文档库 最新最全的文档下载
当前位置:文档库 › 薄膜应力

薄膜应力

薄膜应力

薄膜应力

membrane stress 沿截面厚度均匀分布的应力成分,它等于沿所考虑截面厚度的应力平均值。由无力矩理论求解的壳体应力均为薄膜应力,且属一次薄膜应力。根据有力矩理论计算,不连续应力中也含有薄膜应力分量,但属二次应力。由于薄膜应力存在于整个壁厚,一旦发生屈服就会出现整个壁厚的塑性变形。在压力容器中,其危害性大于同等数值的弯曲应力(弯曲应力沿壁厚呈线性或非线性分布)。——摘自《安全工程大辞典》(1995年11月化学工业出版社出版)……一次应力为平衡压力与其它机械载荷所必须的法向应力或剪应力。一次应力分为以下三类:1.一次总体薄膜应力是影响范围遍及整个结构的一次薄膜应力。在塑性流动过程之中一次总体薄膜应力不会重新分布,它将直接导致结构破坏。2.一次局部薄膜应力应力水平大于一次总体薄膜应力,但影响范围仅限于结构局部区域的一次薄膜应力。当结构局部发生塑性流动时,这类应力将重新分布。若不加以限制,则当载荷从结构的某一高应力区传递到另一低应力区时,会产生过量塑性变形而导致破坏。 3. 一次弯曲应力平衡压力或其他机械载荷所需的沿截面厚度线性分布的弯曲应力。二次应力为满足外部约束条件或结构自身变形连续要求所须的法向应力或剪应力。二次应力的基本特征是具有自限性,即局部屈服和小量变形就可以使约束条件或变形连续要求得到满足,从而变形不再继续增大。只要不反复加载,二次应力不会导致结构破坏。峰值应力由局部结构不连续或局部热应力影响而引起的附加在一次加二次应力上的应力增量。

多晶硅薄膜应力特性研究(1)

第20卷第6期 半 导 体 学 报 V o l.20,N o.6 1999年6月 CH I N ESE JOU RNAL O F SE M I CONDU CTOR S June,1999  多晶硅薄膜应力特性研究 张国炳 郝一龙 田大宇 刘诗美 王铁松 武国英 (北京大学微电子学研究所 北京 100871) 摘要 本文报道了低压化学气相淀积(L PCVD)制备的多晶硅薄膜内应力与制备条件、退火 ,用XRD、R ED等技术测量分析了多晶硅膜的微结构组成.结果表明,L PCVD制备的多晶硅薄膜具有本征压应力,其内应力受淀积条件、微结 构组成等因素的影响.采用快速退火(R TA)可以使其压应力松弛,减小其内应力,并可使其转 变成为本征张应力,以满足在微机电系统(M E M S)制备中的要求. PACC:6220,7360F,6860 1 引言 多晶硅薄膜由于其特有的导电特性和易于实现自对准工艺的优点,在大规模集成电路(VL S I)的制备中有着广泛的应用.对多晶硅薄膜的导电特性已进行了深入的研究[1].近年来,随着集成电路的发展,特别是微机电系统(M E M S)的兴起,多晶硅膜作为M E M S中的基本结构材料,其机械特性直接影响着器件的性能和稳定性、可靠性. 在M E M S应用中要求多晶硅膜本身具有较小的张应力且膜内有小的应力梯度,如果多晶硅膜内应力过大,会使M E M S结构层形变甚至断裂,造成器件失效.所以,控制制备工艺条件,使其具有较小的张应力,成为M E M S制造工艺中的一个很关键的问题[2,3].本文对L PCVD多晶硅薄膜的应力特性进行了实验研究,主要包括:制备工艺条件、退火温度和时间、掺杂浓度和微结构组成对其应力特性的影响.实验中采用薄膜全场应力测试系统测量薄膜的应力,用X光衍射(XRD)及反射电子衍射(R ED)等技术测量分析了多晶硅膜的微结构组成. 2 实验 2.1 实验样品制备 实验样品采用在N型(100)单晶硅衬底热生长300~500nm厚的Si O2膜;再用低压化学气相淀积生长多晶硅薄膜,工艺条件为:淀积温度分别为575℃和610℃,压力30Pa,硅烷 张国炳 男,1937年出生,教授,从事半导体器件物理及VL S I和M E M S中薄膜结构特性及应用研究 郝一龙 男,1963年出生,副研究员,从事VL S I多层互连技术及M E M S器件和制备工艺研究 1998202213收到,1998208225定稿

薄膜应力测试方法

薄膜的残余应力测试 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。

薄膜应力测试方法

薄膜的残余应力 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。 图三、牛頓环法示意图 3、干涉仪相位移式应力测量法

压力容器薄膜应力理论分析

压力容器薄膜应力理论分析 本章重点内容及对学生的要求: (1)压力容器的定义、结构与分类; (2)理解回转薄壳相关的几何概念、第一、二主曲率半径、平行圆半径等基本概念。 (3)掌握回转壳体薄膜应力的特点及计算公式。 第一节 压力容器概述 1、容器的结构 如图1所示,容器一般是由筒体(壳体)、封头(端盖)、法兰、支座、接管及人孔(手孔)视镜等组成,统称为化工设备通用零部件。 图1 容器的结构示意图 2、压力容器的分类 压力容器的使用范围广、数量多、工作条件复杂,发生事故的危害性程度各不相同。压力容器的分类也有很多种,一般是按照压力、壁厚、形状或者在生产中的作用等进行分类。本节主要介绍以下几种: ○ 1按照在生产工艺中的作用 反应容器(R ):主要用来完成介质的物理、化学反应,利用制药中的搅拌反应器,化肥厂中氨合成塔,。 换热容器(E ):用于完成介质的热量交换的压力容器,例如换热器、蒸发器和加热器。 分离压力容器(S ):完成介质流体压力缓冲和气体净化分离的压力容器,例如分离器、干燥塔、过滤器等; 储存压力容器(C ,球罐代号为B ):用于储存和盛装气体、液体或者液化气等介质,如液氨储罐、液化石油气储罐等。 ○ 2按照压力分 外压容器:容器内的压力小于外界的压力,当容器的内压力小于一个绝对大气压时,称之为真空容器。 内压容器:容器内的压力大于外界的压力。 低压容器(L ): MPa P MPa 6.11.0<≤; 中压容器(M ):M P a P M P a 1016.0<≤ 高压容器(H ):M P a P M P a 10010<≤ 超高压容器(U ):P M P a ≤1

SiO2 薄膜热应力模拟计算

SiO2薄膜热应力模拟计算1 吴靓臻,唐吉玉 华南师范大学物电学院,广州(510006) E-mail:tangjy@https://www.wendangku.net/doc/7512940900.html, 摘要:薄膜内应力严重影响薄膜在实际中的应用。本文采用有限元模型对SiO2薄膜热应力进行模拟计算,验证了模型的准确性。同时计算了薄膜热应力的大小和分布,分别分析了不同镀膜温度、不同膜厚和不同基底厚度生长环境下热应力的大小,得到了相应的变化趋势图, 对薄膜现实生长具有一定的指导意义。 关键词:热应力,SiO2薄膜,有限元,模拟 0 引言 二氧化硅(SiO2)薄膜因其具有优越的电绝缘性,传导特性等各种性能,加之其工艺的可行性,在微电子及光学和其它领域中有着非常广泛的应用[1]。随着光通信及集成光学研究的深入,在光学薄膜中占重要地位的多层介质SiO2光学薄膜,是主要的低折射率材料,对光学技术的发展起着举足轻重的作用[2]。然而,光学薄膜中普遍存在的残余应力是影响光学器件甚至整个集成光学系统性能及可靠性的重要因素。过大的残余应力会导致薄膜产生裂痕、褶皱、脱落等各种破坏,影响薄膜的使用性能[3]。此外,光学薄膜中的残余应力还会引起其基底平面发生弯曲导致其光学仪器发生畸变,从而导致整个光学系统偏离设计指标,甚至完全不能工作。因此有必要对SiO2薄膜残余应力进行深入细致的研究。 前人的研究表明:SiO2薄膜中的最终残余应力是淬火应力和热应力共同作用的结果[4] [5] [6],而热应力是薄膜应力中不可避免的。但是现有的热应力理论计算无法得到直观的热应力 分布规律,不利于选择最适合的生长环境;若采用实验测试,成本高且也不现实。本文利用计算机,采用有限元技术,以在BK7玻璃衬底上生长的SiO2薄膜为研究对象,利用有限元软件ANSYS对SiO2薄膜在冷却阶段产生的热应力进行计算与分析, 计算了薄膜热应力的大小和分布,分别分析了不同镀膜温度、不同膜厚和不同基底厚度生长环境下热应力的大小,得到了相应的变化趋势图。这些结果对SiO2薄膜的实际应用和薄膜应力产生机制的探讨都有一定的意义。 1 理论分析 薄膜应力的形成是一个复杂的过程。一般来说,薄膜应力起源于薄膜生长过程中的某种结构不完整性(如杂质、空位、晶粒边界、位错等)、表面能态的存在以及薄膜与基体界面间的晶格错配等。在薄膜形成后,外部环境的变化同样也可能使薄膜内应力发生变化,如热退火效应使薄膜中的原子产生重排,结构缺陷得以消除(或部分消除),或产生相变和化学反应等,从而引起应力状态的变化。 薄膜内应力可以写成: σ内=σ热+σ本征(1)影响热应力的物理参数有热膨胀系数、杨氏模量、泊松比、厚度、温度变化等。目前,薄膜热应力数学模型是基于传统的梁弯曲理论来计算的,假设涂层相对于基体非常薄,而且尺寸无限宽,根据Stoney方程[7]可知薄膜热应力计算公式为: 1本课题得到国家自然科学基金资助项目(项目号:10575039)的资助。

薄膜应力

薄膜应力 通常薄膜由它所附着的基体支承着,薄膜的结构和性能受到基体材料的重要影响。因此薄膜与基体之间构成相互联系、相互作用的统一体,这种相互作用宏观上以两种力的形式表现出来:其一是表征薄膜与基体接触界面间结合强度的附着力;其二则是反映薄膜单位截面所承受的来自基体约束的作用力—薄膜应力。薄膜应力在作用方向上有张应力和压应力之分。若薄膜具有沿膜面收缩的趋势则基体对薄膜产生张应力,反之,薄膜沿膜面的膨胀趋势造成压应力[1-2]。应该指出,薄膜和基体间附着力的存在是薄膜应力产生的前提条件,薄膜应力的存在对附着力又有重要影响[3]。 图1薄膜中压应力与张应力的示意图[4] 1薄膜应力的产生及分类: 薄膜中的应力受多方面因素的影响,其中薄膜沉积工艺、热处理工艺以及材料本身的机械特性是主要影响因素。按照应力的产生根源将薄膜内的应力分为热应力和本征应力,通常所说的残余应力就是这两种应力的综合作用,是一种宏观应力[4]。 本征应力又称内应力,是在薄膜沉积生长环境中产生的(如温度、压力、气流速率等),它的成因比较复杂,目前还没有系统的理论对此进行解释,如晶格失配、杂质介入、晶格重构、相变等均会产生内应力[5]。本征应力又可分为界面应力和生长应力。界面应力来源于薄膜与基体在接触界面处的晶格错配或很高的缺陷密度,而生长应力则与薄膜生长过程中各种结构缺陷的运动密切相关。本征应力与薄膜的制备方法及工艺过程密切相关,且随着薄膜和基体材料的不同而不同[6]。 热应力是由薄膜与基底之间热膨胀系数的差异引起的。在镀膜的过程中,薄膜和基体的温度都同时升高,而在镀膜后,下降到初始温度时,由于薄膜和基体的热膨胀系数不同,便产生了内应力,一般称之为热应力,这种现象称作双金属效应[7]。但由这种效应引起的热应力不能认为是本质的论断。薄膜热应力指的是在变温的情况下,由于受约束的薄膜的热胀冷缩

薄膜应力课件

第9章 压力容器中的薄膜应力 本章重点内容及对学生的要求: (1)压力容器的定义、结构与分类; (2)理解回转薄壳相关的几何概念、第一、二主曲率半径、平行圆半径等基本概念。 (3)掌握回转壳体薄膜应力的特点及计算公式。 第一节 压力容器概述 1、容器的结构 如图1所示,容器一般是由筒体(壳体)、封头(端盖)、法兰、支座、接管及人孔(手孔)视镜等组成,统称为化工设备通用零部件。 图1 容器的结构示意图 2、压力容器的分类 压力容器的使用范围广、数量多、工作条件复杂,发生事故的危害性程度各不相同。压力容器的分类也有很多种,一般是按照压力、壁厚、形状或者在生产中的作用等进行分类。本节主要介绍以下几种: ○ 1按照在生产工艺中的作用 反应容器(R ):主要用来完成介质的物理、化学反应,利用制药中的搅拌反应器,化肥厂中氨合成塔,。 换热容器(E ):用于完成介质的热量交换的压力容器,例如换热器、蒸发器和加热器。 分离压力容器(S ):完成介质流体压力缓冲和气体净化分离的压力容器,例如分离器、干燥塔、过滤器等; 储存压力容器(C ,球罐代号为B ):用于储存和盛装气体、液体或者液化气等介质,如液氨储罐、液化石油气储罐等。 ○ 2按照压力分 外压容器:容器内的压力小于外界的压力,当容器的内压力小于一个绝对大气压时,称之为真空容器。 内压容器:容器内的压力大于外界的压力。 低压容器(L ): MPa P MPa 6.11.0<≤; 中压容器(M ):M P a P M P a 1016.0<≤ 高压容器(H ):M P a P M P a 10010<≤ 超高压容器(U ):P M P a ≤10

塑料薄膜性能测试方法

在塑料包装材料中,各种塑料薄膜、复合塑料薄膜具有不同地物理、机械、耐热以及卫生性能.人们根据包装地不同需要,选择合适地材料来使用.如何评价包装材料地性能呢?国内外测试方法有很多.我们应优先选择那些科学、简便、丈量误差小地方法.优先选择国际标准、国际先进组织标准,如、等和我国国家标准、行业标准,如/标准、/标准、/标准等等. 笔者在从事检验工作中,使用过一些检测方法,下面向大家简单介绍一下. 规格、外观塑料薄膜作为包装材料,它地尺寸规格要满足内装物地需要.有些薄膜地外观与货架效果紧密相连,外观有题目直接影响商品销售.而厚度又是影响机械性能、阻隔性地因素之一,需要在质量和本钱上找到最优化地指标.因此这些指标就会在每个产品标准地要求中作出规定,相应地要求检测方法一般有:.厚度测定/-《塑料薄膜和薄片厚度测定机械丈量法》该非等效采用:《塑料-薄膜和薄片-厚度测定-机械丈量法》.适用于薄膜和薄片地厚度地测定,是采用机械法丈量即接触法,丈量结果是指材料在两个丈量平面间测得地结果.丈量面对试样施加地负荷应在~之间.该方法不适用于压花材料地测试. .长度、宽度/-《塑料薄膜与片材长度和宽度地测定》非等效采用国际标准:《塑料-薄膜和薄片-长度和宽度地测定》.该标准规定了卷材和片材地长度和宽度地基准丈量方法. 塑料材料地尺寸受环境温度地影响较大,解卷时地操纵拉力也会造成材料地尺寸变化.丈量用具地精度不同,也会造成丈量结果地差异.因此在丈量中必须留意每个细节,以求丈量地结果接近真值. 标准中规定了卷材在丈量前应先将卷材以最小地拉力打开,以不超过地长度层层相叠不超过层作为被测试样,并在这种状态下保持一定地时间,待尺寸稳定后在进行丈量. .外观塑料薄膜地外观检验一般采取在自然光下目测.外观缺陷在/《塑料术语及其定义》中有所规定.缺陷地大小一般需用通用地量具,如钢板尺、游标卡尺等等进行丈量. 物理机械性能.塑料力学性能——拉伸性能塑料地拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验. 塑料拉伸性能试验地方法国家标准有几个,适用于不同地塑料拉伸性能试验. /-《塑料拉伸性能试验方法》一般适用于热塑性、热固性材料,这些材料包括填充和纤维增强地塑料材料以及塑料制品.适用于厚度大于地材料. /-《塑料薄膜拉伸性能试验方法》是等效采用国际标准-《塑料薄膜拉伸性能地测定》.适用于塑料薄膜和厚度小于地片材,该方法不适用于增强薄膜、微孔片材、微孔膜地拉伸性能测试. 以上两个标准中分别规定了几种不同外形地试样,和拉伸速度,可根据不同产品情况进行选择.如伸长率较大地材料,不宜采用太宽地试样;硬质材料和半硬质材料可选择较低地速度进行拉伸试验,软质材料选用较高地速度进行拉伸试验等等. .撕裂性能撕裂性能一般用来考核塑料薄膜和薄片及其它类似塑料材料抗撕裂地性能. /-《塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法》是等效采用国际标准-:《塑料-薄膜和薄片-耐撕裂性能地测定第部分;裤形撕裂法》适用于厚度在以下软质薄膜或片材.试验方法是将长方形试样在中间预先切开一定长度地切口,像一条裤子.故名裤形撕裂法.然后在恒定地撕裂速度下,使裂纹沿切口撕裂下往所需地力.使用仪器同拉伸试验仪中地非摆锤式地试验机. /-《塑料直角撕裂性能试验方法》适用于薄膜、薄片及其它类似地塑料材料.试验方法是将试样裁成带有直角口地试样,将试样夹在拉伸试验机地夹具上,试样地受力方法与试样方向垂直.用一定速度进行拉伸,试验结果以撕裂过程中地最大力值作为直角撕裂负荷.试样假如太薄,可采用多片试样叠合起来进行试验.但是,单片和叠合试样地结果不可比较.叠合试样不适用于泡沫塑料片. /-《塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法》是等效采用国际标准/-《塑料薄膜和薄片耐撕裂性地测定――第二部分:埃莱门多夫法》适用于软塑料薄膜、复合薄膜、薄片,不适用于聚氯乙烯、尼龙等较硬地材料.原理是使具有规定切口地试样承受规定大小摆锤贮存地能量所产生地撕裂力,以撕裂试样所消耗地能量计算试样地耐撕裂性. .摩擦系数静摩擦系数是指两接触表面在相

塑胶内应力测试方法

PC塑胶材料的内应力检测方法 1、测试辅料: 正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为 1:10)、甲苯/ 正丙醇(比例是 1:3)、碳酸丙烯、测试夹具(或者负载)。 2、测试过程: 2.1 测试夹具的选择: 2.1.1因为TnP混合液存放时间过长,其成分会蒸发,性质会改变,从而导致测试结果不一,所以要选择一个可以存放正丙醇、乙酸乙酯/甲醇、甲苯/ 正丙醇、碳酸丙烯试剂的密封瓶,并且能保证试剂在密封瓶内循环流动。 2.2 测试试剂的选择: 2.2.1选择测试试剂时应满足测试程度的要求,必须符合安全要求. 2.2.2 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成. 2.2.3 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP(即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代. 2.2.4 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:2.5, 因为此试剂可让PC材料达到7兆帕的反应力值. 2.2.5 如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。 2.3 测试时间: 2.3.1 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. 2.3.2 PC材料在其它的试剂沉浸的时间可以参考下表

ANSYS压力容器应力分析中

ANSYS压力容器应力分析中,列表应力名称问题 1. ** MEMBRANE ** 代表PL? 2. ** BENDING ** 代表PB? 3. ** MEMBRANE PLUS BENDING ** 代表PL+PB? 4. ** PEAK ** 代表F? 5. ** TOTAL ** 代表 注: (因为JB4732中规定,判定各种应力许用极限的参数有一次总体薄膜应力强度 SⅠ(由Pm算得); 一次局部薄膜应力强度SⅡ(由PL算得); 一次薄膜加一次弯曲应力强度SⅢ(由PL+PB算得); 一次加二次应力强度SⅣ(由PL+PB+Q算得); 峰值应力强度SⅤ(由PL+PB+Q+F算得) Pm是一次总体薄膜应力, PL是一次局部薄膜应力; PB是一次弯曲应力; Q是二次应力; F是峰值应力) Pm是一次总体薄膜应力, PL是一次局部薄膜应力; PB是一次弯曲应力;

Q是二次应力; F是峰值应力) 1. ** MEMBRANE ** 代表PL 2. ** BENDING ** 代表PB? 3. ** MEMBRANE PLUS BENDING ** 代表PL+PB? 4. ** PEAK ** 代表F? 5. ** TOTAL ** 代表? ANSYS后处理应力线性化得到的结果中: ** MEMBRANE **代表薄膜应力,可能是一次总体薄膜应力也可能是一次局部薄膜应力。 ** BENDING **代表弯曲应力,可能是一次弯曲应力也可能属于二次应力。 ** MEMBRANE PLUS BENDING **根据前2者可能是一次薄膜+一次弯曲(),也可能是一次+二次应力(3 kSm) ANSYS只能把应力根据平均应力、线性化应力和非线性化应力来区分薄膜应力弯曲应力和峰应力,而不能分出总体薄膜应力和局部薄膜应力,一次应力还是二次应力。这需要你根据JB4732和ASME VIII-2的标准自己去判断** MEMBRANE **,** BENDING **,** MEMBRANE PLUS BENDING **的类别。

相关文档