文档库 最新最全的文档下载
当前位置:文档库 › 自控实验 实验三 控制系统稳定性研究

自控实验 实验三 控制系统稳定性研究

自控实验 实验三 控制系统稳定性研究
自控实验 实验三 控制系统稳定性研究

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自控实验报告实验三 线性系统的根轨迹

实验三 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、实验报告 1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。 3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。 4.写出实验的心得与体会。 三、实验内容 请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 一、 ) 136)(22()(2 2 ++++=s s s s s K s G 1、程序代码: G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G) G_c=feedback(G,1); step(G_c) 2、实验结果:

-8-6 -4 -2 24 6 8 Root Locus Real Axis I m a g i n a r y A x i s selected_point = -8.8815 + 9.4658i k = 1.8560e+04 r = -10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i 6.2089 - 8.2888i Time (seconds) A m p l i t u d e selected_point = -9.5640 - 7.6273i k = 1.3262e+04 r = -9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i 5.5400 - 7.6258i Time (seconds) A m p l i t u d e

实验室设备管理系统

实验室设备管理系统 第一章系统概述 1.1系统开发背景 一个现代化的实验室设备系统在正常运行中总是面对大量的使用者,仪器以及两者相互作用产生的借用仪器。人工管理既浪费人力物力财力,又容易导致各种错误的发生。为了方便实验室管理,得开发一个更好更高效的软件来管理。实验室管理系统,是为了实现实验室管理而设计的,它也是现在各个部门的一个重要环节。 实验室是所有高校、研究机构必不可少的基本构成单位。特别是高校,实验室的设备管理需要一套稳定、高效的管理办法。就我校情况看来,目前我校的实验室设备管理还处于较原始的手工阶段,缺少一套实用可靠的管理系统软件。随着电气化教学和无纸化办公的一步步完善,利用计算机管理系统管理我校的实验室设备势在必行。因此,本项目拟开发一个实验室设备管理系统。 本系统将建立一个实验室设备管理平台,记录实验室所有的实验设备,并及时反应设备的运转状况,使用情况,以供本科生和研究生及其他试验人员合理的安排实验,达到工作效率的最优。 1.2项目设计基本原理 软件工程是一门从技术和组织管理两个角度研究如何用系统化、规范化和数量化等工程原理也方法去进行软件开发和维护的学科。软件工程学研究的范围非常广泛,包括技术方法、工具和管理等许多方面。软件生命周期的各个阶段可分为:采用软件工程的技术方法开发本系统,通过以上八个阶段组成软件的生存期,它是指从提出开发要求开始直到该软件报废为止的整个时期。分阶段进行,就把规模庞大、结构复杂和管理复杂的软件变的容易控制和管理。基于此思想,本系统开发实际可行的软件,方便毕业时信息的管理。

1.3数据库系统设计及范式分析 数据库设计主要是进行数据库的逻辑设计,即将数据按一定的分类、分组系统和逻辑层次组织起来,是面向用户的。数据库设计时需要综合企业各个部门的存档数据和数据需求,分析各个数据之间的关系,按照DBMS提供的功能和描述工具,设计出规模适当、正确反映数据关系、数据冗余少、存取效率高、能满足多种查询要求的数据模型。 数据库设计的步骤是; 1数据库结构定义:目前的数据库管理系统(DBMS)有的是支持联机事务处理CLTP (负责对事务数据进行采集、处理、存储)的操作型DBMS,有的可支持数据仓库、有的联机分析处理CLAP(指为支持决策的制度对数据的一种加工操作)功能的大型DBMS,有的数据库是关系型的,有的可支持面向对象数据库。针对选择的DBMS,进行数据库结构定义。 2数据表定义:数据表定义指定义数据库中数据表的结构,数据表的逻辑结构包括:属性名称、类型、表示形式、缺省值、效验规则、是否关键字、可否为空等。关系型数据库要尽量按关系规范化要求进行数据库设计,但为使效率高,规范化程序应根据应用环境和条件来决定。数据表设计不仅要满足数据存储的要求,还要增加一些如反映有关信息、操作责任、中间数据的字段或临时数据表。 3存储设备和存储空间组织:确定数据的存放地点、存储路径、存储设备等,备份方案,对多版本如何保证一致性和数据的完整性。 4数据使用权限设置:针对用户的不同使用要求,确定数据的用户使用权限,确保数据安全。 5数据字典设计:用数据字典描述数据库的设计,便于维护和修改。

实验室信息管理系统(LIS)解决方案教学内容

康师傅检验信息管理系统 解决方案 2010-04-06 康师傅软件股份公司

一、 产品概述 康师傅检验信息管理系统是将实验室的分析仪通过计算机网络连接起来,采用科学的管理思想和先进的数据库技术,实现以实验室为核心的整体环境的全面管理,为临床提供全面的医学检验服务。它集样本管理、资源管理、流程管理、网络管理、数据管理(采集,传输,处理,输出,发布) 、报表管理等诸多模块为一体,组成一套完整的、符合实验室管理规范的综合管理和检测质量监控体系,既能满足实验室日常管理要求,又保证各种实验分析数据的严格管理和控制。 系统应支持条形码管理,具有医嘱和检验仪器双向自动传输功能。检验仪器应通过终端服务器的方式直接接入HIS 系统的主干网络。 二、 仪器连接 SYSMEX UF-100 SYSMEX UF-50 桂林优利特-300 桂林优利特-100 迪瑞H-300 罗氏MODULAR P+P 分析仪 电解质分析仪AVL-988-3 贝克曼LX-20 SYSTEM KX21 SYSMEX 9000/RAM-1 贝克曼库尔特 ACL-200 贝克曼库尔特 ACL-9000 SYSMEX 1800I 雷勃MK-3 罗氏E170 罗氏Light Cycle 中佳放免分析仪精子分析仪普利生NA6 细菌鉴定仪HX-21

三、检验流程 四、集团化医院网络布局 医院一医院二医院三需求说明: 1)医生根据登陆的医院科室申请检验医嘱 2)样本采样可以实行集中和分散两种方式

集中采样:系统中所有标本可以进行集中采样,然后根据执行科室进行标本分拣,将标本送到各自医院对应的检验科室 分散采样:用户根据登录医院查询对应医院的标本进行采样后,送到对应的检验科室 3)各检验科室收到标本后,进行标本接收上机 4)标本完成检验后,完成采集结果和报告审核,同时报告可以在各自医院的医生工作站进行浏览和打印 五、产品特点 ?使用高性能的数据库平台 ?使用专业的数据采集器(终端服务器)连接检验分析仪器 ?实现样本全程状态监控和周转时间(TAT)管理 ?使用条码管理,实现双向通讯和标本管理 ?符合临床实验室管理系统标准和管理规范 ?提供专业规范的检验报告和个性化报告定制服务 ?提供完善的质量控制体系 ?支持ASTM,HL7, SNOMED,NCCL等医疗行业相关标准 ?支持报告以Web,手机短信,电子邮件多种形式进行访问和发布 ?提供丰富的查询和统计功能 六、产品功能 1检验申请 1.1 医生或护士可在临床工作站录入检验医嘱形成检验申请单; 1.2 技师可在标本登记中录入检验申请单; 1.3 自动根据录入的医嘱取得标本类型,医嘱数量和容器类型; 1.4 可以接受来自外部系统的检验申请; 1.5 支持打印多种形式的检验申请单。

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

实验室信息管理系统

实验室信息管理系统,Laboratory Information Management System 一、实验室信息管理系统(LIMS)介绍: 1、实验室信息管理系统即LIMS的概念: LIMS是英文单词Laboratory Information Management System的缩写。它是由计算机硬件和应用软件组成,能够完成实验室数据和信息的收集、分析、报告和管理。LIMS基于计算机局域网,专门针对一个实验室的整体环境而设计,是一个包括了信号采集设备、数据通讯软件、数据库管理软件在内的高效集成系统。 它以实验室为中心,将实验室的业务流程、环境、人员、仪器设备、标物标液、化学试剂、标准方法、图书资料、文件记录、科研管理、项目管理、客户管理等等影响分析数据的因素有机结合起来,采用先进的计算机网络技术、数据库技术和标准化的实验室管理思想,组成一个全面、规范的管理体系,为实现分析数据网上调度、分析数据自动采集、快速分布、信息共享、分析报告无纸化、质量保证体系顺利实施、成本严格控制、人员量化考核、实验室管理水平整体提高等各方面提供技术支持,是连接实验室、生产车间、质管部门及客户的信息平台,同时引入先进的数理统计技术,如方差分析、相关和回归分析、显着性检验、累积和控制图、抽样检验等,协助职能部门发现和控制影响产品质量的关键因素。 2、与LIMS相关的国际标准 标准规范的制定与实施,体现了高新技术的发展和产品成熟的标志。为提高分析数据质量,已将其纳入法制轨道,七十年代提出了质量管理(QC)概念,九十年代,各行业的标准化组织相继制定和颁布了各种管理标准,质量保证规范和各种技术协议,对推动高新技术的发展、改进产品质量,提高生产效率产生了重大影响。 实验室的质量保证/质量管理的国际标准如下: 由于计算机在实验室普遍应用,增订了优良的自动化实验室规范(GALP) ,它对实验室的方法、职责、管理和使用计算机处理实验室数据等,都制订了技术细则。美国环保局(EPA)制订了有关健康和环境产品的管理规范。美国材料测试协会ASTM, 官方分析化学协会(AOAC), 美国实验室联合委员会(ACIL), 制订了许多相关的标准和协议。欧共体(EEC)颁布了实验室认证指南, 促使欧共体成员国成为 (EEC) 认证的实验室,这些实验室出示的证书,为欧共体各国认可,打开了商品流通的渠道。国际标准化机构ISO, 制订的ISO-9000系列规范成为国际公认的标准,国内一些企业已通过I SO认证,或正在努力实施。 由于分析仪器的计算机硬软件各不相同,尤其是分析数据缺乏标准,制约了实验室的自动化和信息资源的开发和共享,这已成为科学仪器厂商和分析化学家的共识。ASTM颁布了分析化学技术有关的规范,其中有1998年公布的色谱分析数据交换协议(AIA),协议制订了原始数据文件和结果文件的标准化格式和结构,其目的是1〕有利于各厂商的仪器之间传输数据,2〕为LIMS提供了通信接口,3〕可将数据链接到文档环境和电子表格中,4〕数据存档。还有分析数据交换和信息存储标准(ADISS),这是一种面向分析数据对象的标准,已被分析仪器与数据通信标准委员会,美国质谱协

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

一阶二阶自控原理实验报告

成绩 北京航空航天大学 自动控制原理实验报告 学院自动化科学与电气工程学院 专业方向电气工程及其自动化 班级120311 学号12031019 学生姓名毕森森 指导教师 自动控制与测试教学实验中心

实验一一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014.10.28 实验编号29 同组同学无 一、实验目的 1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2. 学习在电子模拟机上建立典型环节系统模型的方法。 3. 学习阶跃响应的测试方法。 二、实验内容 1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。 三、实验原理 1.一阶系统:系统传递函数为: 模拟运算电路如图1- 1所示: 图 1- 1 由图 1-1得 在实验当中始终取R 2= R 1 ,则K=1,T= R 2 C,取时间常数T分别为: 0.25、 0.5、1。 2.二阶系统: 其传递函数为: 令=1弧度/秒,则系统结构如图1-2所示: 图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示:

图1-3 取R 2C 1=1 ,R 3C 2 =1,则及ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1 四、实验设备 HHMN-1电子模拟机一台、PC 机一台、数字式万用表一块 五、实验步骤 1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路; 2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相; 3. 检查线路正确后,模拟机可通电; 4. 双击桌面的“自控原理实验”图标后进入实验软件系统。 5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。 6. 单击“确定”,进行实验。完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。 六、实验结果 1、一阶系统。

自控实验报告第四次_陈尧

成绩北京航空航天大学 自动控制原理实验报告 学院仪器科学与光电工程学院 专业方向惯性技术与导航仪器 班级 学号 学生姓名尧爸爸 指导教师 自动控制与测试教学实验中心

实验四控制系统数字仿真 目录 一、实验目的 (3) 二、实验内容 (3) 三、理论计算 (3) 1.求解ζ和主导极点所对应角度β (3) 2.用matlab绘制系统的根轨迹并找到主导极点 (3) 3.求解K值 (4) 四、计算机仿真 (5) 1. 实验程序 (5) ①四阶龙格库塔计算函数:RgKta.m (5) ②stepspecs.m (5) ③主程序test.m (7) 2. 超调量和ts (8) 3.阶跃响应曲线 (8) 五.实验总结 (9)

一、 实验目的 通过本实验掌握利用四阶龙格——库塔法进行控制系统数字仿真的方法,并分析系统参数改变对系统性能的影响。 二、 实验内容 已知系统结构如图4-1 : 图4-1 若输入为单位阶跃函数,计算当超调量分别为5%,25%,50%时K 的取值(用主导极点方法估算),并根据确定的K 值在计算机上进行数字仿真。 三、 理论计算 1.求解ζ和主导极点所对应角度β ①根据公式:%100%e πξσ-=?,可以解得相应的ξ 2.用matlab 绘制系统的根轨迹并找到主导极点 由cos β=ξ,过原点做倾角为180-β的直线,与系统根轨迹的交点即为系统主导极点。

代码如下: %%绘制跟轨迹和主导极点所在位置 % hold on; num=[1]; dun=[1,10,25,0]; rlocus(num,dun) t=-4:0.001:0; y1=-t*tan(46.37/57.3); y2=-t*tan(66.19/57.3); y3=-t*tan(77.555/57.3); plot(t,y1,t,y2,t,y3); 3.求解K值 由模值方程K?=s?p1|s?p2||s?p3|可解K

lims实验室信息管理系统38276

实验室信息管理系统,Laboratory Information Management System 一、实验室信息管理系统(LIMS)介绍: 1、实验室信息管理系统即LIMS的概念: LIMS是英文单词Laboratory InformationManagementSystem的缩写。它是由计算机硬件和应用软件组成,能够完成实验室数据和信息的收集、分析、报告和管理。LIMS基于计算机局域网,专门针对一个实验室的整体环境而设计,是一个包括了信号采集设备、数据通讯软件、数据库管理软件在内的高效集成系统。 它以实验室为中心,将实验室的业务流程、环境、人员、仪器设备、标物标液、化学试剂、标准方法、图书资料、文件记录、科研管理、项目管理、客户管理等等影响分析数据的因素有机结合起来,采用先进的计算机网络技术、数据库技术和标准化的实验室管理思想,组成一个全面、规范的管理体系,为实现分析数据网上调度、分析数据自动采集、快速分布、信息共享、分析报告无纸化、质量保证体系顺利实施、成本严格控制、人员量化考核、实验室管理水平整体提高等各方面提供技术支持,是连接实验室、生产车间、质管部门及客户的信息平台,同时引入先进的数理统计技术,如方差分析、相关和回归分析、显著性检验、累积和控制图、抽样检验等,协助职能部门发现和控制影响产品质量的关键因素。 2、与LIMS相关的国际标准 标准规范的制定与实施,体现了高新技术的发展和产品成熟的标志。为提高分析数据质量,已将其纳入法制轨道,七十年代提出了质量管理(QC)概念,九十年代,各行业的标准化组织相继制定和颁布了各种管理标准,质量保证规范和各种技术协议,对推动高新技术的发展、改进产品质量,提高生产效率产生了重大影响。 实验室的质量保证/质量管理的国际标准如下: 由于计算机在实验室普遍应用,增订了优良的自动化实验室规范(GALP) ,它对实验室的方法、职责、管理和使用计算机处理实验室数据等,都制订了技术细则。美国环保局(EPA)制订了有关健康和环境产品的管理规范。美国材料测试协会ASTM, 官方分析化学协会(AOAC), 美国实验室联合委员会(ACIL), 制订了许多相关的标准和协议。欧共体(EEC)颁布了实验室认证指南, 促使欧共体成员国成为 (EEC) 认证的实验室,这些实验室出示的证书,为欧共体各国认可,打开了商品流通的渠道。国际标准化机构ISO, 制订的ISO-9000系列规范成为国际公认的标准,国内一些企业已通过ISO认证,或正在努力实施。 由于分析仪器的计算机硬软件各不相同,尤其是分析数据缺乏标准,制约了实验室的自动化和信息资源的开发和共享,这已成为科学仪器厂商和分析化学家的共识。AST M颁布了分析化学技术有关的规范,其中有1998年公布的色谱分析数据交换协议(AI A),协议制订了原始数据文件和结果文件的标准化格式和结构,其目的是1〕有利于各厂商的仪器之间传输数据,2〕为LIMS提供了通信接口,3〕可将数据链接到文档环境和电子表格中,4〕数据存档。还有分析数据交换和信息存储标准(ADISS),这是一种面向分析数据对象的标准,已被分析仪器与数据通信标准委员会,美国质谱协会、

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

实验室智能监控系统设计

实验室智能监控系统设计 摘要:设计了一种基于PLC+STM32的智能实验室SCADA系统。RTU硬件采用分散式的结构,将原来由一个MCU完成的复杂任务分散给多个MCU共同完成,系统可靠性和数据处理速率得到大幅度提高。RTU软件遵循可配置性原则,每个GPIO可以针对不同的用途重新配置成,提高了软件的开发效率。调试结果表明,该系统运行稳定,保证实验室各环境参数满足设定要求。关键词: SCADA;实验室;监控系统;分散式 实验室是进行各种实验工作的特殊环境。为了保证整个实验室系统安全可靠地运行,实时检测、监控实验室各项环境参数,保证实验室状态稳定,并在发生意外或者系统出现故障时,自动采取一定的保护措施,设计一种智能实时监控系统是非常必要的。本文提出一种分散式结构的SCADA智能实验室系统,将原本由一个MCU处理的复杂任务分散给多个MCU 共同处理,从而使系统的可靠性、稳定性及处理数据速度、系统效率大幅度提高,增强了系统的可扩展性和可改造性。数据采集与监控系统SCADA(Supervisory Control And Data Acquisition)是以计算机、通信网络为基础的生产过程控制与调度自动化系统。通过对现场的运行设备进行监视和控制,实现数据采集、设备控制、测量、参数调节及各类信号报警等功能[1]。根据SCADA系统结构,该智能实验室SCADA系统由RTU、HMI、TCOM 3个层次构成。远程控制单元RTU(Remote Terminal Unit)(即传统的下位机),主要负责实验室参数采集和控制;人机接口HMI(Human Machine Interface),主要负责提供良好的人机接口;远程通信网TCOM(Telecommunication),用于HMI与各RTU之间的通信。1 总体架构智能实验室总体架构由房间控制系统、气流控制系统(即通风柜控制系统和阀控制系统)、远程控制系统及人机接口部分组成。。 房间控制部分是实验室监控系统的核心,连接着PLC、阀控制器、通风柜控制器以及触摸屏,主要负责采集房间参数,并发送命令给PLC、阀控制器、通风柜控制器,以控制整个实验室的正常运行。气流控制部分和阀控制器主要根据房间控制器发送参数和命令,PID调节房间送/排风,在保证房间最小换气次数的前提下,保证房间的负压环境。远程控制部分由远程PC和PLC组成,用户可以通过PC机的上位机软件发送命令给PLC和房间控制器,从而达到远程控制整个系统的效果。人机接口除了远程PC外,每个房间控制器都配有一台7英寸液晶触摸屏,用户可以通过触摸屏发送命令给房间控制器,控制整个系统的运行。此外,监控系统还包含报警装置,当房间参数超出设定值,或者出现毒气泄漏等危险情况时即刻发出报警信号。2 房间控制部分房间控制部分由房间控制器和传感器组成。房间控制器以STM32F105RB处理器为主控制MCU,通过AI模块采集温度、湿度、压力、风量等信息,并通过DI模块采集开关量信息,通过AO模块调节系统的送/排风量和温度,通过DO模块改变系统各开关量的输出状态,房间控制部分结构。 STM32F105RB是基于ARM CORTEX-M3核的32位RISC处理器,相比ARM7速率提高1/3,功耗降低3/4,最高运行频率可以达到72 MHz。配备CAN模块、RS485串口模块、电源模块、8位DI及6位DO模块。不仅涵盖了现有的STM32F103的功能,而且在此基础上增加了网络功能[2]。温度检测模块采用瑞士伟拓Vector室内温度传感器SRA-T1,EEPROM自动保存最值记录,具有掉电存储功能。SRA-T1室内温度变送器感温敏感元件是NTC电阻,变送器电路的微处理器每秒对温度采样一次。滤波时间计算信号平均值,并且根据湿度量程做线性变换,然后产生信号输出,保证外部干扰对此变送器影响最小。默认滤波平均时间10 s,测量范围0~+50℃(+32~+122°F)。本系统每个房间配置一个SRA-T1室内温度传感器,采用24 V直流供电,输出0~10 V电压,接入房间控制器的AI模块。房间控制器将电压转换为温度,

自控实验三

东南大学能源与环境学院 实验报告 课程名称:自动控制基础 实验名称:闭环电压控制系统研究 院(系):能源与环境学院专业:热能与动力工程 姓名:周兴学号:03011127 实验室:418 实验组别:XX 同组人员:张亚丽实验时间:2013年10月30 日评定成绩:审阅教师:

目录 一.实验目的 (3) 二.实验设备 (3) 三.实验原理 (3) 四.实验线路图 (4) 五.实验步骤 (4) 六.报告要求 (5) 七.实验结果与分析 (5) 八.思考与回答 (11) 九.实验总结 (17)

一.实验目的 (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题; (2)学会正确实现闭环负反馈; (3)通过开、闭环实验数据说明闭环控制效果。 二.实验设备 1. THBDC-1型控制理论·计算机控制技术实验平台; 2. PC机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线。 三.实验原理 (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)数学上的“相似性”,将各种实际物理装置经过简化、并抽象成数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对纯数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把纯数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理装置,而“模拟实物”的实验方式可以举一反三,我们就是用下列“模拟实物”——电路,也有实际物理装置——电机,替代各种实际物理装置。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,两个演示实例说明这一点。本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联校正、极点配置),本实验为了简洁,采用单闭环、比例算法K。通过实验证明:不同的统K,对系性能产生不同的影响。说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验可以认为是真实

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

相关文档
相关文档 最新文档