文档库 最新最全的文档下载
当前位置:文档库 › 河流富营养化评价标准

河流富营养化评价标准

河流富营养化评价标准
河流富营养化评价标准

河流富营养化评价标准

能够反映湖泊水库营养状态的变量很多 ,但只部分指标可被用于湖库营养状态的评价 ,而且不同国家和地区所选取的指标各不相同 ,其中总磷(TP)、总氮(TN)和叶绿素 a均为必选指标 ,虽然 TP和 TN中只有部分形式能够为藻类所吸收利用 ,但目前国际上大多是采用 TP和 TN指标 ,而不是选用可利用性总磷或者可利用性总氮等指标 ,这是由于营养盐的可利用态与不可利用态之间存在着复杂的转化关系。而其它指标如透明度、溶解氧 (DO)、化学需氧量 (COD)和 pH 等只是在一些国家和地区被应用。

河道型水库营养状态评价指标的选取应遵循以下几个原则: ( 1)是水库富营养化控制的关键性因素; (2)与藻类生长具有明确的机理性关系; (3)指标相对稳定 ,不易受到其它因素的影响; (4)具有富营养化的早期预警功能 ,为水库富营养化控制提供支持。

基于上述原则 ,对现有指标在河道型水库的适用性进行分析.认为总磷是我国大部分河道型水库的限制性要素 ,是水库富营养化控制的关键因子. 氮不仅是某些水库富营养化的控制性要素,而且是河口以及海岸带水体藻类的关键限制因子,为了体现水库对河口的影响及控制作用 ,在制定河道型水库的营养状态标准时应考虑氮元素.叶绿素a能够反映水库中藻类生物量的大小 ,虽然含量受到藻类种类的影响 ,容易在评价时造成一定的偏差 ,仍然是水体富营养化程度的一个重要表征指标. 因此 ,认为总磷、总氮和叶绿素 a仍然是河道型水库的营养状态评价的关键指标。

透明度也是一个常用的湖泊水库营养状态评价指标 ,这是因为在一般的湖泊水库中 ,透明度变化主要源于水体中悬浮的藻类数量的差异 ,因此 ,它能够很好表征湖库的富营养化程度 ,甚至有人认为透明度是识别湖泊、水库营养状态趋势的最好变量. 但河道型水库与一般的湖泊水库不一样 ,其透明度指标受河流流速、泥沙含量的影响较大 ,与真正意义上的湖泊水库中的透明度不同.以三峡水库为例 , 1年中出现富营养化敏感时期分别是 3~6月和 9~10月 ,而两个时期的透明度存在显著差异 , 9~10月为汛后期 ,平均透明度为 m, 3~6月为汛前期 ,平均透明度为,原因在于汛期泥沙含量的影响作用 ,使得透明度作为河道型水库的营养状态评价指标中具有一定局限性.因此 ,作者认为透明度适

用于河道型水库春季敏感时期的营养状态评价 ,此时水体透明度受泥沙含量影响作用较少 ,大小主要取决于藻类数量

的差异。

目前 ,关于 COD与富营养化的关系还不明确 ,虽然一些研究发现二者存在较好的相关性 ,但作用机理尚不明晰.而 DO在富营养化发生过程中一直发生动态变化 ,很难作为预警性指标.因此 ,认为这两个指标不适合作为河道型水库的营养状态评价指标.

综上所述 ,河道型水库营养状态指标采用总氮、总磷、叶绿素 a、透明度等 4个指标比较适宜 ,其中透明度仅适用于3月~6月期间的营养状态评价。

指标分级标准值的确定方法:

河道型水库的营养状态指标分级标准值的确定方法主要包括以下 3种方法:

(1)统计学分析方法

该法是对河道型水库的营养物浓度进行统计分析 ,将一定概率下的营养指标值作为标准值. 具体分析步骤如下: (1)在富营养化敏感时期 ,对河道型水库不同类型敏感区进行评价指标取样和监测 ,包括 TN、 TP、叶绿素 a和透明度 ,样品数量要满足统计学分析的要求; (2)以不同类型敏感区为单位 ,对监测样点的 TP、TN、叶绿素 a和透明度结果分别进行统计分析 ,参照美国的营养物基准值制定方法 ,将 25%分布概率的对应值设为该指标的贫营养级别标准值 , 50%分布概率的对应值作为中营养与富营养级别间的标准值 , 75%分布概率的对应值作为中富营养与重富营养级别间的标准值.该法具有简单易行的特点 ,缺点是

由于以分布统计为基础 ,结果容易受到样品数目大小的影响 ,而且要求样品之间关联性小 ,对于小型的河道型水库 ,可以通过对生态区内多个河道型水库的调查值进行统计分析 ,从而得到准确的结果。

(2)营养化指数与营养物指标的回归分析方法该法是根据叶绿素 a与营养化指数的关系 ,确定叶绿素 a的标准值 ,然后建立河道型水库的叶绿素 a含量与 TP、 T N和透明度的回归关系式 ,然后以叶绿素 a标准值为基准确定其它指标的标准值.具体步骤如下:

(1)对河道型水库的 TN、TP、叶绿素 a和透明度等指标取样监测.

(2)根据《湖泊富营养化调查规范》中修正的营养状态指数 ( TSI

M

)与叶绿

素 a浓度的关系公式及其TSI

M 分级标准,分别计算不同TSI

M

)分标准所对应的叶

绿素 a浓度值 ,获取叶绿素 a的分级标准值.

TSI

M

= 10× +lnA/

式中:TSI

M

为修正的营养状态指数 ,无量纲单位; A为叶绿素 a浓度值 ,mg·m-3.

表1 TSI

M

的营养化分级标准

(3)营养状态评价指标的阈值分析方法

该法是根据浮游植物密度水平与营养指标的关系 ,分析藻类达到不同水华爆发状态时对营养物的限值要求 ,从而为标准值制定提供依据. 水华爆发根据藻类数量可以分为无爆发、临界爆发和爆发3种状态 ,认为藻类数量小于 500 ×104个·L-1时为无爆发状态 ,介于 (500~10000) × 104个·L-1之间时为临界爆发状态 ,大于 10000×104个·L-1时为爆发状态.分别统计河道型水库在不同

爆发状态下的总磷、 总氮的浓度分布范围 ,并对最小限值进行分析 ,将其作为营养状态标准值设定的基本依据.

如果调查期间河道型水体未爆发水华 ,可以根据 N/P 比例关系来间接分析营养物浓度的潜在阈值.理论推算表明 ,浮游植物在代谢中的 N/P 摩尔比为 16∶1,假设 N/P 比大于 16∶1,意味着 P 是藻类爆发的潜在限制性要素 ,如果在其它条件适宜的情况下尚未爆发水华 ,根据此时监测中的P 最大值可以初步判断出指标的潜在阈值.假如 N /P 比小于 16∶ 1,意味着 N 是潜在限制性要素 ,可采用同样方法分析 N 的富营养化潜在阈值。

营养状态综合评价方法:

选取叶绿素 a 、总磷、总氮、透明度(SD)和高锰酸盐指数(COD Mn )5 个单项指

标的浓度值 ,分别计算水体单项指标的营养状态指数(TLI).

TLI(∑)=()j 1j

TLI W m

j ?∑= 式中:TLI(∑)为综合营养状态指数;TLI(j)为第 j 种参数的营养状态指数;Wj 为第 j 种参数的营养状态指数的相关权重。

各个指标的营养状态指数计算式:

(1)TLI (chla ) =10(+ chla )

(2)TLI (TP ) =10(+)

(3)TLI (TN ) =10(+)

(4)TLI (SD ) =10()

(5)TLI (COD ) =10(+)

可由一些评价参数作为基准参数,对其他评价参数进行相关分析后,对相关系数归一化得出相关的权重.

∑==m

j ij

ij

r r W 122j 式中: r ij 为第 j 种参数与基准参数 chla 的相关系数;m 为评价参数的个

数. 采用 0到100 的一系列连续数值对水体营养状态进行分级.

参考国际惯例,chla 取 ,,,, m3分别为贫营养、中营养、轻富营养、中富营养、重富营养的上限表征值。

将TLI计算式与结构方程关系式联立方程组;在参照状态的阈值范围内自动取数,作为模型的数据库,运行模型,得到各变量之间的一组关系值,代入方程组即可解得一组得数,把这组结果作为基准初值

基准值的最终确定还需要考虑专家意见,并且结合流域内水体水文气候人文风俗水体的用途土地利用情况以及对特殊的动植物和生态多样性的保护等因素对基准初值进行调整并最终确定基准值

水体富营养化程度评价

水体富营养化程度评价 一、实验目的与要求 (1)掌握总磷、叶绿素-a及初级生产率的测定原理及方法。(2)评价水体的富营养化状况。 二、实验方案 1、样品处理 2 、工作曲线绘制 取7支消解管,分别加入磷的标准使用液0.00、0.25、0.50、1.50、2.50、5.00、7.50mL以比色管中,加水至15ml。然后按测定步聚进行测定,扣除空白试验的吸光度后,和对应磷的含量绘制工作曲线。 3、计算 总磷含量以C(mg/L)表示,按下式计算: 式中: M 试样测得含磷量,μg V 测定用水样体积,ml

注意:每个小组做空白2-3个,标线5个,样品3-4个。 图1 采样布点分布 三、实验结果与数据处理 1、工作曲线绘制 根据上表数据,绘制工作曲线如图2所示: 图2 标准工作曲线 从标准工作曲线图可以看出,其相关系数R2 = 0.9969,高于实验室最低要求R2=0.995,可见其相关度较好,可用以求解水样中总磷的浓度。

2、八个水样数据结果与处理 根据上表数据作水中磷质量浓度柱形图,如图2所示: 图2 各组水中总磷质量柱形图 四、实验结果 1、实验结果分析 从实验数据和图2可以看出,第一、三、四、五、八组数据比较准确,因为

这几组平行样数据比较接近,而且跟稀释后所测的浓度也大约呈5倍关系,可以保留作为水中磷质量浓度评价,而其他组数据误差较大,故舍去。根据各组原水样总磷质量浓度求评均整理下表。 从上表数据可以看出,第五组所测的水中总磷浓度较高,根据图1可知第五组采样点为第四饭堂附近,可能是由于饭堂平时清洁所用的洗涤剂含磷较高,排放入河涌的污水导致河水受污染。 2、污染程度分析 表4 总磷与水体富营养化程度的关系 本实验是以水体磷平均浓度平均参数,本次实验所得的监测采样点数据的平均浓度是0.205mg/L,测得的最小浓度为0.142mg/L,测得的最高浓度为0.311mg/L,由表1可知超过0.1mg/L就为水体富营养化,本次实验测得的最低浓度也超出0.1mg/L,本次实验所得数据均说明该水体富营养化。 3、解决措施 该河涌地处大学城内,不受工业排放污染,所以造成该河涌富营养化的主要原因是生活污染,比如饭堂、学生公寓、商业区等,要治理河涌首先还是得从源头抓起,特别是饭堂、学生公寓和商业区,必须监控从这三个地方流出的污水,须进行处理达标后才能排入河涌;其次就是要严格审查各类洗涤剂等,含磷超标的不能进入市场;最后就是要树立环保意识,大家环保觉悟高了,从自己做起,自然就有绿水青山。 五、思考题 (1)查资料说明评价水体富营养化程度的指标有哪些? 答:水体富营养化程度的评价指标分为物理指标、化学指标和生物学指标。物理指标主要是透明度,化学指标包括溶解氧和氮、磷等营养物质浓度等,生物

水体富营养化评价方法

为了进一步认识调查区域水质状况,我们采用了TLI 综合营养指数法运用TP 、TN 、SD 、COD Mn 对其水质进行评价。 综合营养状态指数公式: j 1 ()()m j TLI W TLI j ==?∑∑ (1) TLI(chl)=10(2.5+1.086ln chl ) (2) TLI(TP)=10(9.436+1.624ln TPl ) (3) TLI(TN)=10(5.453+1.694ln TN ) (4) TLI(SD)=10(5.118-1.94ln SD ) (5) TLI(COD)=10(0.109+2.661ln COD ) 式中,TLI (∑)表示综合营养状态指数;TLI (j )代表第j 种参数的营养状态指数;W j 为第j 种参数的营养状态指数的相关权重。以chla 为基准参数,则第j 种参数的归一化的相关权重计算公式为: 221ij m ij j r Wj r ==∑ r ij 为第j 种参数与基准参数chla 的相关系数;m 为评价参数的个数。 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2ij 见表2。 表1 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2i 值 参数 chla TP TN SD COD Mn r ij 1 0.84 0.82 -0.83 0.83 r 2ij 1 0.7056 0.6724 0.6889 0.6889

为了说明湖泊富营养状态情况, 采用0~100的一系列连续数字对湖泊营养状态进行分级: TL I < 30 贫营养(Oligotropher) 30≤TL I≤50 中营养(Mesotropher) TL I > 50 富营养(Eutropher) 50< TL I≤60 轻度富营养( lighteutropher) 60< TL I ≤70 中度富营养(Middleeutropher) TL I > 70 重度富营养(Hypereutropher) 在同一营养状态下, 指数值越高, 其营养程度越重。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

水体富营养化及其防治措施

水体富营养化及其防治措施 应化0902班田亚丽 案例:2007年,浙江全省海域共发生赤潮40次,发生面积累计近8500平方千米。其中有毒赤潮生物引发赤潮3次,累计面积约315平方千米。浙江省海洋与渔业局日前发布的2007年度浙江省海洋环境公报指出,2007年,舟山海域和渔山列岛—韭山列岛海域是赤潮高发区。上述两个海域发生赤潮的次数和面积分别占全省的65%和79%。 1、前言 近些年来,环境问题日益严重。酸雨危害加剧,南极臭氧层空洞越来越大,患皮肤癌及其他皮肤病的人数越来越多,全球变暖趋势不改甚至加快,导致很多低于海平面的国家面临被淹没的威胁,会使全球降水量重新分配,冰川和冻土消融,海平面上升等。资源、能源短缺当前,世界上资源和能源短缺问题已经在大多数国家甚至全球范围内出现。森林面积锐减,土地沙漠化,更是早就出现但是一直没有得到解决的问题。我只取一方面加以讨论,就是我们地球上面积最大的海洋,最为严重的水体富营养化的问题,并提出几点防治措施,希望能为环境保护尽一些绵薄之力。 2、水体富营养化的定义及产生 水体富营养化是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。这种现象在河流湖泊中出现称为水华,在海洋中出现称为赤潮。 国际经济合作与开发组织对水体富营养化开展了一系列的研究工作,最后确定氮、磷等营养物质的输入和富集是水体发生富营养化的最主要原因,大约80%的湖泊富营养化是受磷元素的制约,大约10%的湖泊与氮元素有关, 余下10%的湖泊与其他因素有关。 水体富营养化主要是由于工业废水、生活污水、化肥农药的使用和其他一些污染物中富含氮和磷的污染物进入湖泊海洋中,造成藻类疯狂生长。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主,蓝藻是一种细菌,繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从而使水质恶化,造成鱼类和其他水生生物大

实验1水体富营养化程度的评价

实验五水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标, 常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1 )。

1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 1. 仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 (9) 多功能水质检测仪。 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。

水体富营养化

水质工程学课程论文 论文题目:水体富营养化的形成、危害和治理方法 姓名:査戎 学号:03212710 院系:能源与环境学院环境科学与工程系 完成日期:2014.10.18

0.引言 自上世纪50年代以来,湖泊富营养化现象己成为世界上重要的水环境污染问题。水体富营养化是因水体中所含的氮、磷等营养物质过多而导致的一种水体效应,主要表现有水中某些藻类和大型水生植物异常增殖,水生生物种群单一化及水质变坏等,水生生态系统受到严重破坏. 水体富营养化是自养型生物(浮游藻类)在水体中建立优势的过程,包含着一系列生物、化学和物理变化,与水质化学、水体物理性状、湖泊形态和底质,以及气象、地理等众多因素有关。 水体富营养化主要发生在湖泊、河口、海湾等流动缓慢且水体更新时间较长的水域.我国的这种水体现象比较严重.淡水水域中,50%以上的湖泊、30%以上的大型水库都出现过水体富营养化(也称作“水华”),其中以太湖、巢湖和滇池尤为严重.而海域的水体富营养化(也称为“赤潮”)也不容乐观,20世纪80年代前,只有渤海发生过较多的赤潮;进入90年代后,东海成为赤潮发生最为频繁的海域;到了21世纪,除南海外,其他海域都频频爆发大而积的赤潮.这种现象正朝着频率提高、而积增大、损失加大的趋势发展. 1.水体富营养化的成因分析 水体富营养化主要是因为水体中含有的氮、磷等可供藻类利用的营养物质较多造成的,而氮、磷等营养物质来源较为复杂,既有内源又有外源,既有点源又有非点源.对国内外不同区域水体的考察表明:不论营养物质来源于何处,水体富营养化的形成是受多种因素影响的,这其中既有自然因素的作用,也有人为因素的作用。 水体富营养化主要是人为原因造成的。随着工农业生产大规模的迅速发展,“城市化”现象愈加明显,使得不断增加的人口,集中在一些水源丰富的特定地区。人口集中的城市排放出的大量含有氮、磷营养物质的生活污水和工业污废水流入湖泊、河流和水库,增加了这些水体的营养物质的负荷量。同时,在农村,为了提高农作物产量,施用的化学肥料和牲畜粪也逐年增加,经过雨水冲刷和渗透,一定数量的植物营养物质以面源的形式最终输送到水体中。据估计,农业地区输出的总磷可达森林地区输出量的10倍以上,而城市径流中的总磷量又是农业集水区径流量的7倍左右。 1.1自然因素 营养物质是引起富营养化的决定性因素,除此之外,水文条件,如水体的深度、流速、

湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定 2004-08-11 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: 式中:—综合营养状态指数; Wj—第j种参数的营养状态指数的相关权重。 TLI(j)—代表第j种参数的营养状态指数。 以chla作为基准参数,则第j种参数的归一化的相关权重计算公式为: 式中:rij—第j种参数与基准参数chla的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla与其它参数之间的相关关系rij及rij2见下表。 ※:引自金相灿等著《中国湖泊环境》,表中rij来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl) ⑵ TLI(TP)=10(9.436+1.624lnTP)

⑶ TLI(TN)=10(5.453+1.694lnTN) ⑷ TLI(SD)=10(5.118-1.94lnSD) ⑸ TLI(CODMn)=10(0.109+2.661lnCOD) 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn) 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级: TLI(∑)<30贫营养(Oligotropher) 30≤TLI(∑)≤50中营养(Mesotropher) TLI(∑)>50富营养 (Eutropher) 50<TLI(∑)≤60轻度富营养(light eutropher) 60<TLI(∑)≤70中度富营养(Middle eutropher) TLI(∑)>70重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由中国环境监测总站生态室负责解释

水体富营养化程度的评价

实验八水体富营养化程度的评价 富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。 表8-1 水体富营养化程度划分 富营养化程度初级生产率/mg O2·m·日总磷/ μg·L无机氮/ μg·L 极贫0~136 <0.005 <0.200 贫-中0.005~0.010 0.200~0.400 中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500 富410~547 >0.100 >1.500 一、实验目的 1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 二、仪器和试剂 1. 仪器

水体富营养化的原因及其措施

水体富营养化 摘要: 富营养化是水体衰老的一种现象,它通常是指湖泊、水库等封闭水体以及某些河流水体内的氮、磷等植物营养物质含量过多所引起的水质污染现象。本文将从水体富营养化的自然因素和人为因素两大方面进行分析,阐述各元素对水体的影响,并对水体富营养化的危害及治理措施进行阐述。 关键词:富营养化来源危害治理措施 富营养化是由于水体中氮磷等营养物质的富集,引起某些特征性藻类(主要是蓝藻、绿藻)及其他浮游生物的迅速繁殖,水体生产能力提高,使水体溶解氧含量下降,造成藻类、浮游生物、植物、水生物和鱼类衰亡甚至绝迹的水质恶化污染现象。富营养化具有缓慢、难以逆转的特点 ,因此水体富营养化问题是当今世界面临的最主要水污染问题之一。 我国在经济持续高速增长的同时,所带来的最大负效应就是环境污染日益严重,大江、大河及湖库水环境质量日趋恶化。据2003年我国环境状况公报显示:在我国七大水系407个重点监测断面中,Ⅰ~Ⅲ类水质占38. 1%, Ⅳ、Ⅴ类水质占32. 2%,劣Ⅴ类水质占29. 7%。2001年对我国130余个湖泊调查资料显示,高营养化湖泊占调查总数的43. 5%,中营养化湖泊占调查总数的45%。以藻型富营养化为主的湖泊主要分布在我国东南部经济发达地区,超营养化湖泊主要分布在城市和城郊附近。 1水体富营养化的来源 1.1 自然因素 数千年前或者更远年代,自然界的许多湖泊处于贫营养状态。然而,随着时间的推移和环境的变化,湖泊一方面从天然降水中吸收氮、磷等营养物质;一方面因地表土壤的侵蚀和淋溶,使大量的营养元素

进入湖内,湖泊水体的肥力增加,大量的浮游植物和其他水生植物生长繁殖,为草食性的甲壳纲动物、昆虫和鱼类提供了丰富的食料。当这些动植物死亡后,它们的机体沉积在湖底,积累形成底泥沉积物。残存的动植物残体不断分解,由此释放出的营养物质又被新的生物体所吸收。 因此,富营养化是天然水体普遍存在的现象。但是在没有人为因素影响的水体中,富营养化的进程是非常缓慢的,即使生态系统不够完善,仍需至少几百年才能出现。一旦水体出现富营养化现象,要恢复往往是极其困难的。 1.2 人为因素 1.2.1工业废水 工业废水主要是指工业生产过程中产生的,其中钢铁、化工、制药造纸、印染等行业的废水中氮和磷的含量都相当高。近年来,工业排放的废水逐年递增。据报道, 2003年全国工业废水排放量达212. 4亿吨。但由于技术与资金的原因,大部分工业废水只经简单处理甚至未经任何处理就直接排入江河等水体中,许多废水中所含的氮、磷等物质也就不断地在水体中累积了下来。 1.2.2生活污水 排放人们在日常生活中也产生了大量的生活污水, 2001年全国生活污水排放达247. 6亿吨,超过工业废水排放量。生活污水中含有大量富含氮、磷的有机物。其中的磷主要来自洗涤剂。 据《2003年中国环境状况公报》统计, 2003年全国工业和城镇

湖泊(水库)富营养化评价方法及分级技术规定(eco)(精)

附件1: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1)()( 式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI (j )—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公 式为: ∑==m j ij ij j r r W 122 式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r 及r 2值※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查 数据的计算结果。 营养状态指数计算公式为: ⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN )

⑷TLI(SD)=10(5.118-1.94lnSD) )=10(0.109+2.661lnCOD) ⑸TLI(COD Mn 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰 ) 酸盐指数(COD Mn 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊营养状态进行分级: TLI(∑)<30 贫营养(Oligotropher) 30≤TLI(∑)≤50 中营养(Mesotropher) TLI(∑)>50 富营养(Eutropher) 50<TLI(∑)≤60 轻度富营养(light eutropher) 60<TLI(∑)≤70 中度富营养(Middle eutropher) TLI(∑)>70 重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由总站生态室负责解释

河流富营养化评价标准

河流富营养化评价标准 能够反映湖泊水库营养状态的变量很多 ,但只部分指标可被用于湖库营养状态的评价 ,而且不同国家和地区所选取的指标各不相同 ,其中总磷(TP)、总氮(TN)和叶绿素 a均为必选指标 ,虽然 TP和 TN中只有部分形式能够为藻类所吸收利用 ,但目前国际上大多是采用 TP和 TN指标 ,而不是选用可利用性总磷或者可利用性总氮等指标 ,这是由于营养盐的可利用态与不可利用态之间存在着复杂的转化关系。而其它指标如透明度、溶解氧 (DO)、化学需氧量 (COD)和 pH 等只是在一些国家和地区被应用。 河道型水库营养状态评价指标的选取应遵循以下几个原则: ( 1)是水库富营养化控制的关键性因素; (2)与藻类生长具有明确的机理性关系; (3)指标相对稳定 ,不易受到其它因素的影响; (4)具有富营养化的早期预警功能 ,为水库富营养化控制提供支持。 基于上述原则 ,对现有指标在河道型水库的适用性进行分析.认为总磷是我国大部分河道型水库的限制性要素 ,是水库富营养化控制的关键因子. 氮不仅是某些水库富营养化的控制性要素,而且是河口以及海岸带水体藻类的关键限制因子,为了体现水库对河口的影响及控制作用 ,在制定河道型水库的营养状态标准时应考虑氮元素.叶绿素a能够反映水库中藻类生物量的大小 ,虽然含量受到藻类种类的影响 ,容易在评价时造成一定的偏差 ,仍然是水体富营养化程度的一个重要表征指标. 因此 ,认为总磷、总氮和叶绿素 a仍然是河道型水库的 营养状态评价的关键指标。 透明度也是一个常用的湖泊水库营养状态评价指标 ,这是因为在一般的湖泊水库中 ,透明度变化主要源于水体中悬浮的藻类数量的差异 ,因此 ,它能够很好表征湖库的富营养化程度 ,甚至有人认为透明度是识别湖泊、水库营养状态趋势的最好变量. 但河道型水库与一般的湖泊水库不一样 ,其透明度指标受河流流速、泥沙含量的影响较大 ,与真正意义上的湖泊水库中的透明度不同.以三峡水库为例 , 1年中出现富营养化敏感时期分别是 3~6月和 9~10月 ,而两个时期的透明度存在显著差异 , 9~10月为汛后期 ,平均透明度为0.54 m, 3~6月为汛前期 ,平均透明度为1.76m,原因在于汛期泥沙含量的影响作用 ,使得透明度作为河道型水库的营养状态评价指标中具有一定局限性.因此 ,作者认

水体富营养化的现状与防治

水体富营养化的现状与防治 摘要:由于大量使用化肥及排放各类污水,已造成许多湖泊,河流水体氮磷严重污染造成水体富营养化,导致了水质恶化,严重影响了周边居民饮用水安全。水体的富营养化是当今社会面临的重大环境问题之一[1],已成为经济社会发展的重要影响因素,经济而有效的控制水体富营养化已经成为当代亟待解决的环境问题。本文通过对水库水体富营养化现状和原因分析表明,氮、磷是引起水库富营养化的主要因素。指出预防水库水体富营养化,应对水源保护区内的污染源进行综合治理,严格控制入库污染物排放。同时提出了对已经形成富营养化的水体进行有效治理的措施。 关键词:水体富营养化;环境问题;防治对策 1.水体富营养化及其危害 随着社会发展进程的加快,人类生产、生活污水排放的日益增多,水体的富营养化问题也越来越严重。水体富营养化是指水体中生物所需的氮、磷等无机营养物质含量过剩的现象。氮、磷是导致湖泊、水库、海湾等缓流水体富营养化的主要原因[2]。磷是藻类等的细胞合成所必需的,也是构成核酸、脂肪、蛋白质的重要成分,在能量代谢种起着十分重要的作用。水体富营养化的结果会导致以藻类为主体的水生植物大量的繁殖,影响水体的透明度和水中植物正常的光合作用。藻类的呼吸作用,和藻类死亡被需氧微生物分解都需要氧气,导致水体中的溶解氧含量大大降低,使水体长期处于缺氧状态中,造成鱼类等水生生物的死亡,水质浑浊发臭等最终破坏湖泊生态系统[3]。对人类工业,生活,灌溉用水都有不利影响。因富营养化水中含有硝酸盐和亚硝酸盐,人畜长期饮用这些物质含量超过一定标准的水,也会中毒致病[4]。 富营养化本身是一个自然过程[5],但因为人类社会的发展,将大量污水在未经处理的状况下直接排入水体,就加速了富营养化这一过程。则这样的富营养化称为人为富营养化。 2.我国的水体富营养化污染现状 第1页(共5页)

富营养化评价方法

总站水字[2009]14号 关于113个环保重点城市湖库型地表水 集中式饮用水源地加测叶绿素a和透明度的通知 各环保重点城市环境监测中心(站): 根据环保部污防司的要求,为做好国家环保重点城市对集中式饮用水源地水质监督性监测工作,客观科学地评价饮用水源水质,湖库型地表饮用水源地增加富营养化状态评价。各环保重点城市在进行2009年集中式饮用水源地水质全部项目监督性监测时,湖库型地表饮用水源地加测叶绿素a和透明度,数据报送顺序见附件1,评价方法见附件2。报送时间及方式参照饮用水源地全部项目监督性监测数据上报的相关要求。 - 1 -

附件:1、集中式饮用水源地水质监测数据表格 2、湖泊(水库)富营养化评价方法及分级技术规定 二〇〇九年二月十一日 - 2 - 主题词:湖库 饮用水源地 加测 通知 抄送:环保部监测司、污防司、各省、自治区、直辖市环境监测中心(站)中国环境监测总站办公室 2009年2月11日印发

附件1: XXXX年XX月XX市集中式饮用水源地水质(地表水)监测数据表格式 *由总站统一编

附件2: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1) ()(式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI(j)—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑== m j ij ij j r r W 1 2 2 式中:r ij —第j 种参数与基准参数chla 的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值 ※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl)

水体富营养化实验报告

《环境化学》实验报告 实验项目:水体富营养化程度评价 实验考核标准及得分

环境化学实验报告 一、实验目的与要求 1、了解周边水体的污染状况,进一步认识水体富营养化的形成的原因; 2、掌握水体中总磷的测定原理及方法; 3、评价水体富营养化的程度。 二、实验方案 1、实验原理: 在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO43- )。随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。再用分光光度仪对吸光度进行测定。 2、实验步骤: (1)、取4ml磷储备溶液(50mg/L)于100ml比色管中,定容至标线,配制成2mg/L的磷标准溶液; (2)、分别取0mL、0mL、、、、、磷标准溶液于7支25ml消解管中,并加蒸馏水至15ml线处,并做好标签; (3)、将所取的西区河涌水样混匀后,取15ml于25ml消解管中,共取3支作为平行实验,并做好标签; (5)、往12支消解管中加入过硫酸钾,旋紧密封盖,依次将消解管插入已达140℃的消解装置恒温体孔中,启动消解15min; (6)、消解结束后,将消解管取出,待管内液体冷却至室温后,用蒸馏水定容至25mL;

(7)、向消解管中加入抗坏血酸,混匀30秒后,加入钼酸盐溶液充分混匀;(8)、将上述12支消解管室温下放置15min后,调节分光光度计λ=880nm,测出吸光度,并记下读数。 三、实验结果与数据处理 1、标准曲线的绘制 (1)标准曲线实测数据: 表1 标准曲线测定结果表 (2)绘制标准曲线:

图1 总磷标准曲线 由于图1 总磷标准曲线的R2=0849,标准曲线不存在相关线性,所以要进行标准曲线的校正。对比同样条件下,所测到水样的吸光度,可初步估算其总磷的浓度在2 mg/L以下,再加上图1 总磷标准曲线上第5点和第6点偏离很大。综上分析,可以去除第5个点和第6个点,再进行标准曲线绘制: 图1-2 校正后的总磷标准曲线 2、水样的测定:

水体富营养化环境影响评价

水体富营养化环境影响评价 环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 标签:环保水环境环境影响评价 0 引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1 流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。 水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直接排入量的总和;输出量是河道出水、地下渗透、蒸发和工农业用水的总和。其中河流进出水量、大气降水量和蒸发量一般可从水文气象部门监测资料获得,有关各类水中磷浓度需要定期测定。地下水输入与输出较难确定,但不能忽略。 估计地下水进出量的一种方法就是通过流量网的测量,用下式计算地下水量: Q=K·I·A(8-2)式中,Q——地下水输入或输出量;

水体富营养化程度的研究

PINGDINGSHAN UNIVERSITY 毕业论文 题目:平西湖水体富营养化程度的研究 院(系): 化学化工学院 专业年级: 化学工程与工艺2010级 姓名: 贾晓青 学号:101170111 指导教师: 杜娴讲师 2014年5月6日

原创性声明 本人郑重声明:本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。毕业论文中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究成果做出重要贡献的个人和集体,均已在文中以明确方式标明。 本声明的法律责任由本人承担。 论文作者签名:日期:

关于毕业论文使用授权的声明 本人在指导老师指导下所完成的论文及相关的资料(包括试验记录、原始数据、实物照片、图片等),知识产权归属平顶山学院。本人完全了解平顶山学院有关保存、使用毕业论文的规定,同意学校保存或向国家有关部门或机构送交论文的纸质版和电子版,允许论文被查阅和借阅;本人授权平顶山学院可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存和汇编本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为平顶山学院。本人离校后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为平顶山学院。 论文作者签名:日期: 指导老师签名:日期:

平西湖水体富营养化程度的研究 摘要 平西湖位于平顶山市新城区,是本市重要的地表饮用水水源。随着城市经济的迅速发展,作为水源地——平西湖的生态环境变化备受各方关注。本课题选取总氮(TN)、总磷(TP)、化学需氧量(COD)作为平西湖水体富营养程度的评价指标,2014年4月份采集平西湖的8个采样断面进行测定,COD含量范围为51.2 mg/L~137.29 mg/L,为地表水质III类标准的2.56~6.86倍,TN污染水平为2.82 mg/L~9.40 mg/L,为地表水质III类标准的2.86~9.40倍,TP浓度范围为0.11 mg/L~0.69 mg/L,为地表水质III类标准的0.22~1.38倍,并对各因子做了比较。研究结果表明平西湖已经处于富营养化状态,现状令人担忧。 关键词:平西湖;化学需氧量;总氮;总磷;富营养化

北京城市湖泊富营养化评价与分析

J. Lake Sci.(湖泊科学), 2008, 20(3): 357-363 https://www.wendangku.net/doc/736145816.html,. E-mail: jlakes@https://www.wendangku.net/doc/736145816.html, ?2008 by Journal of Lake Sciences 北京城市湖泊富营养化评价与分析? 荆红卫, 华 蕾, 孙成华, 郭 婧 (北京市环境保护监测中心, 北京100044) 摘要: 根据2006年对北京市区不同功能重点湖泊水体进行的逐月监测, 采用综合营养状态指数法, 对湖泊富营养化现状进行了评价. 结果表明, 水源湖泊目前处于中营养状态,但在夏秋季由于温度和光照等气象条件的影响, 可接近轻富营养; 重要景观湖泊处于轻—中度富营养; 一般景观湖泊处于中度—重度富营养状态. 湖泊富营养程度随季节变化明显: 盛夏和初秋形成高峰, 冬、春季最低, 总磷、总氮含量与叶绿素a呈显著正相关关系, 尤其总磷与叶绿素a的相关性更加显著. 由于城市排水管网不健全, 雨污分流不彻底, 暴雨期大量溢流生活污水直接向湖泊补水河道中排放; 湖泊补水沿线降雨径流产生的非点源污染较严重;加上污水处理厂再生水水质较差, 加重了补给湖泊富营养程度. 关键词: 北京; 城市湖泊; 富营养化 Analysis on urban lakes’ eutrophication status in Beijing JING Hongwei, HUA Lei, SUN Chenghua & GUO Jing (Beijing Municipal Environmental Monitoring Center, Beijing 100044, P.R.China) Abstract:Referring to the different water body function, the survey of water quality was carried out on major urban lakes of Beijing monthly in 2006. According to TLI method, the state was evaluated on the basis of measurement result: lakes of drinking water source were mesotropher; lakes of major landscape water were light-middle eutropher; lakes of ordinary landscape water were middle-hyper eutropher. The eutrophic characteristics and its changing trend were analyzed. The causes were analyzed. The measures and suggestions were expounded on different water body function for improving water quality and reducing eutrophication. Keywords:Beijing; urban lakes; eutrophication 北京市区共有大小湖泊30余个, 水面面积约7.3km2. 最大的是昆明湖, 面积1.94km2. 湖泊水深一般为1.5-2m, 属于城市小型浅水湖泊. 绝大部分湖泊与河道相通, 汛期可防洪、排水, 大的水域可调节周围小气候. 2001年夏季北京市城市河湖爆发了大面积的蓝藻水华. 2005年8月底至9月初, 昆明湖又出现了较严重的水华现象, 营养级别为中度富营养, 叶绿素a含量高达70.8mg/m3, 浮游植物数量4108.28×104cells/L, 给首都的生态环境和声誉带来了不良影响. 本文以2006年对市区重点湖泊进行的富营养化采样监测为依据, 采用综合营养状态指数法, 对湖泊水体富营养化现状进行评价, 分析市区浅水湖泊富营养化特征和变化规律, 研究其产生的原因, 提出有针对性的防治措施. 1 监测与分析、评价方法 1.1 监测布点 2006年4-12月(1月至3月结冰期除外)对北京市区21个重点湖泊开展了手工采样监测, 监测湖泊水面面积达6.9km2, 占市区湖泊总面积的95%. 湖泊监测点位设置在湖心区和岸边区, 在0.5m左右深处采集亚表层水样. 采样频次为每月一次, 采样时间为每月1-10日之间. ?北京市科委项目(Z0005184040991)资助. 2007-09-03收稿; 2007-12-28收修改稿. 荆红卫, 女, 1966年生, 高级工程师; E-mail: jinghongwei@https://www.wendangku.net/doc/736145816.html,.

水体富营养化环境影响评价

水体富营养化环境影响评价 来源:考试吧(https://www.wendangku.net/doc/736145816.html,)2010-8-18 15:24:00【考试吧:中国教育培训第一门户】论文大全 摘要:环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 关键词:环保水环境环境影响评价 0 引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1 流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。 水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直

实验三 水体富营养化程度的评价

实验三水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。 一、实验目的 1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 二、仪器设备及试剂 1. 仪器 (1) 可见分光光度计。

(2) 移液管:1mL、2mL、10mL。 (3) 容量瓶:100mL、250mL。 (4) 锥型瓶:250mL。 (5) 比色管:25mL。 (6) BOD瓶:250mL。 (7) 具塞小试管:10mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子 (9) 多功能水质检测仪 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L硫酸溶液。 (4) 2 mol/L盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1g酚酞溶于90mL乙醇中,加水至100mL。 (7) 丙酮:水(9:1)溶液。 (8) 酒石酸锑钾溶液:将4.4gK(SbO)C4H4O6 ·1/2H2O溶于200mL蒸馏水中,用棕色瓶在4℃时保存。 (9) 钼酸铵溶液:将20g(NH4 )6MO7O24 ·4H2O溶于500mL蒸馏水中,用塑料瓶在4℃时保存。 (10) 抗坏血酸溶液:0.1 mol/L(溶解1.76g抗坏血酸于100mL蒸馏水中,转入棕色瓶,若在4℃时保存,可维持一个星期不变)。 (11) 混合试剂:50mL 2 mol/L硫酸、5mL酒石酸锑钾溶液、15mL钼酸铵溶液和30mL抗坏血酸溶液。混合前,先让上述溶液达到室温,并按上述次序混合。在加入酒石酸锑钾或钼酸铵后,如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。若在4℃下保存,可维持1个星期不变。

实验一 水体富营养化程度的评价

实验一水体富营养化程度的评价 一、实验目的和要求 1、掌握总磷、叶绿素-a的测得原理及方法。 2、评价水体的富营养化状况。 二、实验原理和方法 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。

1、磷的测定 在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO43- )。随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。砷酸盐与磷酸盐一样也能生成钼蓝,0.1 μg/mL的砷就会干扰测定。六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。 三、仪器设备及试剂 1、仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 2.试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。 (8) 酒石酸锑钾溶液:将4.4 g K(SbO)C4 H4 O6 ·1/2H2 O溶于200 mL蒸馏水中,用棕色瓶在4℃时保存。 (9) 钼酸铵溶液:将20g (NH4 )6M O7 O24 ·4 H2 O溶于500 mL蒸馏水中,用塑料瓶在4℃时保存。

相关文档
相关文档 最新文档