文档库 最新最全的文档下载
当前位置:文档库 › 太阳能供电系统

太阳能供电系统

太阳能供电系统
太阳能供电系统

太阳能供电系统

摘要:近年来,能源需求不断增长,能源越来越紧张。太阳能资源具有储量大,经济环保等优点,具有很大的开发潜能,重新受到人类的重视。本文利用太阳能板和蓄电池,通过对太阳能板和蓄电池工作状态的控制,搭建了一套具有稳定输出电压的小功率太阳能供电系统。文章对具体的实现方案和最终的成果进行了介绍和说明。

关键词:太阳能板;蓄电池;采样控制

一、项目分析

1、项目任务分析

利用太阳能板和蓄电池搭建一套直流供电系统,该供电系统能够提供±12V,0.2A和5V,1A的功率输出。当阳光充足时,太阳能板直接供电并给蓄电池充电;当阳光不足时,由蓄电池供电。本项目的目的在于了解太阳能供电系统的工作原理,掌握小功率太阳能供电系统的设计方法。

任务要求判断阳光的强弱,根据阳光的情况确定系统的功率源是太阳能板或者蓄电池,并进行实时切换。另外,要求系统提供稳定的输出电压和一定的输出功率。因此,任务的要点有以下几方面:

1)光照强弱的判断:太阳能板将光能转换为电能,光照的强弱极大地影响着其输出功率。

粗略地讲,太阳能板的输出功率随光照变弱而逐渐减小。在光照较弱或者完全无光时,太阳能板甚至会成为负载。在光照较弱,太阳能板无法提供足够的输出功率时,为保证系统的功率输出能力,需要将系统的功率源由太阳能板切换为蓄电池。在光照充足时,则需要再切换回来。因此如何准确及时地判断光照强弱对任务至关重要。

2)稳定的电压输出:作为供电电源,稳定的电压输出是一项基本要求;对蓄电池进行恒压

充电时也需要保持电压的稳定。而太阳能板的输出电压会随着负载和光照情况发生变化。

所以需要对太阳能板的输出电压进行稳压处理,保证输出电压的稳定。另一方面,系统有多电压等级输出,需要对输出电压进行电压等级的变换。

3)一定的输出功率:供电系统要能够提供±12V,0.2A和5V,1A的功率输出,合计约为

10W。太阳能板的最大输出功率受光照强弱的影响,光照减弱时,最大输出功率减小。

一定的光照下,伏安特性和输出功率受负载大小的影响,呈现较为复杂的特性(详细的叙述见后文)。所以需要采用一定的措施保证太阳能板工作在合理的伏安特性区间,保证足够的输出功率。

2、文献阅读

在项目开题阶段,我们通过网络查找并阅读了一定的文献,了解了太阳能板和蓄电池的特性,并对当前太阳能电源的发展应用情况做了调研。主要阅读的文献如下:

[1] 吴庭俊.太阳能电池的特性研究及应用设计.华南理工大学. 2014

[2] 胡恒生. 蓄电池充电方法的分析和探讨.电源技术应用,2009,12(8)

[3] 李加念.基于BQ24650的太阳能蓄电池智能充放电控制设计.安徽农业科学,2014,42(14)

[4] 王远. 太阳能电池及其应用技术研究.华中科技大学. 2006

《太阳能电池的特性研究及应用设计》一文首先介绍了太阳能电池的结构、原理、基本特性和太阳能发电的发展与应用。随后进行了太阳能电池特性的研究,通过实验测定了太阳能电池的暗伏安特性,开路电压和短路电流与光强的关系,太阳能电池的输出特性以及环境因素对太阳能特性的影响。最后介绍了太阳能电池自动跟踪系统的设计。

《蓄电池充电方法的分析和探讨》一文主要介绍了蓄电池的充电方法。文章首先叙述了蓄电池常用的充电方法,包括恒定电流充电法、恒定电压充电法、有固定电阻的恒定电压充电法、阶段等流充电法和浮充电法,并说明了每种充电方法的优劣。随后介绍了蓄电池的快速充电方法,包括定电流定周期快速充电法、定电流定出气率脉冲充电放电去极化快速充电法、定电流定电压脉冲充电放电去极化快速充电法、定电流提升电压脉冲充电放电去极化快速充电法、定电压定频率脉冲充电放电去极化快速充电法、端电压和充放电频率选择脉冲充电放电去极化快速充电法、适应全过程去极化脉冲充电放电去极化快速充电法等。最后探讨了两种较为理想的充电方法:三阶段充电法和定电流定电压快速充电法。

《基于BQ24650的太阳能蓄电池智能充放电控制设计》一文主要介绍了一种太阳能蓄电池智能充放电控制器。该控制器利用TI 公司的B24650芯片,该芯片具有太阳能最大功率点跟踪能力,以MSP430F213单片机作为主控器,实现了太阳能蓄电池充放电的智能控制,并具有防反充、防过充、防过放、过流保护和短路保护的功能。

《太阳能电池及其应用技术研究》进行了硅太阳能电池基本特性实验,研究了硅太阳能电池(单晶、多晶、非晶硅太阳能电池)的基本特性,进而提出混合型太阳能电池应用系统的可行性;进行了量子阱半导体太阳能电池进行基本的理论研究;研究太阳能电池最大功率跟踪技术,并研制了太阳能电池最大功率跟踪控制器。

此外还有其他很多资料,来源较为复杂,也不甚规范,但对于项目帮助很大,此处不再列出。

二、太阳能板特性

1、伏安特性与输出功率

太阳能板的伏安特性曲线和P-V 特性曲线如下图所示。

在太阳能板的伏安特性曲线中,SC I 称为短路电流,定义为给定日照强度和温度下的短

路输出电流。OC V 称为开路电压,定义为给定日照强度和温度下的开路输出电压。在负载电

阻较小时,太阳能板近似电流源,其输出电流变化不大,输出电压随负载电阻的增大而增大。在负载电阻增大到一定程度后,伏安特性曲线发生转折,此后呈现近似电压源的特性,输出电压变化不大,输出电流随负载电阻增大而减小。

在负载电阻增大过程中,输出功率开始时随之增大。在转折点附近,输出功率达到最大值M P ,这一点称为最大功率点。最大功率点对应的电压为M V ,最大功率点对应的电流为M I 。在太阳能板的P-V 曲线中也可以体现出这一点,随输出电压的增大,输出功率先增大后减小,在M V 处达到最大。原则上来说,可以通过对输出功率求导,取导数零点从而得到最大

功率点,进而求出对应的参数。但实际上要求出其解析解几乎是不可能的,因为它受到太阳能电池内部等效串并联电阻和光照温度等外部因素的影响,其特性方程通常无法获得。通常

图1 太阳能板伏安特性曲线 V M

图2 太阳能板P-V 曲线 P M

用实验的方法获得。

2、光照强度对输出特性的影响

太阳能板在同一温度不同光照下的输出特性如下图所示,其中图3为不同光强下太阳能板伏安特性曲线,图4为不同光强下太阳能板的P-V 曲线。

从伏安特性曲线可以看出,太阳能板的短路电流SC I 和最大功率点电流M I 随光照强度的

上升而显著增大。太阳能板的开路电压OC V 随光照强度的上升略有上升,但变化幅度不大,

而最大功率点电压M V 则有较为明显的增大。此外,随负载电阻的增大,在最大功率点以后,

输出电压的变化率随光强的增大而变小。也就是说,在光强较弱时,随着负载的增大,输出电压的跌落更加明显。这对于根据输出电压情况判断光照和负载情况提供了很大便利,后文会详述。

太阳能板的最大输出功率随光强的增大有较为明显的增大,如图4中虚线与实线的教交点所示。同时可以看出最大功率点电压M V 由明显的向右偏移。 3、本系统所用的太阳能板

本系统所用的太阳能板的参数如下:

最大输出功率:25W ;

短路电流:1.38A ;

开路电压:23V ;

最大功率点电流:1.27A ;

最大功率点电压:19.7V 。

三、太阳能供电系统的设计与实现

1、系统整体框架和实现思路

任务要求实现太阳能供电系统,并根据光照情况选择并切换功率源,需要控制在阳光充足时由太阳能电池供电,在阳光不足时由蓄电池供电。总体的系统框架如图5所示。

控制系统作为中枢,来控制太阳能电池、蓄电池和负载之间的连接关系。控制系统主要实现两个功能:

1) 当控制系统判断光照足够,太阳能电池的功率足以供给负载时,则控制太阳能电池板单

独向负载供电,同时给蓄电池充电。

图3不同光强下太阳能板伏安特性曲线 图4不同光强下太阳能板P-V 曲线

2) 当控制系统判断光照不足时,太阳能电池功率不足以供给负载,则由太阳能电池向蓄电

池充电,同时由蓄电池单独向负载供电。

如何判断光照情况进而决定系统功率源是项目的一个关键问题。从前文太阳能板的特性叙述可知,在负载电阻不太小时,输出电压的变化不大,近似恒压源。而输出电压与光照有关,当光照降低时,输出电压会减小,输出功率也会减小。因此,可以通过单片机采样太阳能电池输出电压,判断光照强弱。单片机根据采样得到的数据判断光照情况,进而输出电平信号控制电路的连接方式。

这种控制方式还有另外的好处。在光照强度一定情况下,当负载较大,超过了太阳能板的最大输出功率时,负载电阻较小,太阳能板的工作点将会越过最大功率点,此时输出电压会减小,使得输出功率降低。如果将控制临界电压选择的比最大功率点电压略小,则系统会自动切换为由蓄电池供电,避免了输出功率不足,一定程度上增大了系统输出功率上限,从而提高了系统性能。

从另外的角度看,在光照较弱的情况下,太阳能板最大输出功率会随之减小,系统输出功率不足,此时应该由蓄电池供电。但如果负载不大时,太阳能板足够提供负载所需的功率。根据太阳能板的伏安特定,其输出电压较高,所以控制系统不会动作,仍然由太阳能板供电。这样一来,就避免了光照较弱时完全弃光,提高了光能的利用率。

2、系统主体部分电路设计

2.1 单片机的选择

单片机是整个系统的核心控制模块,选用的是TI 公司的MSP430G2553芯片。MSP430系列单片机是超低功耗单片机,它的低功耗特性在众多单片机中异常优越。对于只能由太阳能板供电的系统,其功率有限,且要保证有足够的输出功率,所以MSP430的低功耗特性有很大优势。

G2553芯片有一个10位精度的内部AD ,可以实现电压模拟量到数字量的转换,能够满足系统要求。其内部的时钟系统可以实现定时中断,完成电压定时采样。考虑到实验室的现有资源和之前的学习情况,最终选定了这款芯片。实验室提供的G2553开发板的供电电压为5V ,经转换电路变为3.55V ,芯片输出高电平为3.55V 。开发板上提供了频率为32768Hz 的晶振,作为单片机的系统时钟。

2.2 单片机对电路的控制设计

控制电路通断,采用的是单片机控制继电器的方式。单片机的功率很小,不能驱动继电器。为了驱动继电器,需要使用驱动芯片ULN2003A 。ULN2003A 为达林顿管驱动芯片,共7路输入和7路输出,每一路都相当于一个反相器,当输入为高电平时输出为低电平,当输入为低电平时输出为高电平。每个反相器的内部结构为由两个三极管组合而成的达林顿管放大电路,该电路可以放大电流,提供给继电器足够大的电流以使其正常工作。其内部电路图和引脚图如下图所示。

图5太阳能供电系统总体框图

2.3 系统整体电路图

太阳能板的输出电压通过充电稳压模块接到蓄电池,对蓄电池进行恒压充电。系统中所用的蓄电池为12V ,6.5AH ,其充电电压以14.4V 为宜,所以充电稳压模块输出电压选为14.4V 。传统的恒压充电方式在充电过程中电流变化较大,充电初期充电电流过大,充电后期充电电流过小,会损伤电池寿命。但太阳能电池的功率较小,不足以在充电初期产生很大电流,对蓄电池的损害较小。且恒压充电易于控制,所以采用恒压充电方式。

为了节约时间,提高效率,我们的稳压模块都是采用的市面上现有的完整模块。这些模块大都为降压模块,正常工作时的输入输出压差要在1.5V 以上,不能将12V 左右的电压稳定在12V 。考虑到12V 蓄电池的输出电压基本稳定在12V 左右,所以系统+12V 的输出不对蓄电池进行稳压。而太阳能板稳压模块用于太阳能板直接输出时的稳压,将其电压稳定在与蓄电池同一等级的+12V 。

输出稳压模块的输入电压为+12V ,其输出电压有三个等级,分别为±12V 和5V 。其中+12V 输出直接采用输入电压,不进行处理,?12V 和5V 输出需进行电压等的变换,详细说明见后文。

图8太阳能供电系统主电路

太阳能板 太阳能

板稳压

充电稳压 蓄电池 输出稳压

单片机 ULN2003A

继电器1 继电器2 图6ULN2003A 内部电路图 图7 ULN2003A 引脚图

R1

R2

3、系统外围电路设计

3.1 稳压电路

我们在系统中使用的稳压模块都是直接买到的,但是其工作原理还是较为清晰的。系统中多处用到稳压电路,不同位置的稳压电路,根据其功能不同,有不同的设计方案。具体来讲共有三类。

1) 太阳能板稳压和输出稳压的5V 输出部分,利用开关集成稳压芯片LM2596,采用典型

电路中的固定电压输出方式,电路图如下图所示。LM2596芯片有33V ,12V ,5V 和可调等输出电压等级,太阳能板稳压选用12V 输出电压等级芯片,输出稳压的5V 输出部分采用5V 输出电压等级芯片。

2) 蓄电池充电稳压部分的输出电压为14.4V ,需要选用可调输出的LM2596芯片,同时采

用可调输出电路,电路图如下图所示。

输出电压()211/OUT REF V V R R =+,其中 1.23REF V V =。为保证14.4V 的输出,有:21/10.7R R =。

3) 输出稳压的?12V 输出部分,需要将+12V 电压转换为?12V 电压。这里使用了MAX765

芯片。MAX765芯片是DC-DC 反相器芯片。该芯片能将+3~+15V 的输入电压转换为-12V 的输出电压,最大输出电流为250mA 。稳压电路如下图所示。

图9 5V 输出稳压电路 图10可调输出稳压电路

3.2 供电电路

系统中的继电器和单片机都是由5V 直流电源供电的。系统中器件的供电由蓄电池提供,通过7805稳压芯片将12V 电压转换为5V 电压。7805稳压电路如下图所示。

输入电压12V IN V =,5V OUT V =。由于输入电压比输出电压高出7V ,压差较大,容易使

7805有较为严重的发热,所以加入二极管D1、D2来适当减小输入电压。同样由于发热的原因,在系统中给7805加了散热片,以防止芯片过热。

4、单片机控制逻辑

单片机通过采样电阻12R R 采样获得太阳能板的输出电压,系统中1215 2.4R k R k =Ω=Ω。所以0.1379S OUT V V =,其中S V 为采样得到的电压,OUT V 为太阳能板输出电压。经过上式可以

将采样电压S V 换算求得实际输出电压OUT V 。当OUT V 大于临界电压L V 时,系统以太阳能板为

功率源,当OUT V 小于临界电压L V 时,系统以蓄电池为功率源。经过我们在阳光下的实际测量

结果,取18V L V =较为合理。这个值略小于太阳能板的最大功率点电压M V ,既可以保证光

照较强时完全由太阳能板供电,也可以保证光照较弱时由太阳能板提供小功率输出,由蓄电池提供大功率输出,提高了光照的利用率。

单片机通过时钟定时中断完成对电压的采样并进行分析。根据电压情况控制引脚的电平输出。前文已经说过,供电部分的7805芯片可能存在过热的问题,所以在单片机驱动继电器的部分加以设计,使得每一时刻都只有一个继电器处于吸合状态,而另外一个处于释放状态。这样可以避免7805同时为两个继电器供电而造成过热。

单片机的工作逻辑为:

OUT L V V >,P2.0输出低电平,继电器1处于释放状态,由太阳能板供电,P2.1输出高电

平,继电器2处于吸合状态,太阳能板为蓄电池充电。

OUT L V V <,P2.0输出高电平,继电器1处于吸合状态,由蓄电池供电,P2.1输出低电平,

继电器2处于释放状态,太阳能板不给蓄电池充电。

单片机程序如下所示:

图12 7805稳压电路

四、项目总结

1、完成情况

经过两周的工作,我们成功实现了太阳能供电系统,并进行了实际功能的测试。首先在实验室利用直流稳压电源模拟太阳能板的输出,通过调节输出电压的大小模拟光照负载变化时太阳能板输出电压的变化情况。当输出电压降低至预定值时,系统自动将功率源由模拟太阳能板的稳压电源切换为蓄电池。随后在阳光下利用太阳能板进行了实际的测试。当转动太阳能板或者通过遮挡部分太阳能板来降低太阳能板上的光照时,太阳能板的输出电压降低,系统同样可以将功率源由太阳能板切换为蓄电池。当光照恢复时,系统会将功率源切换回太阳能板。系统的逻辑功能得到了实现。

原本我们打算对系统的功率输出能力进行测试,但由于最后几天时间连续阴雨,没有阳光,最终没能完成测试工作,算是一个遗憾。

2、项目不足与展望

由于我是第一次做这种项目,加之时间较为仓促,在进行项目过程中还存在很多的不足之处。首先在系统的设计上,只考虑了对太阳能板的控制,而忽视了对蓄电池的控制,例如防止蓄电池过充过放和过流保护等。也缺乏对系统整体的控制,输出必须从蓄电池和太阳能

板中选择其一,而不能完全断开,这些都是系统的不足之处。感谢老师为我们指出这些不足,让我们能够学到相应的经验,获得进步。另外一个不足之处就是两人之间的合作较差。两个人之间缺乏足够的沟通和交流,而且思路经常难以保持同步,降低了效率。这在以后的学习和生活中是需要注意的,要加强和他人的合作能力。

目前所搭建的这一套系统比较粗糙,存在很多的不足之处。后续可以进一步优化和完善,弥补上述不足之处,提高系统稳定性。同时可以改变目前的分散插接方式,实现系统的集成,减小系统体积。另外还应该优化系统设计,提高输出效率,减小功耗你。通过阻抗匹配保证太阳能板工作在在大功率点附近等。

参考文献:

[1] 吴庭俊. 太阳能电池的特性研究及应用设计.华南理工大学. 2014

[2] 胡恒生. 蓄电池充电方法的分析和探讨.电源技术应用,2009,12(8)

[3] 李加念. 基于BQ24650的太阳能蓄电池智能充放电控制设计.安徽农业科学,2014,42(14)

[4] 王远. 太阳能电池及其应用技术研究.华中科技大学. 2006

太阳能供电系统设计方案

1 基站纯光系统扩容设计方案 项目名称:基站纯光系统扩容设计方案 设计人: 联系电话: 联系邮箱: 1

目录 1、基站状况及方案设计思路 (1) 1.1、基站情况 (1) 1.2、设计思路 (1) 2、太阳能容量、蓄电池容量计算公式及系数说明 (1) 2.1、太阳能核算公式及参数说明 (1) 2.2、蓄电池计算公式及参数说明 (2) 3、新建太阳能供电系统配置计算 (2) 3.1、太阳能供电系统配置 (2) 3.2、站点地理位置和气候数据(源自NASA地表气象学和太阳能可用数据表) (3) 3.2.1、地理位置确定(经纬度:N93.52°,E42.83°) (3) 3.2.2、气候数据及太阳能方阵仰角设定 (3) 3.3、太阳能容量计算公式及系数说明 (3) 3.4、蓄电池容量计算公式及系数说明 (4) 3.5、太阳能方阵支架配置 (4) 3.6、太阳能控制器配置 (5) 4、XXX公司简介 (6) 5、新通?例照片(部分) (7) 6、基站负载设备报价明细 (10)

1、基站状况及方案设计思路 1.1、基站情况 站点为哈密铁塔,经纬度为N93.52°,E42.83°。站点具体情况如下: 联通:负载614W/12.8A;太阳能30块190Wp,共计5700Wp。(已建成) 移动:48V系统,扩容负载720W/15A。 要求新建方案将已建成的太阳能系统纳入整个控制系统,构建一体化控制系统。 因此整个系统总负载为1334W/48V,工作电流为27.8A。 所有太阳能板(含现有190Wp规格5700Wp)全部接入一体化控制系统,控制器分户输出。 系统公用蓄电池,可根据用户需求,对各家负载提供蓄电池VIP定制供电; 1.2、设计思路 本次设计采用纯太阳能供电系统。白天晴朗日照条件下,由太阳能发电,同时对系统负载和蓄电池供电;当太阳能发电不足以供给系统负载时,不足部分由蓄电池加以补足(多种能源在线互补),直至由蓄电池完全给负载供电。 在当地环境下,根据设备运行要求,太阳能电源系统需要极限状态下2天(48h)连续阴天持续供电,并利用不高于3个晴天补充蓄电池组最大亏欠能耗。 2、太阳能容量、蓄电池容量计算公式及系数说明 2.1、太阳能核算公式及参数说明 S=JU(IT+MNI)/NHρ 所有离网型纯太阳能电源系统全部用电均来自太阳能组件发电,包括对负载供电以及对蓄电池补充电量,保证系统在有效日照状态下的运行安全。 S:太阳能板组件总功率; J:气候指数,考虑当地环境因素对太阳能系统发电量的影响; U:负载工作电压; I:负载工作电流; M:负载每日工作时长; T:蓄电池支撑时长(极限状态下,完全由蓄电池供电); N:回充补足蓄电池极限能耗的晴朗天数; H:当地有效日照值; ρ:太阳能控制系统转换效率; 上述公式遵循能量守恒定律,负载功率为UI,系统设计蓄电池在极限状态下共支撑T小时,此时蓄电池共放电UIT;负载每天消耗电量为MUI,在设计回充蓄电池极限能耗天数指标为N天时,系统共耗电MUIN。 设计指标中,要求N天内把蓄电池回充满,则系统在N天内要提供MUIN+UIT(负载N天内消耗的电量,加上蓄电池在T小时内提供的电量,都需要从太阳能中获取),上述能量都 要在N天内,每天H个有效日照小时中,即NH个小时内满足。 考虑环境修正系数J,以及太阳能控制系统转换效率ρ,则可得到上述太阳能容量核算公式:S=J(UIT+MUIN)/NHρ= JU(IT+MIN)/NHρ。

家用太阳能供电系统

家用太阳能供电系统 一、概述 1、太阳能供电系统的组成 太阳能供电系统由太阳能电池组件、太阳能控制器、逆变器、蓄电池(组)组成。 (1)太阳能电池组件:太阳能电池组件是太阳能供电系统中的核心部分,也是太阳能供电系统中价值最高的部分。其作用是将太阳的辐射能量转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池组件的质量和成本将直接决定整个系统的质量和成本。 电池组件的种类及特点: 表1: (2)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (3)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池组件所供出的电能储存起来,到需要的时候再释放出来。 蓄电池的种类及特点

(4)逆变器:逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。逆变器还具有自动稳压功能,可改善光伏发电系统的供电质量。 家用太阳能供电系统如图: 图1:

2、离网与并网 太阳能光伏供电系统分为离网、并网发电及两者结合。 (1)通过太阳能光伏组件将太阳辐射能转换为电能的发电系统称为光伏发电系统,与公共电网相联接的关系系统称为并网光伏发电系统。 (2)离网光伏系统的使用独立于电网,如目前多用于弱电低功耗使用,如。太阳能航标灯和太阳能路灯等。家庭用太阳能供电系统为离网光伏系统。 (3)离网与并网发电结合,有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略,但是其造价和运行成本较上述两种方案高。 3、太阳能供电系统的应用方式 家用太阳能供电系统可以单独使用,脱离市政用电,费用较高。也可以与市政用电配合使用,作为市政用电的补充,在停电或小功率电器用电上使用太阳能供电。 二、太阳能供电的优点 1、太阳能资源取之不尽,用之不竭。照射到地球上的太阳能要比人类目前消耗的能量大6000倍。另外,根据太阳产生的核能计算,太阳要照耀地球600多亿年。 2、绿色环保。光伏发电本身不需要燃料,没有二氧化碳的排放,不污染空

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

某大学太阳能供电方案 (1)

福建电力职业技术学院毕业设计报告 ( 20 ~20 学年第学期) 题目某大学太阳能供电方案 课程名称 专业 班级 学号 姓名 指导教师 设计时间:自2018 年11月5日至2019年1 月18 日

太阳能与电能和其他大部分不同,太阳能是一种彻底清洁的能源,太阳能作为重要能源未能得到像核能一样的重视,虽然在科学研究方面太阳能研究已经得到了足够多重视和发展,但是在实施方面仍然还有很多的不足。太阳能在中国有很大的潜力,如果加以高效运用,则中国完全有可能达到“充满阳光充满亮”的美好生活,随着政府的重视和实业届的大量运用,光伏发电运用的范围也会也来越大,学校作为用电量大、用电峰值明显的区域,光伏发电的介入会高效的降低成本,随着实证校园光伏发电系统的大量建设与应用,光伏系统的效率和应用也越来越成熟,越来越多的高校参与到建设高校光伏系统的行列中,能源的节省越久越来越多,无疑会给未来校园或其他区域的能源消费结构和环保上起到重要的指导作用。 关键词:光伏发电;校园;供电方案

第一章引言 (4) 1.1 太阳能并网光伏发电原理及组成 (4) 1.2国内外校园新能源应用研究 (4) 1.3应用太阳能光伏发电的必要性 (5) 第二章福建太阳能资源概述 (7) 2.1概述 (7) 2.2某校园地区光伏发电工程太阳能资源分析 (7) 2.3日照时数 (8) 第三章并网光伏系统设计 (9) 3.1并网光伏系统设计的大致步骤 (9) 3.2并网光伏系统设计的器件选定 (9) 3.3光伏系统总体设计分析 (9) 3.4节能降耗分析 (11) 3.5校园运行照明部分设计 (11) 第四章四川大学太阳能光伏发电系统实证分析 (13) 第五章结束语 (14) 参考文献 (14)

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

太阳能光伏发电系统方案

光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成...............................................错误!未定义书签。第3章光伏并网发电系统设计原则与原理. (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司...................................................错误!未定义书签。 6.1 雄厚的集团背景.................................................................................................................. 错误!未定义书签。 6.2 超强的项目管理能力.......................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队.................................................................................................................. 错误!未定义书签。 6.4 “一揽子交钥匙服务”...................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

2021年太阳能光伏发电系统基本组成

太阳能光伏发电系统基本组成 欧阳光明(2021.03.07) 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳

的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220V AC、110V AC 的交流电源。由于太阳能的直接输出一般都是12V DC、24V DC、48V DC。为能向220V AC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC 逆变器,如将24V DC的电能转换成5V DC的电能(注意,不是简单的降压)。

太阳能光伏发电项目设计策划方案

梦之园太阳能光伏发电项目设 计 方 案

编制单位:光宏照明有限公司 编制日期:2013年7月12日 1.综合讲明 1.1.编制依据 光伏发电是节约能源利国利民的新型产业,本着从科学的角度展示他的价值作为主导思想为依据。依照国家现行的法规和规范编制: 1)IEC61215 晶体硅光伏组件设计鉴定和定型 2)IEC6173O.l 光伏组件的安全性构造要求 3)IEC6173O.2 光伏组件的安全性测试要求 4)GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》 5)SJ/T11127-1997《光伏(PV)发电系统过电压爱护—导则》 6)GB/T 19939-2005《光伏系统并网技术要求》 7)EN 61701-1999 光伏组件盐雾腐蚀试验 8)EN 61829-1998 晶体硅光伏方阵I-V特性现场测量 9)EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验)

10)EN 61345-1998 光伏组件紫外试验 11)GB 6495.1-1996 光伏器件第1部分: 光伏电流-电压特性的测量 12)GB 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 13)GB 6495.3-1996 光伏器件第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据 14)GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 15)GB 6495.5-1997 光伏器件第5部分: 用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 16)GB 6495.7-2006 《光伏器件第7部分:光伏器件测量过程中引起的光谱失配误差的计算》 17)GB 6495.8-2002 《光伏器件第8部分: 光伏器件光谱响应的测量》测量 18)GB/T 18210-2000 晶体硅光伏(PV)方阵I-V特性的现场测量

太阳能供电系统设计

太阳能供电系统 一、太阳能应用概述 1、太阳能简介 太阳能是太阳内部连续不断的核聚变反应过程产生的能量。 太阳能是一个巨大、久远、无尽的能源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约为3.75×1026W)的22亿分之一,但已高达173,000KW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。 7O年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,198O年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在7O年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制订可持续发展战略的重要内容。 2、太阳能的特点 太阳能之所以能成为一种有希望的能源,是因为其具有以下特点: 2.1供给量丰富 地球每小时从太阳获得的能量为1.48×1017卡,其中30%被直接反射回去,70%则被地面吸收。据统计,世界全年的耗能总量,只相当于30分钟降落于地球的全部的太阳能。

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

太阳能供电系统技术方案

太阳能供电系统技术方案 2009-09-27 1.概述 北京意科公司是一家在太阳能电源系统方面具有丰富经验的电源专业公司,已经为客户设计和安装的数千套太阳能电源系统。其专用的设计软件YCASE在无数次的设计过程中,经过北京意科公司技术专家的补充、完善、提高,该软件现已成为北京意科公司重要的技术资源。YCASE设计的太阳能电源方案是非常接近实际的运行情况的,具有经济性,可靠性。 本项目采用独立太阳能供电系统。太阳能系统输出基准电压为48Vdc。太阳能控制器采用北京意科公司生产的智能型控制器,太阳能电池板采用170Wp 的高效率太阳能板,蓄电池为2组1500Ah蓄电池。 意科公司根据本工程安装地点的地理位置,气候情况以及负载等情况,选取新疆(43.7N, 87.7E)作为设计参考点,利用意科公司专业设计软件,对用户给出站点的太阳能系统容量进行核算。 负载容量计算: 结论:本次方案的设计负载为366AH/天,其中逆变器转换效率按85%考虑。 在下面的计算中,我们将按照设计负载对系统进行计算。

2. 太阳能系统供电方案 2.1 供电系统工作模式: 根据本次项目要求,意科公司推荐采用独立太阳能供电方式:当日照充足时,由太阳能系统为负载供电、为蓄电池充电;在日落后或阴雨天,则由蓄电池向负载放电。 控制器可根据蓄电池的状态对蓄电池充电过程进行控制,具备过充/过放保护,具备强充/浮充及温度补偿等电池管理功能。当蓄电池放电至限定的最低电压(该值电压可设置)时,控制器可自动切断主要负载电源,以保护蓄电池。当系统电压恢复后,控制器根据电压自动投入被断开的负载。 2.2 系统设计的可靠性 意科公司采用太阳能专用设计软件对系统中各站进行设计,该设计软件充分考虑了诸多因素,软件中的数据库是由国际粮农组织提供的气象数据,并每10年更新一次。由该软件设计的太阳能站数量已达数千套,至今为止仍在良好的运行中。

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

600W太阳能供电系统方案(一)

600W太阳能供电系统方案(一) 本系统的配置为保证每天用电量为1.2-1.5度电,要求单个设备的功率最好不要超过600W。在阴雨天由蓄电池供电,可满足2-3天的使用。 一.设备技术、性能 1.1太阳能电池组件 该系列组件使用高效率单晶硅太阳电池片封装组成,电池片最高效率可达17.8%。封装材料使用美国SPIRE公司进口低铁钢化玻璃,EV A和复合TPE材料。由于玻璃透光率高和机械强度高,背面复合层密封性好,极限寿命达25年。电极连线采用铜基体镀锡层带,充分保证了大电流通过时低的内阻,有利于功率输出。整体组件工作时无需维护。 1.1.1主要技术参数 1)主要性能参数(测试条件:AM1.5,Ee=1000W/m?,C=25℃) 2)太阳电池组件性能指标 a.电池板性能 1.背板采用进口材料封装,抗老化、使用寿命长(极限寿命达25年)、衰减小。 2.面板采用进口高透低铁钢化玻璃封装,透光率和机械强度高。承受22.7g钢球1米高

度自由落下不破碎。 3.接线盒采用防水防潮设计。 4.阳极氧化铝合金结构边框,轻便、抗机械强度高。 5.组件使用20年后功率下降不超过使用前的10%。 6.额定电流温度系数(Isc)+0.05% 7.额定电压温度系数(V oc)-158mV/℃ 8.额定最大输出功率温度系数-0.46%/℃ 9.标准状态工作温度25℃ b.绝缘性能: 1.绝缘电阻:≥100MΩ 2.耐电压:DC1500V,1min无击穿闪络 c.环境条件 能经受GB9535-98地面用太阳电池组件环境试验方法和GB/T14007-92《陆地用太阳电池组件总规范》规定的各项要求和试验方法。 d.太阳电池在下列条件下连续工作满足其所有性能指标: 1.环境温度:-55℃~+85℃ 2.相对湿度:≤95% 3.海拔高度:≤6000米 4.最大积雪厚度:20cm 5.最高风速:62m/s e.电性能测试方法 按GB/T6495.1-1996光伏器件第一部分光伏电流-电压特性的测量(idtIEC940-1:1987);GB/T6495.3-1996光伏器件第三部分:地面光伏器件的测量原理及标准光谱辐照数据(idtIEC904-3:1987);GB/T6495.4-1996光伏光伏器件第四部分:晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法(idtIEC891:1987)规定进行。测试方法可靠,具有权威性。 f.平均无故障时间(MTBF) 太阳电池组件在25年使用时间内,其平均无故障时间不小于100000小时。 1.2太阳能智能充电控制器 本太阳能智能充电控制器是为供电系统专门设计的控制设备。采用PWM充电,保护功能全,质量可靠。 主要功能: 1.蓄电池反接保护:蓄电池极性接反,纠正后可继续使用。 2.太阳能电池反接保护:太阳能电池级性接反,纠正后可继续使用。 3.负载过流及短路保护:负载过流或短路后,关断负载输出。待故障排除后,重新接通

太阳能发电系统的结构和工作原理

太阳能发电系统的结构和工作原理 在理解太阳能发电原理之前,如果您对太阳能还有所疑问的话,建议您先看一下什么是太阳能。 所谓太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材 料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。 1、太阳能发电原理 太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中 ,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。 1.1 太阳能电源系统 太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。 (1) 电池单元: 由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的 电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。 理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。(2) 电能储存单元: 太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十 分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。 1.2 控制器 控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常 采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。 1.3 DC-AC逆变器 逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电 。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。 2、太阳能发电系统的效率 在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及 负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识 1、太阳能光伏系统的组成和原理 太阳能光伏系统由以下三部分组成: 太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 太阳能光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -xx 简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25 年以上;根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类: 独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW 级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~ 2W的 太阳能庭院灯,大到MW 级的太阳能光伏电站,如 3.75kWp 家用型屋顶发电设 备、敦煌10MW 项目。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结 构和工作原理基本相同。图4-1 是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件:

光伏组件方阵: 由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 蓄电池: 将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 控制器: 它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 逆变器: 在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对 于其他类型的光伏系统只是在控制机理和系统部件上根据实际的需要有所不同,下面将对不同类型的光伏系统进行详细地描述。 直流负载的光伏系统 2、光伏系统的分类与介绍 小型太阳能供电系统(Small DC ;简单直流系统(Simple DC ;大型太阳能供

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

太阳能供电监控系统的解决方案

太阳能供电监控系统的解决方案 太阳能是取之不尽用之不竭的环保能源,在众多新能源当中,太阳能无疑是最优的选择之一。利用太阳能的产品很常见,如太阳能热水器、太阳能路灯、太阳能电池、太阳能汽车等等。只是在安防领域里,太阳能监控还是很新鲜的东西。但是随着太阳能技术的不断完善,蓄电技术的不断提高,太阳能已经可以很方便的应用到安防监控领域了。太阳能监控系统由于主要利用的是可再生新能源供电的无线传输模式,所以该系统具有不需挖沟埋线、不需要输变电设备、不消耗市电、维护费用低。此类工程案例主要应用于一些偏远地带以及太阳能资源相对丰富的地区。如高速公路,电力传输线监控,石油、天然气管道监控,森林防火监控,水资源监控,矿产资源监控,边境线监控,航道指示灯塔、海岸线等。其次是景区的需要,如城市风光景区、旅游景区、自然保护区、野生动物保护园区等取电不便的场所。 在监控系统日益便利的发展趋势下,与新技术的结合是安防监控技术发展的重要出路,同时也是将新技术的优势发挥到最大化的重要方式。这两年太阳能板的技术有了很大的突破,特别是在民用领域太阳能电池板的光电转换效率得到了很大的提高,以及太阳能蓄电池的技术的更新,让大功率蓄电,长时间阴雨天续航供电成为了可能,太阳能控制器技术的发展进步,也都让太阳能技术稳定的应用于监控安防领域。使用优质的太阳能供电产品应用于安防监控领域,将为安防领域的拓展提供更广阔的可能。

太阳能无线监控系统主要由太阳能供电系统、无线视频传输系统、视频监控系统三个子系统组成。太阳能供电系统是由太阳能组件、蓄电池、逆变器、智能充放电控制器等组成;而无线视频传输子系统是由数字网桥、3G/4G网络等组成;视频监控系统是由摄像机、终端视频管理设备(如数字硬盘录像机)等组成。根据需要可增加其它辅助功能如:前端喇叭、前端传感、视频分析、无线广播、移动侦测等。 太阳能供电系统的工作原理是太阳电池组件将太阳的光能转化为电能,太阳能充放电控制作为中心控制设备,一方面将太阳电池组件转化的电能存储在蓄电池里,一方面控制蓄电池对负载供电。如果用电设备中有交流设备,通过逆变器将直流电逆变成交流电,即可向交流设备供电。智能控制器的主要作用是对蓄电池进行充放电管理,当在工作时间内蓄电池供电不足时,控制器自动切断负载供电,对蓄电池进行过放保护;当蓄电池持续充电时,控制器对蓄电池进行过充保护。蓄电池是在没有日照情况下维持系统工作所需的能量来源,当发生连续阴雨天的情况时就需要蓄电池有足够的电量维持整个系统的连续工作,因蓄电池的价格较高,不能因为顾及一年当中会出现几次长的阴雨天而增加系统蓄电池配置,使系统在大部分时间内蓄电池配置都处在浪费的状态,过多配置蓄电池的结果必然导致成本大幅上升。所以太阳能供电应用系统应允许发生概率较低的缺电现象,蓄电池独立供电时间一般为4-10天。 无线视频传输系统目前适合进行太阳能监控的数据传输方式有两种,一是基于无线网桥的微波网络,二是基于运营商的3G/4G网络,可以根据实际情况需要来选择。如果监控点离监控中心之间的距离为5公里以内,而且中间没有遮挡,可以用一对网桥进行传输;若中间遮挡物较少,可以通过增加一对网桥进行中继来连接到监控中心。采用数字网桥传输可以获得较高的有效带宽,保证视频传输的清晰度和流畅性,根据现场情况可选择一对一或者一对多进行无线传输,并且网桥的传输完全免费。如果用户的监控点周围有3G/4G信号,而且监控点和监控中心之间有很多遮挡物,这时采用3G/4G视频传输将是一个比较好的选择。利用3G/4G视频传输,将视频数据通过相关的3G/4G平台运营商的网络传递到监控中心。综合起来比较,网桥可以免费传输高清视频图像,适合于没有或较少遮挡的区域;3G/4G传输由于

相关文档
相关文档 最新文档