文档库 最新最全的文档下载
当前位置:文档库 › 学习矩阵论心得

学习矩阵论心得

学习矩阵论心得
学习矩阵论心得

学习矩阵心得

矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

从小学开始就一直喜欢数学方面的东西,喜欢数字,喜欢计算,喜欢思考,,喜欢数学中的那种严密的逻辑性。当然数学也一直是相对之下比较强的科目,高中的时候比较偏科,语文和英语都不怎么好,每次考试就靠数学来把总分给拉上来。本来上大学的时候想选应用数学这个专业的,但是各种机缘巧合使得我跨入了机械领域,成为了一名真正的工科男。

工科当然也离不开数学,许多地方都需要数学计算,大一的时候就开始上高数和线性代数,感觉刚开始的时候都不怎么难懂,越往后学就越觉得吃力,不过只要花时间还是可以学的好,毕竟在工科领域中,始终离不开数学运算,甩不掉数据分析,因此学习数学也是必不可少的过程。

因为是保送的研究生,所以在复习数学方面也就不如考进来的同学,毕竟从大一到现在很久没认真复习过相关的知识,在听赵老师讲课的时候就明显感觉吃力了,好多知识都忘了。不过为了把这门课学好,基本都会在课前预习一下相关的知识,认真把课后的作业都做完,这不仅是对自己负责,也是对以后科研工作储备相应的技能知识。上课的时候好多知识还是能听懂,但是具体到做题上,就有些不会做了,所以说学习数学必须要练习做题,人们常说:“光说不练假把式。”这用到学习数学上面也完全符合,就算你把所有的理论知识都学会了,但是不能运用又有什么用呢?所以赵老师让我们把课后所有的题都做一遍还是非常好的,这样不仅巩固了知识,也让同学们好好复习了一下,更为之后的期末考试减轻了

不少压力。因为现在好好复习了一下,掌握了大部分知识,后期就只用花少许时间巩固一下就可以了。

当然,赵老师的讲课风格我也挺喜欢的,讲授知识的时候非常认真,知道有一部分同学本科的时候没学过数学,特意把简单的知识点讲给大家听,为不懂的同学补充,为学过的同学巩固。讲课之余还不时讲点学习数学的方法,还有补充其他方面的知识,这样就能达到劳逸结合的效果,使得同学们能更加深刻的的记住所学知识。

虽然短短的六讲矩阵分析的课程已经结束,但是这并不是学习的终点,以后需要用到的矩阵知识估计也不止这些,在今后的学习过程中,遇到不懂的相关问题,还望赵老师能为我们传道、授业、解惑,同时也感谢赵老师对我们的辛勤付出。

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

现代控制理论心得

现代控制理论课程心得 摘要:从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,本人选择了最为感兴趣的几个知识点进行分析,并谈一下对于学习这么课程的一点心得体会。 关键词:现代控制理论;学习策略;学习方法; 学习心得在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合, 各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社 会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的主要课程。从经典控制论发展到现代控制论,是人类对控制技术认识上的一次 飞跃。经典控制论限于处理单变量的线性定常问题,在数学上可归结为单变 量的常系数微分方程问题。现代控制论面向多变量控制系统的问题,它是以 矩阵论和线性空间理论作为主要数学工具,并用计算机来实现。现代控制论 来源于工程实际,具有明显的工程技术特点,但它又属于系统论范畴。系统 论的特点是在数学描述的基础上,充分利用现有的强有力的数学工具,对系 统进行分析和综合。系统特性的度量,即表现为状态;系统状态的变化,即为动态过程。状态和过程在自然界、社会和思维中普遍存在。现代控制论是在 引入状态和状态空间的概念基础上发展起来的。状态和状态空间早在古典动力学中得到了广泛的应用。在5O年代Mesarovic教授曾提出“结构不确定性原理” ,指出经典理论对于多变量系统不能确切描述系统的内在结构。后来采用 状态变量的描述方法,才完全表达出系统的动力学性质。6O年代初,卡尔曼(Kalman) 从外界输入对状态的控制能力以及输出对状态的反映能力这两方面提出能控制性和能观性的概念。这些概念深入揭示了系统的内在特性。实际上,现代控制论中所研究的许多基本问题,诸如最优控制和最佳估计等,都是以能能控性和能观性作为“解”的存在条件的。现代控制理论是一门工程理论性强的 课程,在自学这门课程时,深感概念抽象,不易掌握;学完之后,从工程实际抽象出一个控制论方面的课题很难,如何用现代控制论的基本原理去解决生产实际问题则更困难,这是一个比较突出的矛盾。对现代控制理论来说,首先遇到的问题是将实际系统抽象为数学模型,有了数学模型,才能有效地去研究系统的各个方面。许多机电系统、经济系统、管理系统常可近似概括为线。

环境工程专业硕士研究生培养方案

环境工程专业硕士研究生培养方案 (2018年修订) 专业代码:083002 一、培养目标 1. 具有过硬的政治理论素养,坚定正确的政治方向,拥护中国共产党的领导;坚持四项基本原则,热爱祖国、遵纪守法、坚持真理、献身科学、学风正派、身心健康,有良好的道德品质和团结合作精神。 2. 具有正确的学术思想和良好的科学素养,了解环境科学的发展进程与趋势,勇于探索、创新;具有高度的环境意识和环境保护事业赋予的责任感,能够面向国际环境科学研究的前沿,为社会主义现代化建设服务。 3. 具备环境工程方面扎实的基础知识及解决实际环境问题的技能和能力;熟悉本专业发展前沿和学术动态;具备从事高等学校、科研机构、政府部门、环保企业单位的教学、研究及管理工作的能力。具备环境工程设计、施工和运营管理的能力。 4. 具有从事本学科科研领域研究方案设计、环境污染防治与修复原理技术研究及成果转化的能力,能够解决实际环境问题。 二、研究方向 本专业主要研究方向: 1.水污染控制技术 2.大气污染控制技术 3.固体废物资源化 4.土壤污染修复技术 三、学习年限 基本学习年限为三年。硕士学位必修课和选修课的学习需用一年时间完成,至少获得34学分(其中必修课不少于23学分);另约二年时间进行科学研究,完成硕士学位论文并通过答辩。如果研究生在三年中尚未完成学业,经批准最多可延长三年。 四、课程设置 见课程设置表。 五、课程学习

研究生的必修课(A、B、C)均为考试课程,选修课(D)可根据情况采取考试或考查的方式进行考核。考试课程按百分制评定成绩,学位课75分为合格;考查课程按优秀(90—100分)、良好(80—89分)、中等(70—79分)、及格(60—69分)和不及格(60分以下)五级记分制评定成绩。考核成绩由主讲教师评定并签名后交学院研究生教学秘书,登记在《研究生成绩登记表》中。 六、学位论文 学位论文的选题应体现本学科领域的前沿性和先进性,要与导师的科研任务相结合,符合国家社会经济发展的需求。研究生须在导师指导下,通过调查研究和查阅文献,确定自己的学位论文题目及研究提纲。 学位论文工作必须在导师的指导下,由研究生独立完成,应注意培养研究生的文献查阅能力、实验能力、数据分析与处理能力等。学位论文一般应包括:中、外文摘要、引言和评述、主要研究内容和结果的讨论,以及参考文献和必要的附录。学位论文实行盲审制度,研究生必须在答辩前一个半月递交毕业论文。盲审论文送审两份,若送审评议结果有一份不合格,经院学位委员会确认达不到学位论文要求,学生将延期一年再递交论文盲审通过后答辩;如果评议结果中有修改后再送审要求,修改后再送审,通过后方可答辩。学位论文答辩委员会由具有高级专业技术职务的专家5-7人组成,答辩委员会主席由校外专家担任,导师不参加学位论文答辩委员会。 七、培养方式与方法 硕士生的培养采取系统理论学习、进行科学研究和参加实践活动相结合的方法。既要使研究生牢固掌握基础理论和专门知识,又要培养他们具有从事科学研究、高校教学或独立担负专门业务工作的能力。在指导方式上采取导师个别指导和院系集体培养相结合,既要发挥导师的指导作用,又要善于利用院系集体培养的优势。 导师应教书育人,为人师表,全面关心研究生的成长,深入了解研究生各方面的情况,对研究生的困难应及时给予帮助或向有关部门反映。对研究生的学习和科研应严格要求,根据他们的原有基础和具体情况制订相应的培养措施,着重培养他们的自学能力和独立工作能力,并培养他们实事求是的科学态度和勤奋严谨的工作作风。 研究生应积极参加院系组织的学术讲座、学术报告和学术讨论会等有关学术活动(不少于10次,且不少于全部学术活动总数的60%),扩大自己的知识面和提高自己的学术水平。每次学术报告的参加者要有记录。院系要为研究生定期安排学生之间的讨论会和报告会,使他们在实践中得到锻炼并提高自身的表达能力和写作能力。

“权力”矩阵论

“权力”矩阵论 后现代所推崇的物理化的场域概念为我们带来了对权力的吸噬性和复杂性的认识。然而场域的混沌性使我们无法明晰权力运作的真正机制,也难以找到遏制权力的有效途径。权力的矩阵原理开启了权力布控研究的新视角,矩阵的行列图式、运算和秩、逆性质解密了权力的布控、集发、繁殖和归位等多种形态与演变机要。各种力量在简约的纵横对峙中演绎了本性的多维关联,并展现了现代性病灶的多种症候。 标签:现代性;权力;矩阵;消解 何谓权力?弗洛姆在《逃避自由》中说:“‘权力’这个词包含两重意义:其一是指拥有统治他人的力量,即具有统治他人的权势;其二是具有干事情的力量,即干事情的能力。后者不含统治的意义。如果一定要说后者也含统治的意义那只是指能力意义而已。”正因为统治与潜力的双重意义,带来了权力运作图式的诡异。 一、矩阵的行与列:权力的类型与脉系 亚里士多德在《政治学》中说,权力作为一种统治,具有三种类型。一种是主人对奴仆的统治,主人总是尽量多地考虑自己的利益,即使考虑奴隶的利益,也是怕奴隶的死去带来自我利益的丧失;第二种是家长对于妻子和子女的统治,主要是考虑被统治者的利益,兼顾自己的利益;第三种是城邦宪政统治,这种统治是依据平等原则,轮流担任公共管理的职司。后者应该是一种合乎自然的制度,人们设想在自己担任这种义务的时候,既然同等地照顾他人利益,那么他人执政也一定会照顾我的利益。但是,亚里士多德已发现,实际情况不是这样,这些公职人员已被病魔所缠,“看到这些人对权力的狂热,不能不想起这些情况实际是病态”。 现代性使权力成为商品早已不是什么秘密,它不仅可以充当一般等价物,而且它的功能已经超出货币的范围。权力作为一种特殊商品的资本具有多种形式,不仅是传统意义上的经济资本和政治资本,更广泛地具有话语资本、社会资本、身体资本、荣誉资本和象征资本等,可以说一切社会资源化为一种权力资本在社会链中运行和发挥作用,其中最基本的运作形式就是进行交换和增值。 知识成为一种权力,在福柯看来是现代性引起的制度化的结果。“科学之被制度化为权力,是通过大学制度,通过实验室、科学试验这类抑制性的设施”。反过来,权力化为知识,在现代性社会里更是触目即是。福柯指出了现代性把权力和真理等同起来,权力赋予知识的合法性。事实上,马克思早在《黑格尔法哲学批判》中就说道:“考试——‘官职’和‘个人’之间的联系,市民社会的知识和国家的知识之间的客观联系,——无非是官僚政治对知识的洗礼,是官方对世俗知识变体为神圣知识的确认。”

学习矩阵的心得

矩阵理论学习报告 矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特首先使用矩阵一词。1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。 通过这次在朱善华老师的课程上我了解了很多获益匪浅,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵等。这些内容与方法是许多应用学科的重要工具。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的,而矩阵本身所具有的性质是依赖于元素的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等一系列理论上的问题,就都可以得到彻底的解决。 认识总是随着时间和已有知识的积累在不断修正,我对矩阵论的认识也大致如此。从一开始的认为只能解线性方程,到如今发现它的几乎无所不能,我想我收获到的不仅仅是这种简单的知识,更是一种世界观,那就是对所有的事物都不要轻易地下定论。同时,当我们知道的越多,就会发现未知的东西越多。作为一门已经发展了一百多年的学科,我对矩阵论的认识只是沧海一粟,唯有终身学习,不断探索,才可能真正领悟到其中之真谛,我亦将为此付诸行动。 控制理论与控制工程 肖雪峰

心得体会 有关学数学的心得3篇

有关学数学的心得3篇 数学思想方法是数学知识的精髓。中学阶段进行数学思想方法的教学是21世纪学校培养具有创新精神与实践能力的人才的重要手段。下面是xxx为大家准备的有关学数学的心得,希望大家喜欢! 有关学数学的心得范文1 提升小学数学教师学科素养心得体会 有效教学是一线教师普遍关注的战略性问题。随着新一轮基础教育课程改革的不断深入,新《课标》教材的实施,特别是有效教学的不断尝试和实践,对教师的专业素养提出了更高要求,实践经验告诉我们,教师的专业素养的高低直接影响到有效教学的质量。我的学习后的体会如下: 1、要清晰了解数学教材呈现的知识结构。作为一名小学数学教师,至少要对小学六年所有的数学知识以及每一年级学生要达到怎样的水平有清晰的了解。只有这样,我们才能不仅仅局限在自己经常任教的那一个或几个年级,而能用发展的眼光看待自己的教学,为学生的进一步学习打下扎实的基础。而且,只有对所教的学科知识体系有了深入的了解,才能设身处地地用学生的眼光看待教材,使自己的教学真正切合学生的实际需要,促进学生的有效发展。 2、要广泛地阅读小学数学教育教学书刊。读书是提高人素养的一个重要方法,作为一名新形势下的小学数学教师应该多搜集和阅读有关的小学数学教育教学方面的书刊。如课程论、小学数学教学论、

小学教育论、小学数学教育、小学数学教师等广大教师会有很大帮助的。也许我们会觉得有的专业知识离我们太远,看不懂或听不懂。其实,看得多了自然也就理解了。所以,就应该积极主动地去探索未知的知识。 3、要研究一些教学案例。案例是一种理论与实践,培养研究者反思案例是和团队合作能力的研究方法,普通性重于特殊性之中,并通过特殊性表现出来的。案例具有典型性和具体意义。通过对一些案例的分析,可以提高了我的教学能力。所以请教师们要留意教学案例,研究教学案例。 4、要积极参加各科培训活动。职前教育是我们教育教学的重要基础,但我们要不断的学习,特别是参加培养学习。对于培训机构或者是学科开展的一些培训活动。如新课程培训、校本研究培训、网络研究培训、教材培训等,以提升我们的专业素养。 有关学数学的心得范文2 《工程数学》读书心得 《工程数学》矩阵论部分的课程已经结束,很高兴能够得到信息系主任朱老师的悉心讲授与耐心指导。 应用矩阵的理论和方法解决工程技术和社会经济领域中的实际问题以越来越普遍,矩阵论已经成为最有实用价值的数学分支之一。作为一个工科学生来说,矩阵论变的尤为重要,许多线性或非线性的问题都要用到矩阵论的知识,象我们的专业基础课《弹性力学》、《有限元》。

矩阵论知识点

矩阵论知识点 第一章:矩阵的相似变换 1. 特征值,特征向量 特殊的:Hermite矩阵的特征值,特征向量 2. 相似对角化 充要条件:(1)(2)(3)(4) 3. Jordan标准形 计算:求相似矩阵P及Jordan标准形 求Jordan标准形的方法: 特征向量法,初等变换法,初等因子法 4. Hamilton-Cayley定理 应用:待定系数法求解矩阵函数值 计算:最小多项式 5. 向量的内积 6. 酉相似下的标准形 特殊的:A酉相似于对角阵当且仅当A为正规阵。

第二章:范数理论 1. 向量的范数 计算:1,2,∞范数 2. 矩阵的范数 计算:1,2,∞,∞m , F 范数,谱半径 3. 谱半径、条件数 第三章:矩阵分析 1. 矩阵序列 2. 矩阵级数 特别的:矩阵幂级数 计算:判别矩阵幂级数敛散性,计算收敛的幂级数的和 3. 矩阵函数 计算:矩阵函数值,At e ,Jordan 矩阵的函数值 4. 矩阵的微分和积分 计算:函数矩阵,数量函数对向量的导数 如,dt dA(t),dt dA(t),?? ???==)()(X R AX X X X X f T T T αα等 5. 应用 计算:求解一阶常系数线性微分方程组

1. 矩阵的三角分解 计算:Crout 分解,Doolittle 分解,Choleskey 分解 2. 矩阵的QR 分解 计算:Householder 矩阵,Givens 矩阵, 矩阵的QR 分解或者把向量化为与1e 同方向 3. 矩阵的满秩分解 计算:满秩分解,奇异值分解 4. 矩阵的奇异值分解 第五章:特征值的估计与表示 1. 特征值界的估计 计算:模的上界,实部、虚部的上界 2. 特征值的包含区域 计算:Gerschgorin 定理隔离矩阵的特征值 3. Hermite 矩阵特征值的表示 计算:矩阵的Rayleigh 商的极值 4. 广义特征值问题 计算:BX AX λ=转化为一般特征值问题

研究生矩阵论课后习题答案(全)习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1Λ=m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1,Λ=, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ΛΛ,,,,21m S S S , 其中m m m A c A c c S +++=Λ10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21Λ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1Λ=, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a ΛΛΛ2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a ΛΛΛ21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A ΛΛΛ2121) ()(2)(1)()1(τ,

矩阵论

这个帖子对于矩阵论学的不够好的同学很有帮助,对学的好的人也有益处。具体我就不说了,看完自有体会。如果觉得好,就赞一个吧!学习过线性代数的朋友也可以看看,也能从中受益的。 帖子的内容是对矩阵论的一个串讲,个人觉得还不错,能够帮助梳理知识点。加深理解。 矩阵论主要研究的是线性空间以及在线性空间中的一些操作,主要是线性变换。当然书中主要是针对有限维的情况来讨论的,这样的话就可以用向量和矩阵来表示线性空间和线性变换,同其他的数学形式一样,矩阵是一种表达形式(notation),而这一方面可以简洁地表达出我们平时遇到的如线性方程和协方差关系的协方差矩阵等,另一方面又给进一步的研究或者问题的简化提供了一个平台。如特征值分析、稳定性分析就对应着诸如统计分布和系统稳定性等实际问题。而一系列的分解则可以方便方程的数值计算。作为矩阵论的学习,我们需要了解具体的一些计算究竟是怎么算的,但更关键的是要知道各个概念和方法的实际意义,各个概念之间的关系。 首先介绍的是线性空间,对于线性空间中的任意一个向量的表示由基(相当于度量单位)和坐标(相当于具体的尺度),基既然作为度量标准了,当然要求对每一个向量都适用,同时这个标准本身也应该尽可能的简洁,那么就得到了基定义的两点约束1、基的组成向量线性无关;2、线性空间中的任一个向量都可以由基的线性表示。 基作为一种“计量标准”,当然可能会存在多种形式,只要满足上面的两点条件,因而就有必要解决不同的度量标准之间的转换关系,从而得到过渡矩阵的概念,同时可以使用这种转换关系(过渡矩阵)去完成度量量(坐标)之间的转换。 在完成了线性空间这一对象的认识和表达之后,下面需要研究对象和对象之间的关系。这里主要是线性变换,线性变换针对于实际对象主要完成类似于旋转和尺度变换方面的操作,而这种操作也牵涉到表达的问题。为了保持与空间的一致性,我们也同样是在在特定的基下来表示,从而线性变换就具体化为一个变换矩阵,并且,在不同的基下对应的变换矩阵当然也不相同,这里的不同的变换矩阵的关系就是相似的概念。 到此,我们完成了空间中向量的表示和线性变换的矩阵表达。这里涉及了基、坐标、过渡矩阵、变换矩阵、相似矩阵这几个重要的概念。上面算是内涵上的认识,下面我们需要知道线性空间里究竟有些什么东西,它是如何组成的,各个组成成分之间的关系,也就是空间的结构性方面的东西。 首先认识子空间(空间的组成部分),当然既然也是空间,也就要满足空间的加法和数乘的封闭性,要满足那八条定律。后者可以由父空间保证,前面的就要子空间自身素质了。同时要看子空间之间的并、交、直和运算和相应的秩的关系。这里提到了维数,就要多说几句了,空间中的元素往往是连续过渡的,但是对于有限空间而言还有离散的性质,那就是维数,我称其为“不伸则已,一伸则增一”,从这也就说明了为什么可以用若干个子空间的直和可以等价于原线性空间。 子空间的形式很多,有生成子空间、值域空间、零空间和特征子空间等等,我们重点看看特征子空间。一个空间可以划分为若干个特征子空间的直和形式,而每个特征子空间的共同特征就是具有相同的特征值,范围就是对应着这个特征值的若干特征向量的生成子空间。

一位金融专业的学长的心得与个人经验

把数学学好。金融学到高处就是数学,没强大的数学功底就没法在金融界发展了。数学分析,高等代数(矩阵论有时间也最好读读),概率(这个超级重要,以后你就明白了),数理统计(要踏踏实实学会几种经典统计分析软件中的至少一种),随机过程(重中之重,学之前需要有一定基础)等等。 ------------------------------------------------------------------------ 多读些国外经典教材(宏微观就免了吧……),投资学、固定收益证券、金融市场、期货、衍生品 还有一些制度经济学方面的。在大学就是读书的最好时间,等你工作了就很难有时间也很难有那份心去读书了。少放些时间在网络、游戏、学生活动和谈情说爱上。金融系的学生既然是最高的分数进来的,就一定要有成为国家栋梁的远大抱负和切实努力! 3.安排的课程实际上很轻松,老师讲授的水平也是参差不齐,考试更是害人不浅。我想大家都明白,金融系的考试基本都是给个范围会去背背就完事了,只要你脑子好使,即使你一个学期没上过课也不会担心挂掉。这其实是危害巨大的。在学校学习真的是为了你自己,你根本不应该去care分数得了多少,而是应当问你自己的内心,你对这门学问究竟了解了多少,掌握了多少?我一直认为,如果你的兴趣不在这里,那最好不要因为听说金融以后工资高而盲目地读金融,请你去自己喜欢的专业读你喜欢的课程。因为人就活一辈子,你必须为了自己而去选择生活的每一步。如果你现在选择了你没什么兴趣的专业,就算以后你会有些丰厚的收入,但你会不快乐一辈子,明白吗?一定要想明白自己的追求和生命中对自己最重要的东西究竟是什么,切记! -------------------------------------------------------------------------------- 说远了,拉回来。如果你凑巧真的喜欢学习金融这门学问(据我所知,只有大约20%的金融学学生真的热爱这门学科,所以用了凑巧这一词),那么,大学里对你更重要的不是课堂,而是自己读书。首先,至少开学最初的五周,请你不要翘课,每节你选的课都去认认真真地听。之后选出其中的比较次的课以后直接翘掉,也不要睡懒觉或浪费这个时间,去读书!你问我读什么书?我告诉你,你如果能把数学的那些书和主要的专业国外经典教材认认真真地读完并且读懂,就一定会花你至少两年的时间。所以不要去想时间还大把可以浪费,可以再BBS上多灌点水升点经验值或者和男女朋友打情骂俏,一定要塌下心来读书!大学的感情和玩乐在毕业后一年之内绝对全部烟消云散,而唯有你读过的书,从中领悟的思考方式,以及眼界和心态,会影响你今后一生!读书不要好高骛远,要首先用必要的一段时间去了解你要面对的这门学科是多么博大精深,然后给自己拟出一份至少一年的学习计划。怎么拟?把书买来或借来,看着你面前那堆积如山花了大把银子的书你就知道该去干什么了。学习必须从最基础的着手,吃透了基础再往上走一层。经典巨著只要肯出钱谁都能从书店买回来,但为什么牛人总是少数?原因就在于绝大部分人买书回来之后就已经实现了满足感,而很少有人真正去细细研读。 数学,先把数分、高代、概率、数理统计用半年到一年的时间吃透,第二年在此基础上读随机过程、矩阵论。然后以后该看什么就要取决于你了。在这个时候你已经明白了自己还需要些什么方面的知识,可以缩小范围,深入钻研,书并不是读得越多越好的,关键在专。飞利浦什么都做,什么都做不精。IBM只做大机器,做的让全世界都只能赞。 -------------------------------------------------------------------------------- 金融方面,最开始首先把经济学基础学好了。

《矩阵论》教学大纲

《矩阵论》教学大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《矩阵论》课程教学大纲 一、课程性质与目标 (一)课程性质 《矩阵论》是数学专业的选修课,是学习经典数学的基础,又是一门最具有实用价值的数学理论。它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。 (二)课程目标 通过本课程的学习,使学生掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质,了解近代矩阵论中十分活跃的若干分支,为今后在应用数学,计算数学专业的进一步学习和研究打下扎实的基础。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 把握理论、技能相结合的基本原则。 2、课程基本内容 本课程主要介绍了线性空间、线性映射、酉空间、欧氏空间、若当标准型、矩阵的分解、矩阵的分析、矩阵函数和广义逆矩阵等基本内容。 (二)课程教学 通过本课程中基本概念和基本定理的阐述和论证,培养高年级本科生的抽象思维与逻辑推理能力,提高高年级本科生的数学素养。 三、课程实施与评价 (一)学时、学分 本课程总学时为54学时。学生修完本课程全部内容,成绩合格,可获3学分。(二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 配置与教学内容相关的图书、期刊、音像资料等。 (三)课程评价 1、对学生能力的评价 逻辑推理能力,包括逻辑思维的合理性和严密性。 2、采取教师评价为主的评价方法。 3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。课程结束时评出成绩,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。 四、课程基本要求 第一章线性空间和线性变换 基本内容:线性空间线性变换 基本要求: (1)理解线性空间有关内容。

现代控制理论课程学习心得.

现代控制理论基础课程总结 学院:__机械与车辆学院_ 学号:____2120120536___ 姓名:_____王文硕______ 专业:___交通运输工程__ 《现代控制理论》学习心得 摘要:从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,本人选择了最为感兴趣的几个知识点进行分析,并谈一下对于学习这么课程的一点心得体会。 关键词:现代控制理论;学习策略;学习方法;学习心得 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的选修课和研究生的学位课。 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。经典控制论限于处理单变量的线性定常问题,在数学上可归结为单变量的常系数微分方程问题。现代控制论面向多变量控制系统的问题,它是以矩阵论和线性空间理论作为主要数学工具,并用计算机来实现。现代控制论来源于工程实际,具有明显的工程技术特点,但它又属于系统论范畴。系统论的特点是在数学描述的基础上,充分利用现有的强有力的数学工具,对系统进行分析和综合。系统特性的度量,即表现为状态;系统状态的变化,即为动态过程。状态和过程在自然界、社会和思维中普遍存在。现代控制论是在引入状态和状态空间的概念基础上发展起来的。状态和状态空间早在古典动力学中得到了广泛的应用。在5O年代Mesarovic教授曾提出“结构不确定

性原理”,指出经典理论对于多变量系统不能确切描述系统的内在结构。后来采用状态变量的描述方法,才完全表达出系统的动力学性质。6O年代初,卡尔曼(Kalman从外界输入对状态的控制能力以及输出对状态的反映能力这两方面提出能控制性和能观性的概念。这些概念深入揭示了系统的内在特性。实际上,现代控制论中所研究的许多基本问题,诸如最优控制和最佳估计等,都是以能能控性和能观性作为“解”的存在条件的。 现代控制理论是一门工程理论性强的课程,在自学这门课程时,深感概念抽象,不易掌握;学完之后,从工程实际抽象出一个控制论方面的课题很难,如何用现代控制论的基本原理去解决生产实际问题则更困难,这是一个比较突出的矛盾。 对现代控制理论来说,首先遇到的问题是将实际系统抽象为数学模型,有了数学模型,才能有效地去研究系统的各个方面。许多机电系统、经济系统、管理系统常可近似概括为线 性系统。线性系统和力学中质点系统一样,是一个理想模型,理想模型是研究复杂事物的主要方法,是对客观事物及其变化过程的一种近似反映。现代控制论从自然和社会现象中抽象出的理想模型,用状态空间方法表示,再作理论上的探讨。 线性系统理论是一门严谨的科学。抽象严谨是其本质的属性,一旦体会到数学抽象的丰富含义,再不会感到枯燥乏味。线性系统理论是建立在线性空间的基础上的,它大量使用矩阵论中深奥的内容,比如线性变换、子空间等,是分析中最常用的核心的内容,要深入理解,才能体会其物理意义。比如,状态空间分解就是一种数学分析方法。在控制论中把实际系统按能控性和能观性化分成四个子空间,它们有着确切的物理概念。线性变换的核心思想在于:线性系统的基本性质(如能控性、能观性、极点、传递函数等在线性变换下都不改变,从而可将系统化为特定形式,使问题的研究变得简单而透彻。 在学习现代控制理论教材时,发现不少“引而未发”的问题。由于作者有丰富的教学经验与学术造诣,能深入浅出阐述问题,发人深省。因此,通过自己反复阅读教材,就能理解这些内容。比如,在探讨线性系统的传递函数的零极点相消时,如果潜伏着

运筹学学习心得体会

与生活息息相关的运筹学 ——《运筹学》学习心得中国古代著名的例子“田忌赛马”,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最优的方案,这就是对运筹学中博弈论的运用,那么运筹学与我们的生活息息相关。 自古以来,运筹学就无处不在。小到菜市场买菜的大妈,大到做军事部署的国家元首,都会用到运筹学。当我们为选择去哪里旅游而犹豫不决,比对了很久终于找到一条最优路线时;当我们考试之前想临时抱佛脚,用最短时间复习而考到尽量高的分数时……无形之中,我们已经在运用运筹学不断的解决我们生活中的问题了。 运筹学是一应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。 运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法。“运筹”一词,本指运用算筹,后引伸为谋略之意。“运筹”最早出自于汉高祖刘邦对张良的评价:“运筹帷幄之中,决胜千里之外。” 但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。二次大战时,英军首次邀请科学家参与军事行动研究(operations research, 在英国又称operational research或OR/MS, management science),战后这些研究结果用于其他用途,这是现代“运筹学”的起源。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。

学习矩阵论心得

学习矩阵心得 矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 从小学开始就一直喜欢数学方面的东西,喜欢数字,喜欢计算,喜欢思考,,喜欢数学中的那种严密的逻辑性。当然数学也一直是相对之下比较强的科目,高中的时候比较偏科,语文和英语都不怎么好,每次考试就靠数学来把总分给拉上来。本来上大学的时候想选应用数学这个专业的,但是各种机缘巧合使得我跨入了机械领域,成为了一名真正的工科男。 工科当然也离不开数学,许多地方都需要数学计算,大一的时候就开始上高数和线性代数,感觉刚开始的时候都不怎么难懂,越往后学就越觉得吃力,不过只要花时间还是可以学的好,毕竟在工科领域中,始终离不开数学运算,甩不掉数据分析,因此学习数学也是必不可少的过程。 因为是保送的研究生,所以在复习数学方面也就不如考进来的同学,毕竟从大一到现在很久没认真复习过相关的知识,在听赵老师讲课的时候就明显感觉吃力了,好多知识都忘了。不过为了把这门课学好,基本都会在课前预习一下相关的知识,认真把课后的作业都做完,这不仅是对自己负责,也是对以后科研工作储备相应的技能知识。上课的时候好多知识还是能听懂,但是具体到做题上,就有些不会做了,所以说学习数学必须要练习做题,人们常说:“光说不练假把式。”这用到学习数学上面也完全符合,就算你把所有的理论知识都学会了,但是不能运用又有什么用呢?所以赵老师让我们把课后所有的题都做一遍还是非常好的,这样不仅巩固了知识,也让同学们好好复习了一下,更为之后的期末考试减轻了

注册电气工程师基础考试心得

供配电基础考试过了好几年了,我印象也不是太深,我能想到的写了一点儿,希望能有用。 一、考试用书 考试用书就三本,公共基础、专业基础和真题,花钱不多,建议大家在淘宝上买正版。 有必要的话,可能还要把本科时学过的高等数学、电路、电力系统分析、电磁场、工程力学等书籍找回来看一下(这些书我都有,可以限时出租^_^)。 二、上午公共基础复习建议 复习建议:上午的公共基础书得看三遍,第一遍看知识点、做例题,不用翻对应的大学教材,没有这个必要。第二遍看错的、不熟悉的。考前一个月再翻一遍。一遍都没看完就上考场时万万不能的。依次看高等数学、普通物理,普通化学,流体力学,工程经济,法律法规。 首先高等数学(含矩阵论、概率论)是上午考试的重点,一定要首先把这个攻克,单纯看教程不行的话,最好把大学教材找出来看一下。 电子电工技术,我们搞这个专业的,建议还是认真看一下,这个分丢了不划算。 物理、化学主要是高中的知识,不过也要花点儿时间学习一下。 流体力学、材料力学基本看不懂,直接放弃算了。 法律法规、工程经济,看一下教程,能看懂最好,看不懂就算了,可以放弃。 三、下午专业基础复习建议 电路是本专业的基础,一般题目也不难,每个人都该拿到分。 电磁场比较难,没时间看的可以放弃其余,只看重点。 模电、数电,大学学得好的话,基本不成问题。 电气工程基础是下午的重点,重点是潮流计算、短路计算等。特别是短路计算,每年至少有三四个题目,其实并不难,重点是把原理搞懂,不行的话就把本科的教材拿出来学习一下。 真题很重要,建议边复习边做真题,不要留得考试前半个月再做,考试前再把真题仔细看两遍。

基础考试的建议复习时间为4个月左右,公共基础和专业基础各两个月时间。基础考试都是选择题,不需要写计算过程,会做的就先做,不会做的就随便选一个,碰运气了。 基础的总分是240,一般分数线是132,上午的重点学科是高数、电子电工技术、物理、化学等,下午的重点学科是电路、模电数电、电力系统分析,不求面面俱到,但求重点学科一定要拿下。只要自己会做其中的100分,加上自己的运气蒙对的题目,132分不是问题。 内心强大比什么都重要,你要照顾好自己,承认自己的平凡,但是努力向好的方向发展,可以平静面对生活,安然的听从自己内心的感受,不受其他影响,你可以迷茫,请不要虚度。

相关文档