文档库 最新最全的文档下载
当前位置:文档库 › 常见可燃气体爆炸上下限

常见可燃气体爆炸上下限

常见可燃气体爆炸上下限
常见可燃气体爆炸上下限

常见可燃气体爆炸上、下限

什么是可燃气体的爆炸极限、爆炸上限、爆炸下限

可燃气体的爆炸极限:

可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:

(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可燃气体划为一级可燃

气体,其火灾危险性列为甲类。

(2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。

(3)它可以作为制定安全生产操作规程的依据。在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、粉尘)的浓度控制在

爆炸下限以下。为保证这一点,在制定安全生产操作规程时,应根据可燃气(蒸气、粉

尘)的燃爆危险性和其它理化性质,采取相应的防范措施,如通风、置换、惰性气体稀

释、检测报警等。

可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。

有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL?)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。

爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。

便携式可燃气体检测仪的通常设有一个报警点:25%LEL为报警点。

举例说明,甲烷的爆炸下限为5%体积比,那也就是说,把这个5%体积比,一百等分,让5%体积比对应100%LEL,也就是说,当检测仪数值到达10%LEL报警点时,相当于此时甲烷的含量为0.5%体积比。当检测仪数值到达25%LEL报警点时,相当于此时甲烷的含量为1.25%体积比。

所以,您不必担心报警后是不是随时有危险了,此时是在提示您,要马上采取相应的措施啦,比如开启排气扇或是切断一些阀门等,离真正有可能出现危险的爆炸下限还有很大一段差距,这样才会起到报警提示的作用。

常见气体的爆炸极限完整版

常见气体的爆炸极限 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限 (体积分数) / % 下限(V/V) 上限(V/V) 乙烷 C2H6 乙醇 C2H5OH 19 乙烯 C2H4 32 氢气 H2 75 硫化氢 H2S 45 甲烷 CH4 15 甲醇 CH3OH 44 丙烷 C3H8

甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2 乙炔 C2H2 100 氨气 NH3 15 苯 C6H6 8 丁烷 C4H10 一氧化碳 CO 74 丙烯 C3H6 丙酮 CH3COCH3 13 苯乙烯 C6H5CHCH2

炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。(二)爆炸反应当量浓度的计算爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的

常见气体的爆炸极限

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限(体积分数) / % 下限(V/V) 上限(V/V) 乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2 苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0

空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。可可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。爆炸极限是一个气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可燃气体等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。(将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产警等。 空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的全燃烧时在混合物中该可燃物质的含量。根据化学反应计算可燃气体或蒸2C0+02+3.76N2=2C02+3.76N2 根据反应式得知,参加反应0%=29.6%(三)爆炸极限的影响因素爆炸极限通常是在常含氧量、惰性气体含量、火源强度等因素的变化而变化。1.初始温度 爆炸危险性。2.初始压力增加混合气体的初始压力,通常

各种粉末的自燃点及爆炸下限

各种粉末的自燃点及爆炸下限

————————————————————————————————作者: ————————————————————————————————日期:

各种粉末的自燃点及爆炸下限 粉尘名称雾状粉尘的自然点℃爆炸下限 /g·m-3 粉尘名称雾状粉尘的自然点℃爆炸下限 /g·m-3 蒽472 5.04 对甲氧基苯酸 830 5.20 萘 565 2.50对硝基苯酸850 10.40 甲基苯酚 559 1.10 2-羟基萘酸850 20.80 对氯苯甲酸 850 10.40 油溶橙R 890 5.20 苯邻二(甲)酰氯890 20.80 油溶升华橙870 7.80 对硝基苯(甲)酰氯 675 10.40 氯苯甲酰苯甲酸970 10.40 对硝基苯替二乙胺 975 31.20 苯甲酰基苯甲酸890 5.20 4-硝基-2-氨基甲苯 650 5.20 氨基氯苯甲酰苯甲酸 885 5.20 联苯胺 910 5.20 沥青 - 15.0 六亚甲基四胺410 15.00 硬沥青580 20.00 丙烯醇树脂 500 35.00虫胶-15.0 香豆酮茚树脂520 15.00 二苯基 - 12.6

木质素树脂 450 40.00 工业用酪素 - 32.8 酚醛树脂 460 25.00 染料 - 270.0 虫胶松香树脂390 15.00 酪素赛璐珞粉尘 - 8.0 聚乙烯醛缩丁醛树390 20.00六次甲基四胺- 15.0 脂 石炭酸树脂 460 25.00 Ⅰ级硬橡胶粉末 - 7.6 聚乙烯树脂450 25.00 凝汽油剂 450 20.00 聚苯乙烯490 25.00 噻吩 540 15.00 合成硬橡胶320 30.00 面粉-30.2 有机玻璃440 20.00棉花 - 25.2 赛璐珞 125 4.00 苯磺酸钠95010.40 醋酸纤维320 25.00 氨基吡唑酮 825 10.40 丙酸纤维 460 25.00硝基苯二甲酸酐775 5.20 木纤维 775 25.00 2-氯-5-氨基苯甲酸 1010 10.40 尿素树脂模压物450 75.00 显影剂rCC 925 10.40

爆炸极限的计算方法

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中 0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k

常见可燃气体爆炸上下限

常见可燃气体爆炸上下 限 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

常见可燃气体爆炸上、下限

什么是可燃气体的爆炸极限、爆炸上限、爆炸下限 可燃气体的爆炸极限: 可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是%~%(体积浓度),意思是如果氢气在空气中的体积浓度在%~%之间时,遇火源就会爆炸,而当氢气浓度小于%或大于%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是%~15%意味着甲烷在空气中体积浓度在%~15%之间时,遇火源会爆炸,否则就不会爆炸。 可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。 爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。 爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义: (1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可 燃气体划为一级可燃气体,其火灾危险性列为甲类。

(2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。 (3)它可以作为制定安全生产操作规程的依据。在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体 (蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生 产操作规程时,应根据可燃气(蒸气、粉尘)的燃爆危险性和其它理化性 质,采取相应的防范措施,如通风、置换、惰性气体稀释、检测报警等。 可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。 有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。

常见可燃气体爆炸上下限

常见可燃气体爆炸上、下限

什么是可燃气体的爆炸极限、爆炸上限、爆炸下限 可燃气体的爆炸极限: 可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。 可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。 爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。 爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义: (1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可 燃气体划为一级可燃气体,其火灾危险性列为甲类。 (2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。

(3)它可以作为制定安全生产操作规程的依据。在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、 粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产操作规 程时,应根据可燃气(蒸气、粉尘)的燃爆危险性和其它理化性质,采取相 应的防范措施,如通风、置换、惰性气体稀释、检测报警等。 可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。 有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL?)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。 爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。 便携式可燃气体检测仪的通常设有一个报警点:25%LEL为报警点。 举例说明,甲烷的爆炸下限为5%体积比,那也就是说,把这个5%体积比,一百等分,让5%体积比对应100%LEL,也就是说,当检测仪数值到达10%LEL报警点时,相当于此时甲烷的含量为0.5%体积比。当检测仪数值到达25%LEL报警点时,相当于此时甲烷的含量为1.25%体积比。 所以,您不必担心报警后是不是随时有危险了,此时是在提示您,要马上采取相应的措施啦,比如开启排气扇或是切断一些阀门等,离真正有可能出现危险的爆炸下限还

各常见气体爆炸极限

常见可燃性气体爆炸极限 三氯氢硅SiHCl3 1. 别名?英文名

硅氯仿、硅仿、三氯硅烷;Trichlorosilane 、Silicochloroform . 2. 用途 单晶硅原料、外延成长、硅液、硅油、化学气相淀积、硅酮化合物制造、电子气。 3. 制法 (1) 在高温下Si 和HCl 反应。 (2) 用氢还原四氯化硅(采用含铝化合物的催化剂) 。 4. 理化性质 分子量:135.43 熔点(101.325kPa) : -134C ;沸点(101.325kPa) : 31.8 C;液体密度(0 C): 13 50kg/m3;相对密度(气体,空气=1): 4.7 ;蒸气压(-16.4 C) : 13.3kPa ; (14. 5C) : 53.3kPa ;燃点:-27.8 C;自燃点:104.4 C;闪点:-14C ;爆炸下限:9.8%;毒性级别:3;易燃性级别:4;易爆性级别:2 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无色透明液体。在空气中极易燃烧,在-18C以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl 和Cl2: SiHCI3 O2-SiO2 HCI CI2 ;三氯硅烷的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,在900C时分解产生氯化物有毒烟雾(HCl),还生成Cl2和Si。 遇潮气时发烟,与水激烈反应:2SiHCI3 3H2O—- (HSiO)2O 6HCI ; 在碱液中分解放出氢气:SiHCl3 3NaOH H2O—-Si (OH)4 3NaCl H2 ; 与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷: SiHCl3 CH三CH一—CH2CHSiCl3、SiHCl3 CH2=CH2-->CH3CH2SiCl3 在氢化铝锂、氢化硼锂存在条件下,SiHCl3 可被还原为硅烷。容器中的液态Si HCl3 当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 5. 毒性 小鼠-吸入LC50 1.5?2mg/L 最高容许浓度:1mg/m3 三氯硅烷的蒸气和液体都能对眼睛和皮肤引起灼伤,吸入后刺激呼吸道粘膜引起各种症状(参见四氯化硅)。 6. 安全防护 液体用玻璃瓶或金属桶盛装,容器要存放在室外阴凉干燥通风良好之处或在易燃液体专用库内,要与氧化剂、碱类、酸类隔开,远离火种、热源,避光,库温不宜超过25 r。可用氨水探漏。 火灾时可用二氧化碳、干石粉、干砂,禁止用水及泡沫。废气可用水或碱液吸收。 三氯硅烷有水分时腐蚀性极强。可用铁、镍、铜镍合金、镍钢、低合金钢,不能用铝、铝合金。可以用聚四氟乙烯、聚三氟氯乙烯聚合体、氟橡胶、聚氯乙烯、聚乙烯、玻璃等。

常见可燃气体爆炸极限.docx

常见可燃气体爆炸极限 可燃气体发生爆炸必须具备一定的条件, 那就是:一定浓度的可燃气体, 一定量的氧气以及足够热量点燃它们的火源, 这就是爆炸三要素 , 缺一不可 , 也就 是说 , 缺少其中任何一个条件都不会引起火灾和爆炸.当可燃气体和氧气混合 并达到一定浓度时 , 遇具有一定温度的火源就会发生爆炸. 我们把可燃气体遇火 源发生爆炸的浓度称为爆炸浓度极限, 简称爆炸极限 , 一般用 %表示 .实际上, 这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围. 当可 燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于 UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸. 不同的可燃气体的LEL 和 UEL都各不相同 , 为安全起见 , 一般我们应当在可燃气体浓度在LEL 的 10%和 20%时发出警报 , 这里 ,10%LEL称. 作警告警报 , 而 20%LEL称作危险警报 . 这也就是我们将可燃气体检测仪又称作 LEL检测仪的原因 . 需要说明的是 ,LEL 检测仪上显示的 100%不是可燃气体的浓度达到气体体积的100%,而是达到了 LEL 的 100%, 即相当于可燃气体的最低爆炸下限. 序号名称化学式在空气中爆炸限 (体积分数) /% 下限上限1乙烷 C 2H 6 3.015.5 2乙醇C2H 5OH 3.419 3乙烯C2 H 4 2.832 4氢H 2 4.075 5硫化氢H 2 S 4.345 6煤油0.757甲烷CH 4 5.015 8甲醇CH 3 OH 5.544 9丙醇C3H 7OH 2.513.5 10丙烷C3H8 2.29.5 11丙烯C3H6 2.410.3 12甲苯 C 6 H 5 CH 3 1.27 13二甲苯C 6 H 4(CH 3)2 1.07.6 14二氯乙烷C2H 4 Cl2 5.616 15二氯乙烯C2H2C l2 6.515 16二氯丙烷C3H 6 Cl2 3.414.5 17乙醚C2 H 5OC 2H 5 1.736 1

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

爆炸极限计算方法:比较认可的计算方法有两种: 莱·夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限:

UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 理·查特里公式 理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。 Lm=100/(80/5+15/+4/+1/)= 德迈数据计算: 废气风量:19000Nm3/h 废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算) 戊烷体积=7000/72*1000=h体积分数=19000=% 甲醛体积分数=h体积分数=19000=% 由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得: 混合气体的爆炸下限=%/(+7)=% 结论:混合气体中可燃气体的总体积分数为%,混合气体的爆炸下限为%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!

常见气体的爆炸极限及爆炸极限计算公式精修订

常见气体的爆炸极限及爆炸极限计算公式 标准化管理部编码-[99968T-6889628-J68568-1689N]

爆炸极限计算方法:比较认可的计算方法有两种: 莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)

此定律一直被证明是有效的。 2.2理·查特里公式 理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算: 废气风量:19000Nm3/h 废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012% 甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134% 混合气体中可燃气体的总体积分数=0.146% 由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3) (V%)得: 混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57% 结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!

爆炸极限计算

爆炸极限计算 爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: CαHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度

(2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中L下——可燃性混合物爆炸下限; L上——可燃性混合物爆炸上限; n——1mol可燃气体完全燃烧所需的氧原子数。 某些有机物爆炸上限和下限估算值与实验值比较如表2:

表2石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较 从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。 2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。计算公式如下: 此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。但用以估算H2、C2H2以及含N2、Cl2等可燃气体时,出入较大,不可应用。 (3)多种可燃气体组成混合物的爆炸极限。由多种可燃气体组成爆炸混合气的爆炸极限,可根据各组分的爆炸极限进行估算,其计算公式如下: 式中Lm——爆炸性混合气的爆炸极限(%); L1、L2、L3、Ln——组成混合气各组分的爆炸极限(%); V1、V2、V3、…Vn——各组分在混合气中的浓度(%)。 V1+V2+V3+…Vn=100 该公式用于煤气、水煤气、天然气等混合气爆炸极限的计算比较准确,而对于氢与乙烯、氢与硫化氢、甲烷与硫化氢等混合气及二硫化碳的混合气体,则计算的误差较大,不得应用。 ——摘自《安全科学技术百科全书》(中国劳动社会保障出版社,2003年6月出版) explosive limit 可燃性气体或蒸气与助燃性气体形成的均匀混合系在标准测试条件下引起爆炸的浓度极限值。助燃性气体可以是空气、氧气或其他助燃性气体。一般情况提及的爆炸极限是指可燃气体或蒸气在空气中的浓度极限。能够引起爆炸的可燃气体的最低含量称为爆炸下限;最高浓度称为爆炸上限。混合系的组分不同,爆炸极限也不同。同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。一般规律是:混合系原始温度升高,则爆炸极限范

常用可燃气体爆炸极限数据表

常用可燃气体爆炸极限数据表 序号名称化学式在空气中的爆炸限(V%) 毒性下限LEL上限UEL 1 乙烷C 2 H6 3.0 15.5 2 乙醇C2 H50H 3. 3 19 3 乙烯C2 H 4 3.1 32 4 氢H2 4.0 75 5 硫化氢H2S 4.3 45 神经 6 煤油0. 7 5 7 甲烷CH4 5 15 — 8 甲醇CH a OH 5.5 44 9 丙醇C3H7OH 2.5 13.5 10 丙烷C a H8 2.2 9.5 11 丙烯C a H6 2.4 10.3 12 甲苯C6H5CH3 1.2 7 13 二甲苯 C6H4 (CH3) 2 1.0 7.6

14 二氯乙烷C2HQI2 5.6 16 高毒 15 二氯乙烯C2H2CI2 6.5 15 16 二氯丙烷C3H6CI2 3.4 14.5 17 乙醚C2H5OC2H5 1.7 36 18 二甲醚CH3OCH3 3.0 27.0 19 乙醛CH a COH 4 57 20 乙酸CH3COOH 4 17 低毒 21 丙酮CH a COCH a 2.15 13 (CH a CO)2C 1.7 22 乙酰丙酮 H2 23 乙酰氯CH 3COCI 5.0 19 24 乙炔C2H2 1.5 100 25 丙烯腈CH2CHCN 2.8 28 高毒 CH2CHCH2 26 烯丙基氯 3.2 11.2 Cl 27 甲基乙炔CH3CCH 1.7 28 氨NH3 15 30.2 低毒 29 乙酸戊酯CH3CO2C5 1.0 7.5

H ii 30 苯胺C6H5NH2 1.2 11 高毒 31 苯C6H6 1.2 8 32 苯甲酸C6H5CHO 1.4 33 苄基氯C6H5CH2CI 1.1 34 溴丁烷C a H y CH2Br 2.5 35 溴乙烷CH3CH2Br 6.7 11.3 CH2CHCH 36 丁二烯 2.0 11.5 低毒 CH2 37 丁烷C4H10 1.9 8.5 38 丁醇C4H9OH 1.4 11.3 39 丁烯C4H8 1.6 9.3 40 丁醛C3H3CHO 1.4 12.5 CH3COOC4 1.2 8.0 41 丁酸丁酯 H9 C4H9COCH 42 丁基甲基酮 1.2 8 3 43 二硫化碳CS2 1.0 60

高炉煤气爆炸极限

有关高炉煤气爆炸极限的解答 为什么各种气体的爆炸极限不一样,过小了不行,过大了也不行?如: H2是4%-75% CH4是5%-15% CO是12.5%-74% 可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限和高于爆炸上限浓度时,既不爆炸,也不着火。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m3来表示的,例如铝粉的爆炸极限为40g/m3。 爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: CαHβOγ+nO2→生成气体

可燃气体爆炸范围

常用可燃气体爆炸极限数据表 物质名称nbsp; 分子式nbsp; 爆炸浓度 (V%) 毒性nbsp; 下限 LEL 上限 UEL 甲烷nbsp; CH4 5 15 mdash;mdash; 乙烷nbsp; C2H6 3 15.5 nbsp; 丙烷nbsp; C3H8 2.1 9.5 nbsp; 丁烷nbsp; C4H10 1.9 8.5 nbsp; 戊烷(液体)nbsp; C5H12 1.4 7.8 nbsp; 己烷(液体)nbsp; C6H14 1.1 7.5 nbsp; 庚烷(液体)nbsp; CH3(CH2)5CH3 1.1 6.7 nbsp; 辛烷(液体)nbsp; C8H18 1 6.5 nbsp; 乙烯nbsp; C2H4 2.7 36 nbsp; 丙烯nbsp; C3H6 2 11.1 nbsp; 丁烯nbsp; C4H8 1.6 10 nbsp; 丁二烯nbsp; C4H6 2 12 低毒nbsp; 乙炔nbsp; C3H4 2.5 100 nbsp; 环丙烷nbsp; C3H6 2.4 10.4 nbsp; 煤油(液体)nbsp; C10-C16 0.6 5 nbsp; 城市煤气nbsp; nbsp; 4 nbsp; nbsp; 液化石油气nbsp; nbsp; 1 12 nbsp; 汽油(液体)nbsp; C4-C12 1.1 5.9 nbsp; 松节油(液体)nbsp; C10H16 0.8 nbsp; nbsp; 苯(液体)nbsp; C 6H6 1.3 7.1 中等nbsp; 甲苯nbsp; C6H5CH3 1.2 7.1 低毒nbsp; 氯乙烷nbsp; C2H5CL 3.8 15.4 中等nbsp; 氯乙烯nbsp; C2H3CL 3.6 33 nbsp; 氯丙烯nbsp; C3H5CL 2.9 11.2 中等nbsp; 1.2 二氯乙烷nbsp; CLCH2CH2CL 6.2 16 高毒nbsp; 四氯化碳nbsp; CCL4 nbsp; nbsp; 轻微麻醉nbsp; 三氯甲烷nbsp; CHCL3 nbsp; nbsp; 中等nbsp; 环氧乙烷nbsp; C2H4O 3 100 中等nbsp; 甲胺nbsp; CH3NH2 4.9 20.1 中等nbsp;

可燃气体爆炸极限

可燃气体在空气中爆炸极限如下:甲烷在空气中爆炸范围为5%~15%; 乙烷在空气中爆炸极限: 3.0%- 16.0%(vol); 丙烷在空气中爆炸极限: 2.1%- 9.5%; 甲醇在空气中爆炸极限: 6.0~ 36.5% 乙醇在空气中爆炸范围: 3.3%~ 19.0%; 乙烯在空气中爆炸范围: 2.7%~36%; 汽油在空气中爆炸极限: 1.4%~ 7.6%; 柴油在空气中爆炸极限: 1.3%~

6.0%; 一氧化碳在空气中爆炸极限: 12.5%~74%; 氢气空气中爆炸极限: 4.1%~ 74.8%; 乙醇与甲醇混合物在空气中的爆炸极限:3-30%; 丙烯腈在空气中爆炸极限: 3.05%- 17.0%; 氯乙烯在空气中爆炸极限:4%~22%; 苯在空气中爆炸极限: 1.2%~ 7.8% 不同有毒有害气体浓度对人体的影响 气体名称气体浓度(ppm)对人体的影响 CO 50允许的暴露浓度,可暴露8小时(OSHA)。200 2至3小时内可能会导致轻微的前额头痛。400 1至2小时后前额头痛.2至 3.5小时后眩晕。

800 45分钟内头痛、头晕、呕吐。2小时内昏迷,可能死亡。 1,60020分钟内头痛、头晕、呕吐。1小时内昏迷并死亡。 3,2005至10分钟内头痛、头晕。30分钟无知觉,有死亡危险。 6,4001至2分钟内头痛、头晕。10至15分钟无知觉,有死亡危险。 12,800马上无知觉。1至3分钟内有死亡危险。 H2S 0.13最小的可感觉到的臭气味浓度。 4.60xx察觉的有适度的臭味的浓度。 10开始刺激眼球,可允许的暴露浓度,可暴露8小时(OSH A、ACGIH)。27强烈的不愉快的臭味,不能忍受。 100咳嗽、刺激眼球,2分钟后可能失去嗅觉。 200~300暴露1小时后,明显的结膜炎(眼睛发炎)呼吸道受刺激。 500~700失去知觉,呼吸停止(中止或暂停),以至于死亡。 1,000~2,000马上失去知觉,几分钟内呼吸停止并死亡,即使个别的马上搬到新鲜空气中,也可能死亡。 Cl2 0.53 3.5 15 30 100~150

常见气体的爆炸极限

常见气体的爆炸极限 气体名称 ? ?化学分子式/在空气中的爆炸极限 ?(体积分数) / ?% ? ? ? ? 下限(V/V) ? ? 上限(V/V) 乙烷 ? ?C2H6 ? ?3.0 ? ?15.5 乙醇 ? ?C2H5OH ? ?3.4 ? ?19 乙烯 ? ?C2H4 ? ?2.8 ? ?32 氢气 ? ?H2 ? ?4.0 ? ? 75 硫化氢 ? ?H2S ? ?4.3 ? ?45 甲烷 ? ?CH4 ? ? 5.0 ? ?15 甲醇 ? ?CH3OH ? ?5.5 ? ?44 丙烷 ? ?C3H8 ? ?2.2 ? ?9.5 甲苯 ? ?C6H5CH3 ? ?1.2 ? ? 7 二甲苯 ? ?C6H5(CH3)2 ? ?1.0 ? ?7.6 乙炔 ? ?C2H2 ? ?1.5 ? ?100 氨气 ? ?NH3 ? ?15 ? ?30.2

苯 ? ?C6H6 ? ?1.2 ? ?8 丁烷 ? ?C4H10 ? ?1.9 ? ?8.5 一氧化碳 ? ?CO ? ?12.5 ? ?74 丙烯 ? ?C3H6 ? ?2.4 ? ?10.3 丙酮 ? ?CH3COCH3 ? ?2.3 ? ?13 苯乙烯 ? ?C6H5CHCH2 ? ?1.1 ? ?8.0 可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是 5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。 ????可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。? ????爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。?

常见气体的爆炸极限

常见气体的爆炸极限 气体名称化学分子式 / 在空气中的爆炸极限(体积分数 ) / % 下限 (V/V) 上限 (V/V) 乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2 苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13

苯乙烯C6H5CHCH2 1.1 8.0 可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必 须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度 范围,称 为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是 4.0%~ 7 5.6%(体积浓度),意思是如果氢气在空气中的体积浓度在 4.0%~ 75.6%之间时,遇火源就会爆炸,而当氢气浓度小于 4.0%或大于 75.6%时,即使遇到火源,也不会 爆炸。甲烷的爆炸极限是 5.0%~ 15%意味着甲烷在空气中体积浓度在 5.0%~ 15%之间时,遇火源会爆炸,否则就不会爆炸。 可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。 爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可 燃气(粉尘)的重量百分数表示(克/米 * 或是毫克/升)。 爆炸极限是一个很重要的概念,在防火防爆工作中有很大

常见可燃气体爆炸上下限

常见可燃气体爆炸上、下限 什么就是可燃气体的爆炸极限、爆炸上限、爆炸下限可燃气体的爆炸极限:

可燃气体(蒸气)与空气的混合物,并不就是在任何浓度下,遇到火源都能爆炸,而必须就是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限与爆炸上限)。不同可燃气(蒸气)的爆炸极限就是不同的,如氢气的爆炸极限就是4、0%~75、6%(体积浓度),意思就是如果氢气在空气中的体积浓度在4、0%~75、6%之间时,遇火源就会爆炸,而当氢气浓度小于4、0%或大于75、6%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限就是5、0%~15%意味着甲烷在空气中体积浓度在5、0%~15%之间时,遇火源会爆炸,否则就不会爆炸。 可燃粉尘爆炸极限的概念与可燃气爆炸极限就是一致的。 爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或就是毫克/升)。 爆炸极限就是一个很重要的概念,在防火防爆工作中有很大的实际意义: (1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级与确定其火灾危险性类别的依据。我国目前把爆炸下限小于 就是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。 (2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限 数值。 (3)它可以作为制定安全生产操作规程的依据。在生产、使用与贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾与爆炸事故,应严格将可燃 气体(蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制 定安全生产操作规程时,应根据可燃气(蒸气、粉尘)的燃爆危险性与 其它理化性质,采取相应的防范措施,如通风、置换、惰性气体稀释、 检测报警等。 可燃性气体的浓度过低或过高它就是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧就

相关文档
相关文档 最新文档