 m ?s -1代人,且取x = 75 m 得点P 的运动方程为 ()[]0P s 75.0cos ?ω+-=t A y

与题意中点P 的运动方程比较可得 A = 0.30 m 、12s -ω=π、02?=π。则所求波动方程为

)]

s m 100/)(s 2cos[()m 30.0(11--?-=x t y π

(2)当沿x 轴负向传播时,波动方程为 ()[]0cos ?ω++=x t A y

习题4.7图

将 x = 75 m 、1100u ms -=代人后,与题给点P 的运动方程比较得A = 0.30 m 、12s -ω=π、0?=-π,则所求波动方程为

])s m 100/)(s 2cos[()m 30.0(1

1ππ-?+=--x t y

讨论:对于平面简谐波来说,如果已知波线上一点的运动方程,求另外一点的运动方程,也可用下述方法来处理:波的传播是振动状态的传播,波线上各点(包括原点)都是重复波源质点的振动状态,只是初相位不同而已。在已知某点

初相0?的前提下,根据两点间的相位差λ

π???/200x ?=-'=?,即可确定未知点的

初相0?'。

习题4.8已知一沿x 正方向传播的平面余弦波,s 3

1

=t 时的波形如题图所示,

且周期T 为s 2.

(1)写出O 点的振动表达式; (2)写出该波的波动表达式; (3)写出A 点的振动表达式; (4)写出A 点离O 点的距离。

解:由图可知A=0.1m ,λ=0.4m ,由题知T= 2s ,ω=2π/T=π,而u=λ/T=0.2m/s 。

波动方程为:y=0.1cos [π(t-x/0.2)+Ф0]m 关键在于确定O 点的初始相位。 (1) 由上式可知:O 点的相位也可写成:φ=πt+Ф0

由图形可知: s 31

=t 时y 0=-A/2,v 0<0,∴此时的φ=2π/3,

将此条件代入,所以:03132?ππ+= 所以30π?= O 点的振动表达式y=0.1cos [πt+π/3]m

(2)波动方程为:y=0.1cos [π(t-x/0.2)+π/3]m (3)A 点的振动表达式确定方法与O 点相似由上式可知:

A 点的相位也可写成:φ=πt+ФA0

由图形可知: s 3

1

=t 时y 0=0,v 0>0,∴此时的φ=-π/2,

将此条件代入,所以:0312A ?ππ+=- 所以6

50π

?-=A

习题4.8图

A 点的振动表达式y=0.1cos [πt-5π/6]m

(4)将A 点的坐标代入波动方程,可得到A 的振动方程,与(3)结果相同,所以: y=0.1cos [π(t-x/0.2)+π/3]= 0.1cos [πt-5π/6]

可得到:m x A 233.030

7

==

习题4.10 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。试写出:

(1)原点的振动表达式; (2)波动表达式;

(3)同一时刻相距m 1的两点之间的位相差。

解:(1) 由图可知A=0.5cm ,原点处的振动方程为:y=Acos (ωt+φ) t=0s 时 y=A/2 v>0 可知其相位为φ=3

π

-

t=1s 时 y=0 v<0 可知其相位为φ1=

2π 代入振动方程, φ=3

π

-

ω+φ=

2

π 可得:ω=

6

T=2π/ω=12/5 则 y=0.5cos (

65πt-3

π

)cm (2)沿x 轴负方向传播,波动表达式:y=0.5cos[65π(t+54x )-3

π

]cm (3)根据已知的T=12/5,m/s 8.0=u ,可知:m 25

48=

λ 那么同一时刻相距m 1的两点之间的位相差: 3.27rad 24

25

2==?=?πλπ

?x

1、如图,一平面波在介质中以波速20/u m s =沿x 轴负方向传播,已知A 点的振动方程为)(4cos 1032

SI t y π-?=. (1)以A 点为坐标原点写出波方程;

(2)以距A 点5m 处的B 点为坐标原点,写出波方程

.

u

1题图

习题4.10图

解:(1)坐标为x 处质点的振动相位为

)]20/([4)]/([4x t u x t t +=+=+ππ?ω 波的表达式为 ))](20/([4cos 1032SI x t y +?=-π

(2)以B 点为坐标原点,则坐标为x 点的振动相位为 )](20

5

[4'SI x t t -+=+π?ω 波的表达式为 )]()20

(4cos[10

32

SI x

t y ππ-+

?=- 2、在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为

)]/(2cos[1λνπx t A y -=与)]/(2cos[22λνπx t A y +=,试求Ox 轴上合振幅最大与合

振幅最小的那些点的位置.

解:(1)设合振幅最大处的合振幅为max A ,有2

22max (2)22cos A A A A A φ=++??

式中 4/x ?πλ?= 因为当cos 1??=时,合振幅最大,即有πλπk x 2/4±= 所以,合振幅最大的点 λk x 2

1

±

= (k=0,1,2,…) (2)设合振幅最小处的合振幅为min A ,有2

22min (2)22cos A A A A A φ=++??

式中 4/x ?πλ?= 因为当cos 1??=-时,合振幅最小,即有πλπ)12(/4+±=k x 所以,合振幅最小的点 4/)12(λ+±=k x (k=0,1,2,…) 3、两波在一很长的弦线上传播,其波方程分别为:

))(244(31

cos 10

00.42

1SI t x y -?=-π

))(244(3

1cos 1000.42

2SI t x y +?=-π

求:(1)两波的频率、波长、波速;(2)两波叠加后的波节位置;(3)叠加后振幅最大的那些点的位置.

解:(1)与波动的标准表达式)/(2cos λνπx t A y -=对比可得: Hz 4=ν, m 50.1=λ, 波速s m u /00.6==λν (2)波节位置131

4/3()()m,n 0,1,2 (242)

x n x n πππ=±+

=±+=即 (3)波腹位置4/33/4m,n 0,1,2...x n x n ππ=±=±=即

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理(第五版)上册课后习题答案马文蔚

习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变

大学物理试题及答案()

第2章 刚体的转动 一、 选择题 1、 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A 和?B ,不计滑轮轴的摩擦,则有 (A) ?A =?B . (B) ?A >?B . (C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B . [ ] 2、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B . (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ] 3、 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 4、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2 ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针。 [ ] 5、 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v .

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理习题与作业答案

理想气体状态方程 5-1一容器内储有氧气,其压强为1.01?105Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol =Θ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρΘ, kg 1033.510 44.230 .12625 2 -?=?= = ∴n m O ρ (4)m 1045.310 44.21193253 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大? 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有

RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-== 上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将2.0?10-2kg 的氢气装在4.0?10-3m 2的容器中,压强为3.9?105Pa ,则氢分子的平均平动动能为多少? 解:RT M m pV mol = Θ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少? 解:kT N t 23=∑ε,其中N 为总分子数。kT V N nkT p = =Θ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均 平动动能等于1eV ,气体的温度需多高?(1eV=1.6?10-19J )

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理上学习指导作业参考答案

第一章 质点运动学 课 后 作 业 1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为] a =2+6 x 2 (SI) 如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v , 62d d d d d d 2x t x x t a +=?== v v 2分 () x x x d 62d 0 20 ??+=v v v 2分 () 2 21 3 x x +=v 1分 2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 3分 v d =x /d t 2=t 2 t t x t x x d 2d 0 2 ??= x 2= t 3 /3+x 0 (SI) 2分 3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为 22 1 ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向 加速度大小相等时所经历的时间. 解: ct b t S +==d /d v 1分 c t a t == d /d v 1分 ()R ct b a n /2 += 1分 根据题意: a t = a n 1分 即 ()R ct b c /2 += 解得 c b c R t -= 1分

4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小. 解:根据已知条件确定常量k () 222/rad 4//s Rt t k ===v ω 1分 24t =ω, 24Rt R ==ωv s t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分 ()8.352 /122=+=n t a a a m/s 2 1分 5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上? 解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分 抛出后上升高度 9.4522 ='=g h v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 202 1 )(gt t t -+=v v v 1分 08.420==g t v s 1分 6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

大学物理(上册)参考答案

第一章作业题 P21 1.1; 1.2; 1.4; 1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x ,a 的单位为2 s m -?,x 的单 位为 m. 质点在x =0处,速度为101 s m -?,试求质点在任何坐标处的速度值. 解: ∵ x v v t x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2 +==υυ 两边积分得 c x x v ++=32 2221 由题知,0=x 时,100 =v ,∴50=c ∴ 1 3s m 252-?++=x x v 1.10已知一质点作直线运动,其加速度为 a =4+3t 2 s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 1 223 4c t t v ++= 由题知,0=t ,00 =v ,∴01=c 故 2234t t v + = 又因为 2 234d d t t t x v +== 分离变量, t t t x d )23 4(d 2+= 积分得 2 3221 2c t t x ++= 由题知 0=t ,50 =x ,∴52=c 故 52123 2++ =t t x 所以s 10=t 时 m 70551021 102s m 1901023 10432101210=+?+?=?=?+ ?=-x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33 t ,θ式中以弧度计,t 以秒

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理试题及答案

大学物理试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第1部分:选择题 习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 * 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向 岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( ) (A )匀加速运动,0 cos v v θ= (B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ = (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v = 1-6 以下五种运动形式中,a 保持不变的运动是 ( ) (A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动. 1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度22/a m s -=-,则一秒钟后质点的速度 ( ) (A)等于零. (B)等于-2m/s. (C)等于2m/s. (D)不能确定.

大学物理作业(一)答案

大学物理作业(一)答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

班级___ ___学号____ ____姓名____ _____成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -== (SI 制),则(1) t =1s 时质点的位置矢量 2i j +,速度 22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -___ ___,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A 点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(SI 制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为 ,法向加速度为 . 二. 选择: 1. 以下说法错误的是:( ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A)0v (B)θcos 0v (C) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(不计空气 阻力): ( D )

相关文档