文档库 最新最全的文档下载
当前位置:文档库 › 状态空间分析法

状态空间分析法

状态空间分析法
状态空间分析法

第9章线性系统的状态空间分析与综合

重点与难点

一、基本概念

1.线性系统的状态空间描述

(1)状态空间概念

状态反映系统运动状况,并可用以确定系统未来行为的信息集合。

状态变量

确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。

状态向量以状态变量为元素构成的向量。

状态空间

以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上的点来表示。

状态方程

状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。

输出方程输出变量与状态变量、输入变量之间的数学关系。

状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空间表达式一般用矩阵形式表示:

(9.1)

(2)状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。

(3)状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性变换的目的在于使系统矩阵规范化,以便于揭示系统特性,利于分析计算。满秩线性变换不改变系统的固有特性。

根据矩阵的特征根及相应的独立特征向量情况,可将矩阵化为三种规范形式

:对角形、约当形和模式矩阵。

(4)线性定常系统状态方程解。状态转移矩阵(即矩阵指数)及其性质:

i.

ii.

iii.

iv.

v.

vi.

vii.

求状态转移矩阵的常用方法:

拉氏变换法

L-1(9.2)级数展开法

(9.3)齐次状态方程求解

(9.4)非齐次状态方程式(9.1)求解

(9.5)(5)传递函数矩阵及其实现

传递函数矩阵:输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系

(9.6)

传递函数矩阵的实现:已知传递函数矩阵,找一个系统使式(9. 6)成立,则将系统称为的一个实现。当系统阶数等于传递函数矩阵阶数时,称该系统为的最小实现。

传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标准形实现、对角形实现和约当形实现等。

(6)线性定常连续系统的离散化及其求解

对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描

述为

(9.8) 其中

离散状态方程式(9.1)的解为

(9.9)

2. 线性系统的可控性与可观测性

(1)系统的(状态)可控性。设系统状态方程为,若在有限时间间隔内存在无约束的分段连续控制函数,能使系统从任意初始状态

转移到任意的终止状态,则称系统是状态完全可控的,简称可控。

线性定常连续系统可控性常用判据:

1)rank(9.10)

2)当A为对角矩阵且特征根互异时,输入矩阵B中无全零行(当矩阵A有相同特征根时不适用)。

当A为约当矩阵且相同特征根分布在一个约当块内时,输入矩阵中与约当块最后一行对应的行中不全为零,且输入矩阵中与相异特征根对应的行不全为零(当相同特征根分布在两个或两个以上约当块时不适用)。

3)的行向量线性无关。

4)单输入系统为可控标准形。

5)单输入单输出系统,当由状态空间表达式导出的传递函数没有零极点对消时,系统可控、可观测(对多输入多输出系统不适用)。

连续系统状态方程离散化后的可控性:连续系统不可控,离散化的系统一定不可控;连续系统可控,离散化后的系统不一定可控(与采样周期的选择有关)。

(2)系统输出可控性。设系统状态空间表达式为式(9.1),若在有限时间间隔内,存在无约束的分段连续控制函数,能使系统从任意初始输出

转移到最终内测量到的输出,则称系统是输出完全可控的,简称输出可控。

输出可控性判据为

rank

状态可控性与输出可控性是两个不同的概念,其间没有必然联系。

单输入单输出系统,若输出不可控,则系统或不可控或不可观测。

(3)系统状态可观测性。已知输出及有限时间间隔内测量到的输

出,若能唯一确定初始状态,则称系统是完全可观测的,简称可观测。

常用可观测性判据:

1)rank(9.11)

2)当为对角矩阵且有相异特征值时,输出矩阵无全零列(阵有相同特征值时不适用)。

当为约当阵且相同特征值分布在一个约当块时,输出矩阵中与约当块最前一列对应的列不全为零,输出矩阵中与相异特征值对应的列不全为零(相同特征值分布在两个或更多个约当块时不适用)。

3)的列向量线性无关。

4)单输出系统为可观测标准形。

连续系统离散化后的可观测性:连续系统不可观测,离散化后一定不可观测;连续系统可观测,离散化后不一定可观测(与采样周期的选择有关)。

对偶原理:线性系统与互为对偶系统。若系统可控,则可观测;若系统可观测,则可控。

(4)线性定常系统的规范分解。从可控性、可观测性出发,状态变量可分解为可控可观测、可控不可观测、不可控可观测和不可控不可观测四类。以此对应将状态空间划分为四个子空间,系统也对应分解为四个子系统,这称为系统的规范分解。研究规范分解能更明显地提示系统结构特性和传递特性。

3. 线性定常系统的状态反馈与状态观测器

(1)状态反馈与极点配置。用状态反馈实现闭环极点任意配置的充要条件是被控系统可控。

状态反馈不改变系统的零点,只改变系统的极点。

在引入状态反馈后,系统可控性不变,但其可观测性不一定与原系统一致。单输入无零点系统在引入状态反馈后不会出现零极点对消,故其可观测性与原系统保持一致。

(2)输出反馈(到状态微分处)与极点配置。用输出反馈实现闭环极点任意配置的充要条件是被控系统可观测。

输出反馈不改变系统的零点。

在引入输出反馈后不改变系统的可观测性,但其可控性不一定与原系统保持一致。

(3)输出到输入参考点的常值增益反馈可以配置的闭环极点数为

,式中,故一般情况下不能像输出到状态微分处反馈那样任意配置系统闭环极点。

(4)状态观测器及其设计。若被控系统可观测,则其状态可用形如

(9.12)

的全维状态观测器给出估值。矩阵按任意配置极点的需要来选择,以决定状态误差衰减的速率。

分离定理:若被控系统可控可观测,当用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行。即矩阵与的设计可分别独立进行。

4. 李雅普诺夫稳定性分析

(1)李雅普诺夫意义下的稳定性:

平衡状态:在无外部激励的条件下,系统能维持在某个状态而不变化,即则称为一个平衡状态。

零状态是线性系统的平衡状态,且当系统矩阵非奇异时,零状态是唯一的平衡状态。

李雅普诺夫稳定性:若要求,存在,只要

,上述条件更可满足,则称系统在处稳定。

(2)李雅普诺夫第二法(直接法):

标量函数(如二次型函数)的定号性:正定、正半定、负定、负半定、不定。

李雅普诺夫稳定性定理:设系统状态方程为,其平衡状态满足,并设在原点邻域存在对的连续一阶偏导数,则有

定理1:若正定,负定,则原点是渐近稳定的。

定理2:若正定,负半定,在非零状态不恒为零,则原点是渐近稳定的。

定理3:若正定,负半定,在非零状态存在恒为零,则原点是李雅普诺夫意义下稳定的。

定理4:若正定,正定,则原点是不稳定的。

当平衡状态不在原点时,可通过坐标变换将其置于原点上,坐标变换不改变系统的固有性质。

(3)线性定常连续系统的李雅普诺夫稳定性分析。设系统状态方程为

为非奇异矩阵,故原点是唯一平衡状态。取二次型函数作为可能的李雅普诺夫函数,即

系统渐近稳定的充要条件是:给定一正定实对称矩阵,有唯一的正定实对称矩

阵,成立。是系统的一个李雅普诺夫函数。

线性定常离散系统,零平衡状态渐近稳定的充要条件是:任意给定一个正定实对称矩阵,存在一个正定实对称矩阵,满足李雅普诺夫方程。

纯量函数是该离散系统的一个李雅普诺夫函数。如果沿系统任一状态轨迹运动(除外),其≠0,则可取正半定矩阵。

二、基本要求

1.线性系统的状态空间描述

(1)正确理解状态空间有关概念。

(2)熟练掌握建立元件、系统状态空间表达式的方法。

(3)掌握状态空间表达式向可控、可观测标准形、对角形、约当形等规范形式变换的基本方法。

(4)熟练掌握系统实现的常用方法。

(5)熟练掌握依状态空间表达式求系统传递矩阵的方法。

(6)熟练掌握线性系统状态方程求解方法。特别要掌握状态转移矩阵的性质及求取方法。

2.线性系统的可控性和可观测性

(1)正确理解可控性、可观测性的基本概念。

(2)熟练掌握判定系统可控、可观测性的充要条件及有关方法。

(3)理解可控性、可观测性与系统传递函数的关系。

(4)理解线性系统规范分解的作用和意义,了解规范分解的一般方法。

3.线性定常系统的状态反馈与状态观测器

(1)正确理解利用状态反馈任意配置系统极点的有关概念,熟练掌握按系统指标要求确定状态反馈矩阵的方法。

(2)正确理解利用输出反馈任意配置系统极点的有关概念,熟练掌握指标要求确定输出反馈矩阵的方法。

(3)正确理解分离定理,熟练掌握依状态观测器要求设计观测器的方法,并会用之构成状态反馈控制系统。

4.李雅普诺夫稳定性分析

(1)正确理解李雅普诺夫稳定性的有关概念。

(2)初步掌握寻求系统李雅普诺夫函数判定系统稳定性的方法。

三、重点与难点

1. 重点

(1)状态转移矩阵的定义;矩阵指数的求取;状态方程的解。

(2)系统能控性和能观测性定义的理解;系统能控性和能观测性的判别。(3)状态反馈的设计。

2. 难点

(1)矩阵的求逆、矩阵的秩、矩阵的相乘等矩阵运算。

(2)矩阵指数的计算,状态方程的求解。

(3)系统能控性、能观测性问题以及稳定性概念的理解。

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

ARCGIS10.0 空间分析方法与GIS典型应用例证

一、实验目的 1、掌握ArcGIS缓冲区分析、叠置分析、网络分析方法。 2、熟悉ArcGIS的空间统计、栅格计算方法。 3、综合利用矢量数据空间分析中的缓冲区分析和叠置分析解决实际问题。 4、学会用ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理。 5、熟练掌握利用ArcGIS上述空间分析功能分析和结果类似学校选址的实际应用问题的基本流程和操作过程。 二、主要实验器材(软硬件、实验数据等) 计算机硬件:lenovoideapadY460N 计算机软件:ArcGIS10.0软件 实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘的第七章、第八章等 三、实验内容与要求 1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。

图2 线状缓冲区信息设置1 图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置

2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。 具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图

结构按极限状态设计法设计原则

第二章 结构按极限状态法设计原则 (1)经验承载能力法; (2)容许应力法:以弹性理论为基础的,要求[]σσ≤max , 其中[]n s /σσ=,n 为安全系数。 (3)破坏荷载法:考虑了材料塑性要求:[]P P ≤,其中 []n P P s /=,n 由经验确定。 (4)半经验、半概率极限状态法:分项安全系数,主要由 概率统计确定,不足的部分由经验确定。 (5)近似概率法:对作用的大小、结构或构件或截面抗力的“可靠概率”作出较为近似的相对估计 (6)全概率法:对影响结构可靠度的各种因素用随机变量 概率模型来描述,并用随机过程概率模型去描述,在对整个结构体系进行精确分析的基础上,以结构的失效概率作为结构可靠度的直接度量。 §2-1 极限状态法设计的基本概念 一、结构的功能要求 结构可靠性(度)———结构在规定的时间内,在规定的条件下,完成预定预定功能的能力(概率) 规定的时间——分析结构可靠度时考虑各项基本变量与 时间关系所取用的设计基准期 规定的条件——设计时规定的正常设计、施工和使用的条件,既不考虑认为过失 概率预定功能: (1) 能承受在正常施工和正常使用时可能出现的各种作用 —————安全性 在偶然作用发生时或发生后,结构能保持必要的整体稳定性(不发生倒塌)——安全性 偶然作用—如超过设计烈度的地震、爆炸、撞击、火灾等

必要的整体稳定性——在偶然作用发生时或发生后,仅发生局部损坏而不致连续倒塌 (2)在正常使用时应具有良好的工作性能——适用性如:不发生影响正常使用的过大变形或局部损坏(3)在正常维护条件下,具有足够的耐久性——耐久性耐久性——结构在化学的、生物的或其他不利因素 的作用下,在预定期限内,其材料性能 的恶化不导致结构出现不可接受的失 效概率 如:不发生由于保护层碳化或裂缝过宽,导致钢筋锈蚀。安全性、适用性、耐久性———三者总称为结构的可靠性二、极限状态 1.极限状态的定义 整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为——该功能的极限状态。 2.极限状态的分类 国际上一般将结构的极限状态分为三类: (1)承载能力极限状态———结构或构件达到最大承载力或不适于继续承载的变形 ①整个结构或结构的一部分作为刚体失去平衡(如滑动、倾覆等)——刚体失去平衡 ②结构构件或连接处因超过材料强度而破坏——强度破坏 ③结构转变成机动体系——————机动体系 ④结构或构件丧失稳定———失稳 ⑤由于材料的塑性或徐变变形过大,或由于截面开裂而引起过大的几何变形等,致使结构或结构不再能继续承载和使用———————变形过大

空间分析方法

班级:交工1102 姓名:高志波学号:201111010212 简析几种空间分析方法 空间分析是对分析空间数据有关技术的统称。空间分析赖以进行的基础是地理空间数据库,其运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段,最终的目的是解决人们所涉及到地理空间的实际问题,提取和传输地理空间信息,特别是隐含信息,以辅助决策。 缓冲区分析 一、定义 缓冲区分析是指根据分析对象的点、线、面实体,自动建立其周围一定距离的带状区,用以识别这些实体或者主体对邻近对象的辐射范围或者影响程度,是解决临近度问题的空间分析工具之一。它在交通、林业、资源管理、城市规划中有着广泛的应用。 二、分类 (1)基于点要素的缓冲区:通常以点为圆心、以一定距离为半径的圆; (2)基于线要素的缓冲区:通常是以线为中心轴线,距中心轴线一定距离的平行条带多边形;(3)基于面要素的缓冲区:向外或向内扩展一定距离以生成新的多边形。 三、空间缓冲区分析模型 (1) 缓冲区分析的三要素 在进行空间缓冲区分析时,通常要将研究的问题抽象为以下三类要素: ①主体 表示分析的主要目标,一般分为点源、线源和面源三种类。 ②邻近对象 表示受主体影响的客体,例如行政界线变更时所涉及的居民区、森林遭 砍伐时所影响的水土流失范围等。 ③对象的作用条件 表示主体对邻近对象施加作用的影响条件或强度。 (2) 缓冲区分析模型 根据主体对邻近对象作用性质的不同,一般可采用以下三种不同的分析模型: 线性模型、二次模型、指数模型 线性模型 二次模型

指数模型 四、空间缓冲区分析在林业上的应用 已知一伐木公司,获准在某林区采伐,为防止水土流失,规定不得在河流周围 1km 内采伐林木。另外,为便于运输,决定将采伐区定在道路周围 5km 之内。请找出符合上述条件的采伐区,输出森林采伐图。 解题过程 首先要以区域的道路分布图、河流分布图、森林分布图为数据源。解题流程见图所示。 (1)将该地区具有相同比例尺且进行配准的道路分布图、河流分布图、森林分布图,进行预处理和数字化; (2)利用河流分布图生成1km的等距离缓冲区;

状态空间法教案

一、问题引入 结合一些典型问题(分油问题)提出问题: 我们是怎样解决这些问题的?在人工智能领域又可以通过怎样的方法去解决呢?(状态空间法) 2、引导学生思考问题,并得出结论。 二、讲授新课 (一)基础知识部分 1、什么是状态空间法? 许多问题求解方法是采用试探搜索方法的。也就是说,这些方法是通过在某个可能的解空间内寻找一个解来求解问题的。这种基于解答空间的问题表示和求解方法就是状态空间法,它是以状态和算符(operator)为基础来表示和求解问题的。 2、状态空间法三要点 1) 状态(state):表示问题解法中每一步问题状况的数据结构; 2) 算符(operator):把问题从一种状态变换为另一种状态的手段; 3) 状态空间方法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

由上可知,对一个问题的状态描述,必须确定3件事: 1) 该状态描述方式,特别是初始状态描述; 2) 操作符集合及其对状态描述的作用; 3) 目标状态描述的特性。 问题的状态空间可用一个三元序组来表示: S:问题的全部初始状态的集合 F:操作的集合 G:目标状态的集合 4、用状态空间表示问题的步骤: 1)定义状态的描述形式 2)用所定义的状态描述形式把问题所有可能的状态都表示出来,并确定初始状态和目标状态的集合描述 3)定义一组算符,使得利用这些算符可以把问题由一个状态转为另一个状态。 4)利用状态空间图表示求解过程。 (二)实践应用部分

【分油问题】有A、B、C三个不带刻度的瓶子,分别能装8kg, 5kg和3kg油。如果A瓶装满油,B和C是空瓶,怎样操作三个瓶,使A中的油平分两份?(假设分油过程中不耗油) 解:第一步:定义问题状态的描述形式: 设Sk=(b,c)表示B瓶和C瓶中的油量的状态。 其中: b表示B瓶中的油量。 c表示C瓶中的油量。 初始状态集:S={(0,0)} 目标状态集:G={(4,0)} 第二步:定义操作符: 操作:把瓶子倒满油,或把瓶子的油倒空。 f1:从A瓶往B瓶倒油,把B瓶倒满。 f2:从C瓶往B瓶倒油,把B瓶倒满。 f3:从A瓶往C瓶倒油,把C瓶倒满。 f4:从B瓶往C瓶倒油,把C瓶倒满。

ARCGIS空间分析操作步骤

ARCGIS空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、面积制表(Tabulate Area)、分区统计(Zonal Statistic)、缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、栅格单元统计(Cell Statistic)、邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。 有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。

空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。 空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。 空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。通常,所有的空间分析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。 空间分析的基本步骤: a)确定问题并建立分析的目标和要满足的条件 b)针对空间问题选择合适的分析工具 c)准备空间操作中要用到的数据。 d)定制一个分析计划然后执行分析操作。 e)显示并评价分析结果

第三章 知识的状态空间表示法

第三章知识的状态空间表示法 1 课前思考: 人类的思维过程,可以看作是一个搜索的过程。 某个方案所用的步骤是否最少?也就是说它是最优的吗?如果不是,如何才能找到最优的方案?在计算机上又如何实现这样的搜索?这些问题实际上就是本章我们要介绍的搜索问题。 2 学习目标: 掌握回溯搜索算法、深度优先搜索算法、宽度优先搜索算法和A搜索算法,对典型问题,掌握启发式函数的定义方法。 3 学习指南: 了解算法的每一个过程和细节问题,掌握一些重要的定理和结论,在有条件的情况下,程序实现每一个算法,求解一些典型的问题。 4 难重点: 回溯搜索算法、算法及其性质、改进的A*算法。 5 知识点: 本章所要的讨论的问题如下: 有哪些常用的搜索算法。 问题有解时能否找到解。 找到的解是最佳的吗? 什么情况下可以找到最佳解? 求解的效率如何。 3.1 状态空间表示知识 一、状态空间表示知识要点 1.状态 状态(State)用于描述叙述性知识的一组变量或数组,也可以说成是描述问题求解过程中任意时刻的数据结构。通常表示成: Q={q1,q2,……,qn} 当给每一个分量以确定的值时,就得到一个具体的状态,每一个状态都是一个结点(节点)。

实际上任何一种类型的数据结构都可以用来描述状态,只要它有利于问题求解,就可以选用。 2.操作(规则或算符) 操作(Operator)是把问题从一种状态变成为另一种状态的手段。当对一个问题状态使用某个可用操作时,它将引起该状态中某一些分量发生变化,从而使问题由一个具体状态变成另一个具体状态。操作可以是一个机械步骤、一个运算、一条规则或一个过程。操作可理解为状态集合上的一个函数,它描述了状态之间的关系。通常可表示为: F={ f1 , f2,……… fm} 3.状态空间 状态空间(State Space)是由问题的全部及一切可用算符(操作)所构成的集合称为问题的状态空间。用三元组表示为: ({Qs},{F},{Qg}) Qs:初始状态,Qg:目标状态,F:操作(或规则)。 4.状态空间(转换)图 状态空间也可以用一个赋值的有向图来表示,该有向图称为状态空间图,在状态空间图中包含了操作和状态之间的转换关系,节点表示问题的状态,有向边表示操作。 二、状态图搜索 1.搜索方式 用计算机来实现状态图的搜索,有两种最基本的方式:树式搜索和线式搜索。 2.搜索策略 大体可分为盲目搜索和启发式(heuristic)搜索两大类。 搜索空间示意图 例3.1 钱币翻转问题 设有三枚硬币,其初始状态为(反,正,反),允许每次翻转一个硬币(只翻一个硬币,必须翻一个硬币)。必须连翻三次。问是否可以达到目标状态(正,正,正)或(反,反,反)。问题求解过程如下: 用数组表示的话,显然每一硬币需占一维空间,则用三维数组状态变量表示这个知识: Q=(q1 , q2 , q3) 取q=0 表示钱币的正面q=1 表示钱币的反面 构成的问题状态空间显然为: Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0),Q3=(0,1,1)

状态空间分析法

第9章 线性系统的状态空间分析与综合 重点与难点 一、基本概念 1.线性系统的状态空间描述 (1)状态空间概念 状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。 状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。 状态向量 以状态变量为元素构成的向量。 状态空间 以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上的点来表示。 状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。 输出方程 输出变量与状态变量、输入变量之间的数学关系。 状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空间表达式一般用矩阵形式表示: ???+=+=Du Cx y Bu Ax x & (9.1) (2)状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。 (3)状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性变换的目的在于使系统矩阵A 规范化,以便于揭示系统特性,利于分析计算。满秩线性变换不改变系统的固有特性。 根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵A 化为三种规范形式:对角形、约当形和模式矩阵。 (4)线性定常系统状态方程解。状态转移矩阵)(t φ(即矩阵指数At e )及其性质:

i . I =)0(φ ii .A t t A t )()()(φφφ ==& iii. )()()()()(122121t t t t t t φφφφφ±=±=+ iv. )()(1 t t -=-φφ v. )()]([kt t k φφ= vi. )( ])exp[()exp()exp(BA AB t B A Bt At =+= vii. )( )ex p()ex p(11非奇异P P At P APt P --= 求状态转移矩阵)(t φ的常用方法: 拉氏变换法 =)(t φL -1])[(1--A sI (9.2) 级数展开法 ΛΛ++++ +=k k At t A k t A At I e ! 12122 (9.3) 齐次状态方程求解 )0()()(x t t x φ= (9.4) 非齐次状态方程式(9.1)求解 ?-+=t Bu t x t t x 0d )()()0()()(τττφφ (9.5) (5)传递函数矩阵及其实现 传递函数矩阵)(s G :输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系 D B A sI C s G +-=-1)()( (9.6) 传递函数矩阵的实现:已知传递函数矩阵)(s G ,找一个系统},,,{D C B A 使式(9.6)成立,则将系统},,,{D C B A 称为)(s G 的一个实现。当系统阶数等于传递函数矩阵阶数时,称该系统为)(s G 的最小实现。 传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标准形实现、对角形实现和约当形实现等。 (6)线性定常连续系统的离散化及其求解 对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述

GIS空间分析方法

地理信息系统(GIS)具有很强的空间信息分析功能,这是区别于计算机地图制图系统的显著特征之一。利用空间信息分析技术,通过对原始数据模型的观察和实验,用户可以获得新的经验和知识,并以此作为空间行为的决策依据。 空间信息分析的内涵极为丰富。作为GIS的核心部分之一,空间信息分析在地理数据的应用中发挥着举足轻重的作用。 叠置分析(Overlay Analysis) 覆盖叠置分析是将两层或多层地图要素进行叠加产生一个新要素层的操作,其结果将原来要素分割生成新的要素,新要素综合了原来两层或多层要素所具有的属性。也就是说,覆盖叠置分析不仅生成了新的空间关系,还将输入数据层的属性联系起来产生了新的属性关系。覆盖叠置分析是对新要素的属性按一定的数学模型进行计算分析,进而产生用户需要的结果或回答用户提出的问题。 1)多边形叠置 这个过程是将两层中的多边形要素叠加,产生输出层中的新多边形要素,同时它们的属性也将联系起来,以满足建立分析模型的需要。一般GIS软件都提供了三种多边形叠置: (1)多边形之和(UNION):输出保留了两个输入的所有多边形。 (2)多边形之积(INTERSECT):输出保留了两个输入的共同覆盖区域。 (3)多边形叠合(IDENTITY):以一个输入的边界为准,而将另一个多边形与之相匹配,输出内容是第一个多边形区域内二个输入层所有多边形。 多边形叠置是个非常有用的分析功能,例如,人口普查区和校区图叠加,结果表示了每一学校及其对应的普查区,由此就可以查到作为校区新属性的重叠普查区的人口数。 2)点与多边形叠加 点与多边形叠加,实质是计算包含关系。叠加的结果是为每点产生一个新的属性。例如,井位与规划区叠加,可找到包含每个井的区域。 3)线与多边形叠加 将多边形要素层叠加到一个弧段层上,以确定每条弧段(全部或部分)落在哪个多边形内。 网络分析(Network Analysis) 对地理网络(如交通网络)、城市基础设施网络(如各种网线、电力线、电话线、供排水管线等)进行地理分析和模型化,是地理信息系统中网络分析功能的主要目的。网络分析是运筹学模型中的一个基本模型,它的根本目的是研究、筹划一项网络工程如何按排,并使其运行效果最好,如一定资源的最佳分配,从一地到另一地的运输费用最低等。其基本思想则在于人类

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。 生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布 2)均匀分布:个体间保持一定的距离,每一个点尽量地远离其周围的邻近点。在单位(样方)

浅谈状态机的设计方法及应用

浅谈状态机的设计方法及应用 刘成玉 李明 陈洁 (中国兵器工业第214研究所 蚌埠 233042) 摘 要 有限状态机(Fi n ite S tate M achine ,FS M )是时序电路设计中经常采用的一种方式,尤其适用于设计数字系统的控制模块。有限状态机不是孤立的一个状态,它依赖于输入输出关系,系统需求,编程语言的条件限制以及其他诸多因素。本文主要介绍了有限状态机的原理及实际应用。 关键词 有限状态机(Fi n ite State M achine ,FS M ) 二进制编码(B inary S tate M achine) 格雷编码(Gray Code State M ach i n e) 一位热码编码(One-H ot S tate M ach i n e Encod i n g ) 1 引 言 我们可以把有限状态机(F i n ite State M a ch i n e ,FSM )想象成一个能够接受输入信号的系统,系统内部包含状态寄存器,并且在可能的条件下产生输出信号。在任何特定的时刻,状态机内部所有寄存器的状态和形成这个状态的完整的条件构成了那个时刻的状态(state)。因为状态的个数是有限的,所以称之为有限状态机。 根据输出信号产生方法的不同,状态机可以分为米里型(M ealy )和摩尔型(M oore )两类。M ealy 型状态机输出与当前状态和输入有关,而M oore 型状态机的输出只与当前状态有关。在实际设计工作中,M ealy 型状态机应用较为普遍,而在设计高速电路时,常常把状态变量直接用作输出,以提高运行速度,则M oore 型状态机更为适合。有限状态机的结构如图1所示: 我们可以从图1 中清楚地看出两类状态机的 图1 有限状态机的结构 第25卷第1期 2007年3月 集成电路通讯 JICHENGDIANLU TONGXUN V o.l 25 N o .1 M ar .2007

状态空间分析法的特点及其应用

状态空间法分析及其应用的特点 摘要 基于为寻求便于分析系统的性能的相应状态变量以及探究状态空间变量线性变换对系统性能的影响,来阐述状态空间分析法的特点。通过应用状态空间法到绞线一叠层橡胶复合支座隔震结构进行数值模拟分析中来进一步阐述其特点,将结构控制理论中的结构状态空间法应用到该复合支座隔震结构的数值模拟分析中。建立了普通框架、安装叠层橡胶支座和安装绞线一叠层橡胶复合支座框架的结构状态方程,应用MATLAB/SIMULINK工具箱建立结构仿真模型,得出不同条件下框架结构的时程反应曲线。通过对比分析可以看出绞线一叠层橡胶复合支座能很好地改变结构的隔震效果,应用状态空间法进行绞线一叠层橡胶复合支座隔震结构的数值模拟分析简单准确。 关键词:系统、传递函数、线性变换、状态空间变量

一、引言 状态空间分析从实质上说并不是什么新颖的东西,其关键思想起源予19世纪到拉格朗日、哈密顿等人在研究经典力学时提出的广义坐标与变分法。当然,由高斯等人奠定的古典概率、估计理论以及线性代数等也具有同样的重要性。上世纪40年代以来,布利斯、庞德里亚金和别尔曼关于极大值原理,卡尔曼、布西与巴丁等人提出的卡尔曼滤波理论,以及许许多多的学者完成的并不具有里程碑意义的研究成果,积累起来却对算法及分析结果产生了决定性意义的贡献。这些便是状态空间方法发展的历史概况。状态空间分析是对线性代数、微分方程、数值方法、变分法、随机过程以及控制理论等应用数学各学科的综台。对动态系统的性能分析,特别是对扰动的响应、稳定性的特性、估计与误差分析以及对控制律的设计及性能评估,这些便构成状态空间分析的内容。这主要表现在利用向量、矩阵等一整套数学符合,把大量资料加以整理与综合,形成了观念上统一的体系——60年代中期之后出现了现代控制理论。 状态空间分析随着动力学与控制问题维数的增加(其中包括坐标、敏感器、执行机构以及其它装置的数量)而越发显得重要。另一方面亦由于计算机软件的不断完善,特别在可靠性及用户接口方面的改善与进展,使得计算工作比以前任何时候都易于进行,使状态空间分析越发显得有生命力。它具有的特性使得在设计控制系统时,不在只局限于输入量、输出量和误差量,为提高系统性能提供了有力的工具,加之可以利用计算机进行分析设计及实时控制,因而可以应用于非线性系统、时变系统、多输入—多输出系统以及随机过程等。

容许应力法和概率(极限状态)设计法

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 2.1、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 2.2、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。

破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 2.3、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 2.4、概率(极限状态)设计法 该方法的设计准则是:对于规定的极限状态,荷载引起的荷载效应(结构内力)大于抗力(结构承载力)的概率(失效概率)不应超过规定的限值。 概率(极限状态)设计法的特点是: 继承了极限状态设计的概念和方法,但进一步明确提出了结构的功能函数和极限状态方程式,及一套计算可靠指标和推导分项系数的理论和方法; 设计表达式仍可继续采用分项安全系数的形式,以便与以往的设计方法衔接,但其中的系数是以一类结构为对象,根据规定的可靠指标,经概率分析和优化确定的。 3、容许应力法和概率(极限状态)设计法的实用表达式 3.1、容许应力法的实用表达式及容许应力计算规定 1)容许应力法的实用表达式为: σ≤[σ] 式中: σ——结构在标准荷载下的应力;

极限状态设计法简介

极限状态设计法简介 顾迪民 一, 定义 ①极限状态设计法 以相应于结构和构件各种功能要求的极限状态,如承载能力的极限状态和正常使用的极限状态等为依据的设计方法。结构和构件应满足这些极限状态的限制。 ② 许用应力设计法 在规定的使用载荷(标准值)作用下,按线性弹性理论算得的结构或构件中的应力(计算应力)应不大于规范规定的材料许用应力。材料的许用应力由材料的平均极限抗力(屈服点、临界应力和疲劳强度)除以安全系数而得,安全系数可由经验确定。 ③ 概率设计法 以概率理论为基础确定的结构或构件的失效概率)P (f 或可靠概率)1P P )(P (f s s =+来定量地度量结构或构件的可靠性。用此法设计的各类结构或构件具有大体相同的可靠度。 ④ 概率极限状态设计法 在概率设计法基础上,进一步建立结构可靠性指标与极限状态方程之间的数学关系。在设计表达式中采用载荷分项系数,这些分项系数也是根据各载荷变量的统计特征在概率分析的基础上经优选确定的。载荷分项系数的确定有三种水平:其一为部分系数由概率分析确定,部分系数用经验确定,也称半概率极限状态设计法;其二为所有系数均由概率分析确定,但其概率分布曲线一列用正态分布曲线代替,故称近似概率极限状态设计法;其三为全概率极限状态设计法,是发展趋向. 二, 近似概率极限状态设计法 1, 极限状态 承载能力极限状态------静强度,动力强度和稳定等计算. 正常使用极限状态------静,动变形(刚性)和耐久性(疲劳)的计算. 2, 结构可靠度 包括结构安全性,适用性和耐久性.其定义为:在规定时间(寿命)内,规定条件下,完成预定功能的概率. 3, 极限状态方程 0),,(321=???????=n X X X X g Z 式中Xi 是影响结构可靠度的变量。在结构设计中可归纳为二个基本变量R (抗力)和S (载荷效应—内力)。 0),(=-==S R S R g Z R = S ,极限状态;R < S , 失效;R > S ,有效(可靠)。 失效率f P 加可靠率s P 为1。 即:s f P P -=1

状态空间分解法计算公式分析

同批工件间同时到达的耦合关系? 工件本来是一个个到达,如C-C+1-C+2,但考虑为批次同时到达,C 可以直接到C+2; 基于更新过程的关键更新定理,将小车与B2、B4间的耦合关系用节点间的批量到达速率、批量离开速率变化替代?B2的输出与B4的输入之间相互依赖 节点二: 两次小车装载之间通常会有多个工件到达B2,在小车两次到达的间隔中B2内的工件数量曲线是单调非减的。因此,实际上小车回到B2时B2拥有的工件数量的期望(锯齿的上尖点)远远比稳态后(稳态后不变,中间水平线)计算的期望要大 节点四: 实际上小车来到B4时B4拥有的工件数量的期望远远比稳态后计算的期望要小,当小车容量C 越大、小车速度越慢(保持当量运载能力不变)的时候这个偏差越明显,这样将提高小车由于阻塞停留在B4处的计算概率(实际堵塞概率比计算值要小),降低前环节的处理能力。 平均在制品数量: ()()()() ()121112223331122334444444441112123 ,,,01 01 11 11C 4,,201 1 WIP=; N N C S w b S w b S w b b w b w b w N i S w b S w b w w P w P w P w P w P N +======+===?+?+?+?+?∑∑∑∑∑∑∑ ∑∑ 第4项改为乘以W4;第五项(节点四在制品数期望)就是小车阻塞的概率乘以节点4的个数 (N4+1) 状态之间的转换速率:存在概率路径,则用概率路径乘以速率,不存在概率路径,则直接用速率。实际上概率路径之和一定=1 1 i b =-0 i b =1 i b =2 i b = B2 B4 节点3:2C+2个状态对应2C+2个方程 右边第一项:上标为W3,漏了V ,第二项是只可能是从小车上只有一个变为空车返回状态

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法

容许应力法和概率(极限状态)设计法 应用类2010-05-24 17:59:07 阅读91 评论0 字号:大中小订阅 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 2.1、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 2.2、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。 破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 2.3、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 2.4、概率(极限状态)设计法 该方法的设计准则是:对于规定的极限状态,荷载引起的荷载效应(结构内力)大于抗力(结构承载力)的概率(失效概率)不应超过规定的限值。 概率(极限状态)设计法的特点是:

相关文档
相关文档 最新文档