文档库 最新最全的文档下载
当前位置:文档库 › 【物理】 物理牛顿运动定律的应用专题练习(及答案)及解析

【物理】 物理牛顿运动定律的应用专题练习(及答案)及解析

【物理】 物理牛顿运动定律的应用专题练习(及答案)及解析
【物理】 物理牛顿运动定律的应用专题练习(及答案)及解析

【物理】物理牛顿运动定律的应用专题练习(及答案)及解析

一、高中物理精讲专题测试牛顿运动定律的应用

1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取

sin37°=0.6,cos37°=0.8,g=10m/s2)

(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;

(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)

【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N

【解析】

【分析】

(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.

【详解】

(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.

根据牛顿第二定律得:

mgtanθ=ma

得a=gtanθ=10×tan37°=7.5m/s2

m受到支持力

20

N=25N cos cos37

N

mg

F

θ

==

?

(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:

对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1

竖直方向有 Ncosθ+μNsinθ﹣mg=0

对整体有 F 1=(M+m )a 1

代入数值得a 1=4.8m/s 2 ,F 1=28.8N

设物块处于相对斜面向上滑动的临界状态时的推力为F 2,

对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2

竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0

对整体有 F 2=(M +m )a 2

代入数值得a 2=11.2m/s 2 ,F 2=67.2N

综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N .

【点睛】

解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.

2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,

(1)A 、B 两球开始运动时的加速度.

(2)A 、B 两球落地时的动能.

(3)A 、B 两球损失的机械能总量.

【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J

【解析】

【详解】

(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可

得:

对A :A A A A m g f m a -=

对B :B B B B m g f m a -=

A B f f =

0.5A A f m g =

联立以上方程得:25m/s A a = 27.5m/s B a =

(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 212

B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,

15m B h =,10m/s A V =,15m/s B V =

A 、

B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:

21()2

kA A A A A E m v m g H h =

+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ?,()A B kA kB E m m gH E E ?=+--

代入以上数据得:250J E ?=

【点睛】

(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到.

(2)根据运动性质和动能定理可得到.

(3)由能量守恒定律可求出.

3.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=?,

A 、

B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:

(1)物体从A 点到达B 点所需的时间;

(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.

【答案】(1)2s (2)5m

【解析】

【分析】

(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;

(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度.

【详解】

(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2

当物体与传送带共速时:v 0-at 1=v

解得t 1=1s 此过程中物体的位移01192

v v x t m +== 传送带的位移:214x vt m ==

当物体与传送带共速后,由于μ=0.5

解得a 2=2m/s 2

物体向上减速运动s 1=L-x 1=3m

根据位移公式:s 1=vt 2-

12

a 2t 22 解得:t 2=1 s (t 2=3 s 舍去) 则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s

(2)物体减速上滑时,传送带的位移:224s vt m ==

则物体相对传送带向下的位移211s s s m ?=-=

因物体加速上滑时相对传送带向上的位移为:125x x x m ?=-=

则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m .

【点睛】

此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.

4.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:

(1)木块刚滑上木板时,木块和木板的加速度大小;

(2)木板长度;

(3)木板在地面上运动的最大位移。

【答案】(1)5m/s 2 2m/s 2(2)14m (3)12m

【解析】

【分析】

(1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移.

【详解】

(1)由题意知,冲上木板后木块做匀减速直线运动,

初速度 v 0=14m/s ,加速度大小 212a μg 5m /s ==

木板由静止做匀加速度直线运动

即 ()212μmg μM m g Ma -+=

解得 22a 2m /s =

(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。设此过程所用时间为t

即 012v v a t v a t =-==木板木块

解得 t=2s

木块位移 2011x v t a t 18m 2木块=-

= 木板位移 221x a t 4m 2

木板== 木板长度 L x x 14m =-=木板木块

(3)木块木板达到共同速度后将一起作匀减速直线运动,分析得

2231v a t 4m /s a μg 1m /s ====共,

木板位移 23

v x 8m 2a ==,

共木板 总位移 ,

x x x 12m =+=木板木板

5.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某

处,整个系统处于静止状态.已知木板与物块间的动摩擦因数2

μ=

,且最大静摩擦力等于滑动摩擦力,重力加速度为g .

(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W .

【答案】(1)

32mg (2) 94mgh 【解析】

(1)木板与物块整体:F 0?2mg sinθ=2ma 0

对物块,有:μmg cosθ?mg sinθ═ma 0

解得:F 0=32

mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零.

对木板,有:F ?mg sinθ?μmg cosθ=m a 1

mg sinθ+μmg cosθ=ma 3

对物块,有:μmg cosθ?mg sinθ=ma 2

对木板与物块整体,有2mg sinθ=2m a 4

另有:1132212

()a t a t a t t -=+ 21243 ()a t t a t +=

222111123243111222sin h a t a t t a t a t θ

+?-+= 2111 2

W F a t =? 解得W =94

mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.

6.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,2

10/g m s =,

求:

(1)拉力撤去时,木板的速度v B ;

(2)要使物块不从木板上掉下,木板的长度L 至少为多大;

(3)在满足(2)的条件下,物块最终将停在右端多远处.

【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m

【解析】

【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置.

(1)若相对滑动,对木板有:212B F mg mg ma μμ--?=,

得:24/B a m s =

对木块有2A mg ma μ=,22/A a m s =

所以木块相对木板滑动

撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s ==

(2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-

22122B mgt mgt mv mv μμ--=-,

可得20.2t s =,v=2.4m/s

在撤掉F 之前,二者的相对位移11122B A v v x t t ?=

- 撤去F 之后,二者的相对位移22222B A v v v v x t t ++?=

- 木板长度12 1.2L x x m =?+?=

(3)获得共同速度后,对木块,有22102A mgx mv μ-=-

, 对木板有()2211202

B mg mg x mv μμ-=-

二者的相对位移3A B x x x ?=-

木块最终离木板右端的距离1230.48d x x x m =?+?-?=

【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.

7.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m

,如图(a )所示。t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s 时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1s 时间内小物块的v-t 图线如图(b )所示。木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。求

(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;

(2)木板的最小长度;

【答案】(1)0.1;0.4(2)6m

【解析】

【分析】

(1)对碰前过程由牛顿第二定律时进行分析,结合运动学公式可求得μ1;再对碰后过程分析同理可求得μ2。

(2)分别对木板和物块进行分析,由牛顿第二定律求解加速度,由运动学公式求解位移,则可求得相对位移,即可求得木板的长度;

【详解】

(1)规定向右为正方向。木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a 1,小物块和木板的质量分别为m 和M .由牛顿第二定律有:

-μ1(m+M )g=(m+M )a 1…①

由图可知,木板与墙壁碰前瞬间速度v 1=4m/s ,由运动学公式得:

v 1=v 0+at 1…②

s 0=v 0t 1+12

a 1t 12…③ 式中,t 1=1s ,s 0=4.5m 是木板碰前的位移,v 0是小木块和木板开始运动时的速度。 联立①②③式和题给条件得:μ1=0.1…④

在木板与墙壁碰撞后,木板以-v 1的初速度向左做匀变速运动,小物块以v 1的初速度向右做匀变速运动。设小物块的加速度为a 2,由牛顿第二定律有:-μ2mg=ma 2…⑤

由图可得:a 2= 2121

v v t t --…⑥ 式中,t 2=2s ,v 2=0,联立⑤⑥式和题给条件得:μ2=0.4…⑦

(2)设碰撞后木板的加速度为a 3,经过时间△t ,木板和小物块刚好具有共同速度v 3.由牛顿第二定律及运动学公式得:μ2mg+μ1(M+m )g=Ma 3…⑧

v 3=-v 1+a 3△t…⑨

v 3=v 1+a 2△t…⑩

碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为:

s 1=13 2

v v -+ △t …(11) 小物块运动的位移为:s 2=

13 2

v v +△t …(12) 小物块相对木板的位移为:△s=s 2+s 1…(13) 联立⑥⑧⑨⑩(11)(12)(13)式,并代入数值得:△s=6.0m

因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0m 。

8.传送带以恒定速率v =4m/s 顺时针运行,传送带与水平面的夹角θ=37°.现将质量m =1 kg 的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F =10 N 拉小物块,经过一段时间物块被拉到离地高为H =1.8m 的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g 取10m/s 2,已知sin37°=0.6,cos37°=0.8.求:

(1)物块在传送带上运动的时间;

(2)若在物块与传送带速度相等的瞬间撤去恒力F ,则物块还需多少时间才能脱离传送带?

【答案】(1)1s (2)

【解析】

【详解】

(1)物体在达到与传送带速度v =4 m/s 相等前,做匀加速直线运动,有:

F +μmgcos37°-mgsin37°=ma 1

解得a 1=8 m/s 2

由v =a 1t 1

得t 1=0.5s

位移x 1=a 1t 12=1m

物体与传送带达到共同速度后,因F -mgsinθ=4 N =μmgcos37°

故物体在静摩擦力作用下随传送带一起匀速上升.

位移x 2=

-x 1=2m t 2==0.5s

总时间为t =t 1+t 2=1s

(2)在物体与传送带达到同速瞬间撤去恒力F ,因为μ<tan37°,故有:

mgsin37°-μmgcos37°=ma2

解得:a2=2m/s2

假设物体能向上匀减速运动到速度为零,则

通过的位移为x==4 m>x2

故物体向上匀减速运动达到速度为零前已经滑上平台.故

x2=vt3-a2t32

解得t3=(2-)s或t3=(2+)s(舍去)

【点睛】

本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.

9.如图所示,在倾角θ=30°的固定斜面上,跨过定滑轮的轻绳一端系在小车的前端,另一端被坐在小车上的人拉住,已知人的质量m=60kg,小车的质量M=10kg,绳及滑轮的质量,滑轮与绳间的摩擦均不计,斜面对小车的摩擦阻力为小车总重的0.1倍,斜面足够长,当人以280N的力拉绳时,求:

(1)人与车一起运动的加速度的大小;

(2)人所受的摩擦力的大小和方向;

(3)某时刻人和车沿斜面向上的速度大小为3m/s,此时人松手,则人和车一起滑到最高点时所用的时间.

【答案】(1)2m/s2(2)140N(3)0.5s

【解析】

【详解】

(1)将人和车看做整体,受拉力为280×2=560N,总重为(60+10)×10=700N,受阻力为700×0.1=70N,重力平行于斜面的分力为 700×sin30°=350N,则合外力为F=560-70-350=140N

则根据牛顿第二定律,加速度为a==2m/s2

即人与车一起运动的加速度的大小为2m/s2。

(2)人与车有着共同的加速度,所以人的加速度也为2m/s2,对人受力分析,受重力、支持力、拉力和摩擦力,假设静摩擦力沿斜面向上,根据牛顿第二定律,有

ma=T+f-mgsin30°

代入数据解得:f=140N

即人受到沿斜面向上的140N的摩擦力。

(3)失去拉力后,对人和车整体受力分析,受到重力、支持力和沿斜面向下的摩擦力,根据牛顿第二定律,沿斜面的加速度为

a ′==?6m /s 2 根据速度时间公式,有

即人和车一起滑到最高点时所用的时间为0.5s 。

【点睛】 本题关键是对小车和人整体受力分析,然后根据牛顿第二定律求解出加速度,再对人受力分析,根据牛顿第二定律列式求解出车对人的摩擦力。

10.如图所示,t =0时一质量m =1 kg 的滑块A 在大小为10 N 、方向与水平向右方向成θ=37°的恒力F 作用下由静止开始在粗糙水平地面上做匀加速直线运动,t 1=2 s 时撤去力F ; t =0时在A 右方x 0=7 m 处有一滑块B 正以v 0=7 m/s 的初速度水平向右运动.已知A 与地面间的动摩擦因数μ1=0.5,B 与地面间的动摩擦因数μ2=0.1,取重力加速度大小g =10 m/s 2,sin37°=0.6,cos37°=0.8.两滑块均视为质点,求:

(1)两滑块在运动过程中速度相等的时刻;

(2)两滑块间的最小距离.

【答案】(1)3.75s (2)0.875m

【解析】

【分析】

(1)根据牛顿第二定律先求解撤去外力F 前后时A 的加速度以及B 的加速度;根据撤去F 之前时速度相等和撤去F 之后时速度相等列式求解;(2)第一次共速时两物块距离最大,第二次共速时两物块距离最小;根据位移公式求解最小值.

【详解】

(1)对物块A ,由牛顿第二定律:()11cos sin F mg F ma θμθ--=;

对物体A 撤去外力后:11

mg ma μ='; 对物体B :22a g μ=

A 撤去外力之前两物体速度相等时:102a t v a t =-,得t =1 s

A 撤去外力之后两物体速度相等时:()111

102a t a t t v a t --=-''',得t ′=3.75 s (2)第一次共速时两物块距离最大,第二次共速时两物块距离最小,则:

△x =x 0+x 2-x 1;220212x v t a t =-'' ()()22111111111122x a t a t t t a t t '''=+--- 得△x =0.875 m

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ;

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

牛顿运动定律测试题

《牛顿运动定律》测试题 一、选择题(每小题给出的四个选项中至少有一项是正确的,将正确选项填入括号内,每题4分,共48分。) 1、关于物体运动状态的改变,下列说法中正确的是() A、物体运动的速率不变,其运动状态就不变 B、物体运动的加速度不变,其运动状态就不变 C、物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D、物体的运动速度不变,我们就说它的运动状态不变 2、关于惯性的大小,下列说法中正确的是() A、质量相同的物体,在阻力相同情况下,速度大的不容易停下来,所以速度大的物体惯性大 B、上面两个物体既然质量相同,那么惯性就一定相同 C、推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大 D、在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 3、关于物体运动状态与所受外力的关系,下列说法中正确的是() A、物体受到恒定外力作用时,它的运动状态一定不变 B、物体受到的合力不为零时,一定做变速运动 C、物体受到的合外力为零时,一定处于静止状态 D、物体的运动方向就是物体受到的合外力的方向 4、物体静止于水平桌面上,则下列说法中正确的是() A、桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B、物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C、物体对桌面的压力就是物体的重力,这两个力是同一种性质的力 D、物体对桌面的压力和桌面对物体的支持力是一对平衡的力 5、下列说法正确的是() A、体操运动员双手握住单杠吊在空中不动时处于失重状态 B、蹦床运动员在空中上升和下落过程中都处于失重状态 C、举重运动员在举起杠铃后不动的那段时间内处于超重状态 D、游泳运动员仰卧在水面静止不动时处于失重状态 6、设雨滴从很高处竖直下落,所受空气阻力f和速度v成正比.则雨滴的运动情况() A、先加速后减速,最后静止 B、先加速后匀速 C、先加速后减速直至匀速 D、加速度逐渐减小到零 1,g为重力加速度。人对电梯7、一质量为m的人站在电梯中,电梯加速上升,加速大小为g 3

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

牛顿运动定律试题及答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

牛顿运动定律试题

牛顿运动定律试题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

2017-2018学年度3E试题4-1 分卷I 一、单选题 1.有关超重和失重,以下说法中正确的是( ) A.物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小 B.若空气阻力忽略不计,竖直上抛的木箱中的物体处于完全失重状态 C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程 D.站在月球表面的人处于失重状态 2.如图所示,光滑水平面上放置质量分别为m、2m 和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T.现用水平拉力F拉其中一个质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( ) A.质量为2m的木块受到四个力的作用B.当F逐渐增大到T时,轻绳刚好被拉断C.当F逐渐增大到时,轻绳还不会被拉断D.轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为 3.竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中.不计空气阻力,取向上为正方向,在下列图象中最能反映小铁球运动情况的是( )A. B. C. D. 4.某跳水运动员在3 m长的踏板上起跳,我们通过录像观察到踏板和运动员要经历如图所示的状态,其中A为无人时踏板静止点,B 为人站在踏板上静止时的平衡点,C为人在起跳过程中人和踏板运动的最低点,则下列说法中正确的是( ) A.人和踏板由C到B过程中,人向上做匀加速运动 B.人和踏板由C到A的过程中,人处于超重状态 C.人和踏板由C到A的过程中,先超重后失重 D.人在C点具有最大速度 5.为了节省能量,某商场安装了智能化的电动扶梯.无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,恰好经历了这两个过程,如图所示.那么下列说法中正确的是( ) A.顾客始终受到三个力的作用 B.顾客始终处于超重状态 C.顾客对扶梯作用力的方向先指向左下方,再竖直向下

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径

O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 3.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求

最新高考物理牛顿运动定律的应用试题经典

最新高考物理牛顿运动定律的应用试题经典 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 21 2 B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =, 15m B h =,10m/s A V =,15m/s B V = A 、 B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有: 21()2 kA A A A A E m v m g H h = +- 400J kA E =

高考物理牛顿运动定律试题(有答案和解析)及解析

高考物理牛顿运动定律试题(有答案和解析)及解析 一、高中物理精讲专题测试牛顿运动定律 1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】 由图得:0-2s 内环的加速度a= v t =0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N 联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30° 2.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求: ①物体C 做简谐运动的振幅; ②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】 ①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx =

牛顿运动定律测试题及解析

牛顿运动定律测试题及解析 1.(2020·福建六校联考)如图所示,质量分别为m 和2m 的两物体P 和Q 叠放在倾角θ=30°的固定斜面上,Q 与斜面间的动摩擦因数为μ,它们从静止开始沿斜面加速下滑,P 恰好能与Q 保持相对静止,设P 与Q 间的最大静摩擦力等于滑动摩擦力,则P 与Q 间的动摩擦因数为 ( ) A.μ4 B.μ2 C .μ D .2μ 解析:选C 对P 、Q 整体,由牛顿第二定律有(m +2m )g sin 30°-μ(m +2m )g cos 30°=(m +2m )a ,设P 与Q 之间的动摩擦因数为μ′,P 恰好与Q 保持相对静止,静摩擦力恰好达到最大,对P ,由牛顿第二定律有mg sin 30°-μ′mg cos 30°=ma ,联立解得μ′=μ,选项C 正确。 2.[多选]如图所示,水平方向的传送带顺时针转动,传送带速度大小恒为v =2 m /s ,一物块从B 端以初速度v 0=4 m/s 滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g 取10 m/s 2,下列判断正确的是 ( ) A .如果物块从A 端离开传送带,两端A 、 B 间距离可能为3 m B .如果物块从B 端离开传送带,两端A 、B 间距离可能为3 m C .如果A 、B 间距离为4 m ,物块离开传送带时的速度大小为2 m/s D .如果A 、B 间距离为4 m ,物块离开传送带时的速度大小为4 m/s 解析:选BC 物块刚开始做匀减速直线运动,若传送带足够长,由于v 0>v ,物块先向左做匀减速直线运动,后向右做匀加速直线运动,最后做匀速直线运动,物块在传送带上的加速度大小为a =μg =4 m/s 2。若物块向左匀减速从A 端离开,设物块运动到A 端速度恰好减为零,则根据0-v 02=-2ax 得x =2 m ,AB 最长为2 m ,故A 错误;若从B 端离开,只要传送带长度大于2 m 即可,故B 正确;若A 、 B 间距为4 m ,则物块向左匀减速2 m ,然后向右开始匀加速运动,物块匀加速运动的距离为x =v 2 2a =0.5 m<2 m ,物块速度达到2 m /s 后,与传送带一起向右以2 m/s 的速度运动直到离开传送带,故C 正确,D 错误。 3.(2019·昆明4月质检)如图所示,质量为M 的滑块A 放置在光滑 水平地面上,左侧面是圆心为O 、半径为R 的光滑四分之一圆弧面,当 用一水平恒力F 作用在滑块A 上时,一质量为m 的小球B (可视为质点) 在圆弧面上与A 保持相对静止,此时小球B 距轨道末端Q 的竖直高度 为H =R 3 ,重力加速度为g ,则F 的大小为( ) A.53Mg B.52Mg C.53(M +m )g D.52 (M +m )g 解析:选D 连接OB ,设OB 连续与竖直方向的夹角为θ,由几何

大学物理牛顿运动定律及其应用习题及答案

大学物理牛顿运动定律及其应用习题及答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第2章 牛顿运动定律及其应用 习题解答 1.质量为10kg 的质点在xOy 平面内运动,其运动规律为: 543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力. 解:本题属于第一类问题 543 20sin 480cos 4x x x x con t dx v t dt dv a t dt =+==-==- 5sin 45 20cos 480sin 4y y y t v t a t =-==- 1 2 800cos 4() 800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+= 2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx (k 为比例系数),求: (1)此时作用于质点的力; (2)质点由1x x =处出发,运动到2x x =处所需要的时间。 解:(1) 2()dv dx F m mk mk x N dt dt === (2) 22112111ln ln x x x x x dx dx v kx t x dt kx k k x ==?===? 3.质量为m 的质点在合力0F F kt(N )=-(0F ,k 均为常量)的作用下作直线运动,求: (1)质点的加速度; (2)质点的速度和位置(设质点开始静止于坐标原点处).

解:由牛顿第二运动定律 200201000 232000012111262v t x t F kt dv m F kt a (ms )dt m F t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-?=--=?=??--=?=?? 4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)(k 是常量)的作用下沿X 轴运动,求质点在x 处的速度。 解: 由牛顿第二运动定律 02120v x x dv dv dx dv F k /x m m mv dt dx dt dx k vdv dx v ms )mx -=-====-?=?? 5.已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律 02120v x x dv dv dx dv F k /x m m mv dt dx dt dx k vdv dx v ms )mx -=-====-?===?? 6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明 (1) t 时刻的速度为v =t m k e v )(0-; (2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0k m v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量.

相关文档
相关文档 最新文档