文档库 最新最全的文档下载
当前位置:文档库 › 重点不定形耐火材料基础知识

重点不定形耐火材料基础知识

重点不定形耐火材料基础知识
重点不定形耐火材料基础知识

目录

第一章不定形耐火材料基础知识 (2)

1.1 不定形耐火材料的定义 (2)

1.2 不定形耐火材料的分类 (2)

1.3 不定形耐火材料的特点和工艺流程 (4)

第二章原材料及其要求 (6)

第一节耐火骨料和粉料 (6)

2.1.1 作用与要求 (6)

2.1.2 几种重要骨料 (7)

第二节不定形耐火材料用的结合剂 (16)

2.2.1 概述 (16)

2.2.2 暂时性结合剂 (18)

2.2.3 碳素结合剂 (19)

2.2.4 铝酸盐水泥 (20)

2.2.5 硅酸盐结合剂 (23)

2.2.6 磷酸及磷酸盐结合剂 (25)

第三节不定形耐火材料的添加剂 (27)

2.3.1 概述 (27)

2.3.2 减水剂 (28)

2.3.3 铝酸盐水泥结合用的减水剂 (30)

2.3.4 不定形耐火材料用的分散剂 (30)

2.3.5 不定形耐火材料用促凝剂和缓凝剂 (32)

第三章耐火材料的组成和性质 (36)

3.1 不定形耐火材料的化学矿物组成 (36)

3.2 不定形耐火材料的组织结构 (38)

3.3 不定形耐火材料的热学性质和导电性 (39)

3.4 不定形耐火材料的力学性质 (40)

3.5 不定形耐火材料的高温使用性能 (42)

3.6 不定形耐火材料的施工性质 (44)

第一章不定形耐火材料基本知识

1.1不定形耐火材料的定义

不定形耐火材料:不定形耐火材料是由耐火骨料和粉料、结合剂或另掺外加剂以一定比例组成的混合料,能直接使用或加适当的液体调配后使用。即该料是一种不经过煅烧的新型耐火材料,其耐火度不低于1580℃。

骨料:指粒径大于0.088m m的颗粒料,它是不定形耐火材料组织结构中的主要材料,起骨架作用,它决定了不定形耐火材料的物理力学和高温性能,也是决定材料属性及应用范围的重要依据。

粉料:也称细粉,指粒径小于0.088m m的颗粒料,它是不定形耐火材料组织结构中的基质之一,在高温下起连接骨料的作用,使之获得物理力学和使用性能。细粉能填充骨料的孔隙,赋予或改散不定形耐火材料的作业性能及致密度。

结合剂:指能使耐火骨料和粉料胶结起来显示一定强度的材料。结合剂是不定形耐火材料的重要组份,可用无机、有机及其复合物等材料,其主要品种有水泥、水玻璃、磷酸、溶胶、树脂、软质粘土和某些超微粉等。

添加剂:是强化结合剂作用和提高基质相性能的材料。它是耐火骨料、耐火粉料和结合剂构成的基本组份之外的材料,故也称外加剂。如增塑剂,促凝剂,缓凝剂,助烧结剂,膨胀剂等。

另外,对粉料中很细的部分分别规定:粒径中小于5μm的是微粉;粒径中小于1μm的是超微粉。

1.2不定形耐火材料的分类

1.3不定形耐火材料的特点和工艺流程1.3.1不定形耐火材料的特点总结如表1-4:

1.3.2不定形耐火材料的工艺过程如下图:

图1-1 不定形耐火材料的生产工艺流程图

第二章主要原材料及其要求

不定形耐火材料的原材料分为耐火骨料、耐火粉料、结合剂和外加剂。采用不同性质的原材料,可配制成不同的性能、使用温度和使用范围的不定形耐火材料。现代的不定形耐火材料,一般采用复合的原材料,充分发挥其各自的特性,以便获得最佳的理化性能,提高产品的使用寿命。不定形耐火材料的物料构成图如下:

第一节耐火骨料和粉料

2.1.1作用与要求

在不定形耐火材料中,耐火骨料用量一般为63%-73%,起骨架作用,能显著影响其性能;耐火粉料用量为15%-37%,起填充骨料空隙和改善施工和易性等作用。有些耐火粉料,如粘土和超微粉等,还是良好的结合剂。其理想的颗粒级配是粗骨料所造成的空隙恰被细骨料所填满,二者间的空隙又被耐火粉料所填充,达到最大的堆积密度,以便获得最佳的性能。

耐火骨料分为粗骨料和细骨料。一般颗粒尺寸大于5mm的为粗骨料;5mm-0.088mm的颗粒称为细骨料。骨料临界粒度根据施工制作方法不同而制定,如表2-1所示。目前,耐火骨料临界粒度有减小的倾向,一般用8mm或5mm,泵送料为3mm。

2.1.2几种重要的耐火骨料

①氧化铝质耐火原料

分为α‐Al2O3,硬度为9,熔点为2050℃。刚玉具有高的热导性和电绝缘性、优良的化学稳定性和抵抗还原剂作用的能力。它是用工业氧化铝或铝土矿经烧结或电熔后而制成的。当用工业氧化铝电熔时,得到的是白色刚玉,Al2O3含量大于98.5%;当用铝土矿作原料时,则获得普通刚玉,Al2O3含量为91-93%,经处理后,Al2O3含量大于97%;当添加铁屑时,可生产棕刚玉;当添加锆英石时,则得到锆刚玉。即刚玉可分为烧结刚玉和电熔刚玉两大品种,又可分为白刚玉、棕刚玉、锆刚玉和铬钢玉。

电冶矾土刚玉以矾土为原料,通过电熔还原脱出SiO2、Fe2O3、TiO2等杂质制得,较电熔白刚玉成本低。组织结构致密,体积密度高,骨料吸水量少,且成型时骨料间移动阻力小,故表现出良好的流动性能。

采用电冶矾土刚玉和白刚玉制得的浇注料均有较好的微膨胀性能。高温阶段,以电冶矾土刚玉制得的浇注料体积密度重新增大,显气孔率下降,强度明显增大,表明同白刚玉相比,电冶矾土刚玉能促进高温烧结,主要是由于电冶矾土刚玉熔制过程中会残留有少量杂质。

骨料组织结构和杂质成分所形成的玻璃相对热震稳定性有较大影响。采用电熔白刚玉为骨料时,热震后浇注料抗折强度降低率最小,显气孔率变化较小,表明热震后,材料中形成的裂纹较

少,热震稳定性较好。以电冶矾土刚玉为骨料时,浇注料热震稳定性有所下降。

与电熔白刚玉相比,电冶矾土刚玉结构致密,晶粒粗大、晶界少,且晶界处分布着一定量的含钛碳氮化合物,这类非氧化物的存在有利于阻止CaO-SiO2-FeO系熔渣的渗透及渣的反应。用该材料制备的浇注料在高碱度熔渣环境下,采用电冶矾土刚玉制得的浇注料表现出优良的抗渣侵蚀和渗透性能。《国外耐材99’NO.3P17》棕色板状刚玉:棕色板状刚玉是一种介于高纯白色板状刚玉和低纯烧结矾土之间的棕色板状刚玉(BTA),它是通过高温液相烧结控制构成莫来石基质显微结构所研制的唯一产品。与棕色电熔氧化铝相比,该骨料具有高化学纯度、高抗侵蚀性、低气孔率、高抗热震性及很好的体积稳定性,而且可以极好地控制其显微结构,具有良好的抗渣及化学侵蚀性能,如表2-3所示。

板状刚玉:板片状晶体结构,气孔小且闭气孔较多而气孔率与电熔刚玉大体相当,纯度高,体积稳定性好,极小的重烧收缩,用以生产的耐材或浇注料高温处理后具有良好的热震稳定性和抗弯强度,但价格较其它氧化铝高。

烧结刚玉:就是氧化铝在1750℃~1800℃下烧结,使其转化为刚玉。其纯度比板状刚玉略低,具有体密大、气孔率低、高温下有极好的抗热震性和抗炉渣侵蚀性,晶粒强度高,烧结刚玉强度的变化取决于Al2O3的含量、烧结温度和显微结构,并且这些相的变化给气孔率及烧结晶体杨氏模量带来影响。

电熔刚玉:其颗粒(晶体)结构均匀,刚玉晶体发育良好,具有高熔点和高的耐火度,高温下化学性质稳定,耐磨性良好,但是有较高的缩孔。由于外部作用等问题,玻璃物质通过起始晶

胚晶化后产生显微结构不均匀。BFA的玻璃矩阵使得晶体脆化,所以,要求热震性能高的应用范围不适用。

烧结棕刚玉:实际上就是烧结刚玉的一种变体,即通过液相烧结控制微观结构而生成的一种刚玉。它硬度非常大,并且具有较高的热导性。抗炉渣侵蚀性能比烧结刚玉差一些。由于气孔率低,使横向弯曲断裂强度得到了提高。晶体在烧结后强度也有所提高,烧结后强度增大是由于细小晶粒的晶体内气孔存在所至,这种微观结构不均匀的缺陷使得抗热震性能提高。重新加热改变这些晶粒是有益的,使得在高温下具有很好的体积稳定性。

矾土熟料:天然铝矾土在1400℃~1800℃温度范围内煅烧后而得到的,冶金部颁布的对高铝矾土熟料的质量要求如表2-4。铝矾土原料丰富、价格低廉;铝矾土中碱性物质、TiO2和铁的含量不同地影响着其烧结性能,影响着最终制品的可缩性和抗渣侵蚀性。莫来石的含量和低玻璃相组成对矾土有着良好的抗热震性。玻璃相和莫来石相百分比对制品的膨胀和收缩有影响,杂质含量高,抗炉渣侵蚀性就差,因此,在炉渣、金属交界面上剥落程度严重。

随着热处理温度的提高,用矾土骨料制得的浇注料,体积密度明显增大,显气孔率迅速下降,呈现较大的收缩。主要由于矾土熟料中杂质成分SiO2、Fe2O3、TiO2等在高温阶段液相生成量增大,对浇注料的高温性能有较大影响。

莫来石:莫来石一般由人工合成,它具有纯度高、密度大、组织结构好、蠕变率低、热膨胀小和抗化学侵蚀性强等优点。在不定形耐火材料中,期望有二次莫来石化,以改善或提高其高温性能。

莫来石合成生产工艺有烧结法和电熔法。烧结莫来石是在高温1600℃~1700℃下烧结矾土熟料和铝硅酸盐而形成的。由于内

部交错的斜方晶体存在,使其具有极小的热膨胀。此种材料应在要求热震性良好和体积稳定性好的部位使用。

②粘土质耐火原料

粘土质原料即指耐火粘土,其Al2O3含量为20%-50%,耐火度大于1580℃。按铝含量的高低,可分为高岭土和膨润土。蒙脱石(Al2O3?4SiO2?6H2O)是膨润土的主要组份,对于可塑料,可使用蒙脱石含量较高的粘土,因其可塑性较好;而对于喷补料和捣打料,生产厂现在使用蒙脱石含量较低的粘土。粘土原料在可塑料、捣打料、喷补料和耐火泥浆的配方中起着重要作用。这些粘土提供作业性、粘附性并通过形成莫来石来提高耐火度。有时用蓝晶石或硅线石原料调整配料的组成,以弥补粘土烧成时产生的收缩。

根据粘土在水中的分散性和可塑性的不同,分为硬质粘土和软质粘土两大类,介于二者之间的称为半软质粘土。

硬质粘土多为高岭石单矿物型的沉积粘土,间有迪开石或水云母类矿物伴生,在水中不易分散,可塑性较低。一般需经煅烧成粘土熟料后,方可使用。

粘土熟料又称焦宝石熟料,由高岭土与低档铝矾土混合并煅烧成高档致密颗粒,这些颗粒致密、气孔率低、耐火度高,氧化铝含量为47%-70%,气孔率为3%-6%。产品中严禁混入石灰石、黄土及其它高钙、高铁等外来夹杂物,同时也不得含有欠烧料。

软质粘土主要是高岭石型粘土,在水中易分散,有较高的可塑性和粘结性,在高温下具有良好的烧结性。软质粘土一般不经煅烧,烘干粉磨后即可使用,它是生产硅酸铝质砖的结合剂,也是不定形耐火材料的良好结合剂之一,因此称为结合粘土。

半软质粘土也是高岭石型的,与软质粘土相比,其Al2O3含量较高,颗粒较粗,分散性和可塑性差些。它主要用作粘土熟料或细磨后作结合剂。

③硅质原料

不定形耐火材料中的二氧化硅包括石英、硅砂、硅藻土和熔融石英玻璃。硅砂最初用于盛铁水和钢水的容器。现在,二氧化硅常常用于钢包引流砂、耐火泥浆和某些特殊的可塑料,如出铁口炮泥。熔融石英主要使用于焦炉用的浇注料和泵送料。含熔融石英的低水泥浇注料预制件也用于焦炉的修补。可泵送的熔融石英有优于硅砖的物理性能和热力学性能,它们具有较高的强度、低的热膨胀和优于硅砖的荷重变形能力。

碳化硅俗称金刚砂,是用焦炭和硅砂(SiO2>99.4%)的混合物在电弧炉中生成的,有时也加入锯末和盐或者其它结合剂。另外一种生产方法是将硅气相沉积在加热的石墨或碳的表面上生成碳化硅。其分子量为40.1,比重为3.2,分解温度约为2500℃,具有高熔点,高硬度,高强度,高热导性,低膨胀性和抗中性到酸性渣,是良好的耐火材料原料。

商品碳化硅的组成范围为含SiC90%~99.5%,因杂质而呈现绿、黑和黄等颜色。浅绿色碳化硅纯度为99.8%,随着纯度降到99%,其颜色变为深绿色,纯度降到98.5%时为黑色。纯度>99.5%的原料多用于磨料和耐火材料领域。高纯的绿色碳化硅用于高性能陶瓷和加热元件。

在不定形耐火材料中,根据应用领域不同所使用的碳化硅纯度也不同。碳化硅最常使用的领域是高炉出铁场,这里使用低纯度(90%)碳化硅。较高纯度的碳化硅(97~98%)用于热电厂使用的捣打料、喷补料和可塑料。在浇注料和泵送料中,所遇到的主要问题是碳化硅中金属杂质在使用时放出气体。因而,在用于浇注料和泵送料前,通常测试碳化硅中的金属杂质。

硅灰是生产硅铁和硅产品的副产品。硅和硅铁是在大的电炉内于2000℃以上的温度下还原生成。所用原料包括石英和碳(如煤、焦炭和木屑)。生产硅铁时还要添加铁原料。

生产硅铁所发生的化学反应如下:

SiO2+2C+x Fe→ FexSi+2CO

然而,化学反应过程远比上述反应复杂并包括许多副反应。其中发生的两个重要反应如下:

SiO

2

+2C→ Si+2CO (T>1520℃)

2SiO

2

+SiC→3SiO+CO (T>1800℃)

也就是说,在生产过程中,碳化硅和不稳定的一氧化硅起着

重要的中间产物作用。2SiO+O

2→2SiO

2

这就是所谓的硅灰和硅微粉。所添加的10~20%的石英最终挥发形成二氧化硅,即硅灰。

用肉眼观察,硅灰为带有颜色的细粉,颜色从白色到深灰色,这与硅灰中的碳含量有关,碳有几种不同形式,如焦炭或煤、碳化硅、焦油和碳黑(可能是原料中挥发出的碳氢化合物的裂解产物)。

硅灰的颗粒呈圆形,平均颗粒直径为0.15微米,尺寸范围从0.02~0.45微米,比表面积为15~20m2/g。

为500~700kg/m3。致密硅灰有利于降低运输费用,而且占用的储存空间较小。但是这种硅灰在应用时也易出现问题,由于致密化的团块在混练过程中不易分散成单个颗粒,因此降低了预期的流变性能。

近十年来,由于市场上硅灰的需求猛增,有些硅灰已作为主导产品生产,而不再是副产品。硅灰的颜色为白色,它的纯度较高且成分比较稳定。当然,其成本明显高于普通硅灰。由于表面没有杂质,这种硅灰显示出良好的流变性能,特别是在自流浇注料的配方中。

④镁质耐火材料

镁质类原料有镁砂、白云石、镁橄榄石和蛇纹石等,均属碱性,故称碱性耐火原料。

镁砂分为烧结镁砂和电熔镁砂两大类,又分为普通镁砂和优质镁砂;根据原料不同,分为镁石镁砂、海水镁砂和盐湖镁砂。

镁砂由精选后的菱镁石矿物(MgCO3)煅烧来生产,或从海水或卤水中提取合成。天然存在的菱镁石常常伴有白云石、滑石、氯化物、蛇纹石、云母、黄铁矿和磁铁矿。从海水和卤水中合成镁砂最重要的过程是在镁盐溶液中添加强碱物质(烧结石灰石和烧结白云石)从而析出氢氧化镁沉淀。析出的氢氧化镁沉淀再经水洗、浓缩、过滤和烧结生产出镁砂。在另外一种实用的方法中,将浓缩后的氯化镁(MgCl2)喷进热反应容器中,在这里热气体将它转化成氧化镁和盐酸。水洗氧化镁形成氢氧化镁泥浆,经过滤和烧结再生产出镁砂。

烧结镁砂按煅烧程度分为轻烧镁砂和死烧镁砂。在耐火材料应用领域中,主要使用死烧镁砂。天然死烧镁砂通常含有较高的二氧化硅和三氧化二铁,而合成镁砂可通过化学反应控制二氧化硅和氧化钙的含量,并可获得较高致密度。

电熔镁砂是在电弧炉中于2750℃以上的温度下熔融镁砂而生成。与烧结镁砂相比,主晶相方镁石晶粒粗大且直接接触,纯度高,结构致密,抗渣性强,热震稳定性好,是高级含碳不烧砖和不定形耐火材料的良好原料。

使用镁砂最多的不定形耐火材料是用于碱氧转炉和电炉的喷补料。近年来,中间包工作衬使用镁砂越来越普遍。但它不需要使用高档镁砂,因为镁砂是与硅酸盐和粘土矿物混合来获得所需性能,并且它相对于其它应用场合可容许有较高含量杂质。

镁橄榄石依其颜色为橄榄绿而得名,它的最终矿物为镁橄榄石(2MgO·SiO2)和铁橄榄石(2FeO·SiO2),蛇纹石(3MgO·2SiO2·2H2O)是橄榄石不同含量的变体。橄榄石的天然特性使它可用于不同场合,其熔点为1800℃、热导率低、隔热性良好(比菱镁石低60%~80%)、耐火度高(1760℃)、不水化(使用前不需烧结)、无反应性、莫氏硬度 6.5~7.0、比重为3.27~3.37和体积密度为 1.5~2.0g/cm3。并且它有利于保护环境(不含游离硅)、高的化学和矿物学稳定性(由于镁橄榄石矿物结合强)和良好的抗金属溶液渗透性(碱性和酸性的富氧化铁渣、碱性氧化物、硫酸盐、碳酸盐和氯化物)。

橄榄石价格便宜,它可与化学组成类似的高价格原料竞争。橄榄石和镁砂竞争作为浇注料和中间包内衬用耐火原料。作为焚烧炉用耐火材料,橄榄石在技术性能方面比其它耐火材料更具有优势,包括渣、温度和剥落对耐火材料的作用。

⑤碳质耐火原料

天然石墨是自然界中发现的一种碳。石墨通常为灰黑色,带有黑色光泽。晶体具有菱形六面体对称性的六方晶系。天然石墨通常有三种形式:无定形态、鳞片石墨和纯结晶体。石墨一般发现在类似于煤矿的地区,它的碳含量在75~90%之间。根据化学分析确定无定形态石墨的基础原料是普通煤。无定形态石墨主要产于墨西哥、韩国、中国和澳大利亚。

天然鳞片石墨也是一种天然存在的石墨矿物,它均匀分布于主矿之中。鳞片状的结晶结构很容易与无定形态石墨区别。天然鳞片石墨不同于无定形态石墨,由于它的结晶度高因而具有较高的取向性。天然鳞片石墨的石墨化程度达99.3%。纯结晶石墨的

基础材料是原油矿,随着时间的推进,在一定的温度和压力下,原油矿转化成大量固体石墨。纯结晶石墨结发现于斯里兰卡,X-射线衍射分析时,它通常用作与所有其它形式的石墨进行比较的标准样。

人造石墨是用石油焦烧结(加热到>2800℃)生成的。这些材料含石墨99.3%,实际碳含量为99.9%。另一种人造石墨是用石墨电极的工艺生产的,石墨含量为85~95%,碳含量为98~99.5%。

由于结晶石墨和鳞片石墨对流动性不利,因此无定形石墨和人造石墨较多地用于浇注料和泵送料中,其它不定形耐火材料使用何种石墨取决于它的应用和成本。

沥青分为煤焦油沥青和石油沥青,都可用于不定形耐火材料中。虽然煤焦油沥青比石油沥青具有较高的残碳量,但是它们都能有效地给耐火材料提供碳组分。来自于煤焦油或石油的残碳就是自然界的无定形碳。根据配方它们可以以细粉和颗粒形式使用。使用沥青优于其它形式的碳(如石墨),沥青熔化温度低,并可包敷颗粒,因而可提供良好的抵抗渣侵蚀的保护层。

煤焦油主要使用于高炉出铁口可塑料。它的特性有利于满足这种应用所需的特殊性能。煤焦油能使可塑料在长时间内保持作业性。用于这种场合的煤焦油通常有严格的技术要求,如不同温度下的挥发物含量、残存沥青含量、含水量、二硫化碳的溶解性和残碳量。不同生产厂所制定的技术要求也不同。

⑥尖晶石质耐火原料

尖晶石指所有属于尖晶石族的矿物,分为铝尖晶石、铁尖晶石和铬尖晶石系列,狭义的尖晶石指镁铝尖晶石。

镁铝尖晶石的化学式为MgO?Al2O3,其中MgO为28.2%,Al2O3为71.8%。过去10年中,铝-镁尖晶石主要用于高温耐火材料。定形和不定形耐火材料用铝-镁尖晶石的技术优势为:

抗热应力、机械应力性高;

●热膨胀率低;

●在环境中抗变化性高;

●次要的氧化物相含量低,从而具有高的耐火度;

●材料纯度高,可生成无杂质的耐火材料。

铝-镁尖晶石中氧化镁含量千差万别,低于或高于理论化学组成MgO28.2%。MgO含量高于理论化学组成的尖晶石通常用于制造耐火砖。但是这种尖晶石不被推荐用于不定形耐火材料配方中,因为它可能产生两个问题。首先,过量MgO在加热期间有可能水化,从而产生裂纹。其次,过量MgO在高温下也可生成尖晶石,将产生不需要的体积膨胀。目前,市场上销售的尖晶石含MgO10~33%。表2-7给出了常用铝-镁尖晶石的性能。

铝-镁尖晶石是在电弧炉中通过烧结或熔融拜耳氧化铝和氧化镁而生成的。这些尖晶石纯度极高,不含二氧化硅,但通常成本较高。尖晶石也可通过熔融或烧结铝矾土和镁砂生成,它含少量二氧化硅。尖晶石的成分主要取决于铝矾土中的二氧化硅含量。

⑦轻骨料

轻骨料可分为空心球、多孔熟料、陶粒、膨胀珍珠岩和膨胀蛭石。空心球又分为氧化铝、氧化锆空心球和漂珠。

氧化铝空心球是用工业氧化铝经高温电熔吹制而成的。空心球颗粒为白色、空心、薄壁的球状体,长期使用温度为1800℃。

氧化锆空心球是用氧化锆经高温电熔吹制而成的。其主晶相

,含量≥80%,其最高使用温度为2200℃。

为ZrO

2

漂珠是从热电厂粉煤灰中漂选出来的硅酸铝质玻璃珠体,呈白色,壁薄、中空,表面封闭而光滑。漂珠因煤质、燃烧条件等的情况不同,性能也有较大的差异。其耐火度≥1610℃,粒径

<200μm,特点是体轻、壳坚,热导率小,是轻质耐火材料的良好原料。

多孔熟料是用硬质粘土矿石或铝土矿石经加工处理后煅烧而成的。首先,将矿石粉磨并加烧失物,用水玻璃溶液或硫酸铝溶液做结合剂,在成球盘上成球;其次,将有一定强度的料球装进窑内,经1350~1460℃的煅烧,便获得多孔熟料。该料分为粘土质和高铝质两种,均作为耐火骨料,称为粘土质多孔耐火骨料和高铝质多孔耐火骨料。多孔熟料可直接使用,也可破碎分级后使用。其耐火度大于1670℃。

陶粒是用易熔粘土、页岩、粉煤灰和煤矸石等原料,经过煅烧而制成的球形状多孔颗粒,其表面粗糙而坚硬,类似陶瓷化,内部呈蜂窝状,有互不连通的微细气孔。陶粒的特点是容重小,热导率低,强度高,是一种优良的人造轻骨料。

陶粒品种分为粘土陶粒、页岩陶粒、粉煤灰陶粒和煤矸石陶粒等。按其颗粒形状和大小分为粗陶粒(粒径大于5mm)和陶粒砂(粒径等于或小于5mm)两种。在不定形耐火材料中优先采用页岩陶粒。

膨胀珍珠岩是用珍珠岩经煅烧后制得的。它呈白色、多孔状颗粒,即表面光滑、壁薄,内为蜂窝状结构。因此,膨胀珍珠岩容重小,热导率低,耐火度为1280℃~1360℃。

膨胀蛭石是用蛭石经煅烧而成。其容重为80~300kg/cm3。当煅烧不好,杂质多,则容重大;颗粒组成中,大颗粒多,容重小,反之容重大;其颗粒是由极薄的薄片组成,各薄片间充满空气,因此热导率低而吸水率大。其耐火度为1300~1370℃。

第二节不定形耐火材料用的结合剂

2.2.1 概述

为使不定形耐火材料即使在常温下也能产生结合并获得初期强度而添加的物质称为不定形耐火材料的结合剂。

由于不定形耐火材料在使用前未经高温烧成,颗粒之间无普通烧结制品那样具有陶瓷结合或直接结合,它们之间只能靠结合剂的作用使其粘结为整体,并使构筑物或制品具有一定的初期强度。颗粒之间在不定形耐火材料中基本上仍保持其原有特性,但由于结合剂将其粘结为构筑物或制品后,产品的性能在很大程度上受结合剂的影响。因此结合剂是不定形耐火材料中的重要组份。在不定形耐火材料中,应充分发挥和利用结合剂的粘结性能

和其它有利作用,而尽量减少和避免结合剂对材料的高温性能带来的不利影响。

因此,并不是所有物质都能作为不定形耐火材料的结合剂。作为不定形耐火材料的结合剂必须满足下列条件:

●能常温硬化,并使构筑物或制品产生足够的强度,一般

要求110℃烘干后抗压强度大于15MPa;

●硬化时的体积变化小,体积变化率小于1%;

●直到高温也能保证一定的强度;

●不明显地降低不定形耐火材料的性能;

●对人体和环境无危害;

●成本低;

●从市场上可以稳定地购货。

满足上述条件的物质按化学性质可作如下分类,见表2-8。

按照Sychev的分类方法,不定形耐火材料的结合剂又可分为凝聚结合,反应结合,水合结合和粘着结合等四大类。衡量结合剂结合性能的主要性质是制品的强度,即各个温度处理后的抗折强度和抗压强度。其它如施工性能等也是很重要的。

根据结合剂粘结作用的温度范围又可将不定形耐火材料的结合剂分为暂时性结合剂与永久性结合剂两大类。

2.2.2 暂时性结合剂

暂时性结合剂是指仅在常温下或较低温度下起结合作用的一类结合剂。其多为在高温下不能转化为碳素结合的有机物,在高温下因发生分解、挥发和燃烧而失去结合作用,因此,它们多作为不定形耐火材料的辅助性结合剂。暂时性结合剂按使用分为水溶性结合剂和非水溶性结合剂。

1)水溶性结合剂

这是一类具有大分子结构的可溶于水的有机物,它们之间的组成和结构不尽相同,但都有极性基,可吸附带极性的水分子而形成水化膜,溶于水或某些有机溶剂形成粘性溶液,对于耐火物料颗粒有良好的润湿性和相当高的粘着力,而将颗粒粘结为整体,经干燥后,结合剂因水的蒸发而使水合物的粘度提高,构筑物的结合强度也随之提高。最常用的有机高分子化合物结合剂有糊精、CMC、木质素磺酸盐类、PVAC、PVA、聚丙烯酸和异丁烯二酸。

这类结合剂一般不与耐火材料产生化学反应,并具有相当好的保水性,因而也不会使混合物的工艺性质随时间而波动。这类结合剂中有些是良好的表面活性物质,具有稀释或改善混合料可塑性的作用,使施工方便,使制品获得密实的结构。

由水溶性结合剂制成的不定形耐火材料混合料,结合剂多数只占混合料的2-3%,数量较少,颗粒间不会因结合剂的加入而拉大间隙,在干燥、烧结和使用过程中,一般不会产生严重的收缩或裂纹。另外,由于这类结合剂主要是由碳、氢、氧元素组成的,在加热过程中发生分解、挥发或燃烧,除有些有机盐可能残留少量灰分外,一般不会产生对耐火材料高温性能有害的影响。

2)非水溶性结合剂

非水溶性结合剂包括油熔性和热塑性有机物,它们不溶于水,当需要结合易水化的耐火物料如白云石骨料时,为避免物料的水化,常常使用这类结合剂。

非水溶性结合剂主要是硬沥青类、石蜡、聚丙烯类和热塑性树脂,使用时或加热软化成液态或溶于有机溶剂而呈液态进行施工,有时也以高度分散的细粉直接使用。当以加热软化的方式使用时,结合剂与耐火材料在热态下混拌,并在热态下成型。软化成液态的结合剂能润湿颗粒的表面,形成吸附薄膜,从而使耐火

物料间粘结为整体。当冷却到常温时,结合剂硬化,制品即具有相当高的强度。当以溶剂溶解的方式使用时,一般在常温下混拌和成型,成型后,特别是在加热时溶剂挥发,结合剂随之硬化。若以细粉状直接使用时,也多在热态下混拌和成型。其中在室温下能流动的结合剂,也可以在常温下干压成形。

2.2.3 碳素结合剂

碳素结合剂是永久性结合剂的一种。

永久性结合剂是在常温下和高温下均有结合作用的一类结合剂,在不定形耐火材料中使用最为广泛。常用的有碳素结合剂、水泥结合剂、硅酸盐结合剂、磷酸盐结合剂、氯化盐结合剂和硫酸盐结合剂等。

碳素结合剂是一些由含碳较多的、特别是残碳较多的有机物组成的整体,使其具有一定的强度,在高温下由于有大量碳素残留于其中而仍能起着结合作用。

由于碳素结合剂有许多优点,所以在不定形耐火材料中已有很长的使用历史,如焦油沥青已长期用于制造白云石质捣打料。虽然焦油沥青在使用中对环境有严重的污染,但近年仍在使用。另外,有机高分子材料的发展使碳素结合剂的品种和数量也日益增多,如酚醛树脂在耐火材料中已普遍应用。

碳素结合剂在常温下多呈固态或半固态,但在加热过程中于一定的温度范围内具有热塑性。利用此种热塑性可使其与不定形耐火物料混拌均匀制成混合料,并可采用适当的施工方法将混合料制成密度相当高的构筑物或制品。随着温度的提高,结合剂发

生分解作用、架桥作用、脱水和缩聚作用,最终变为碳素结合,使构筑物或制品变硬而具有相当高的冷态和热态强度。

碳素结合剂在加热过程中的强度变化不同于一般热塑性树脂。而且结合剂的品种不同,保持热塑性的温度范围和硬化特性也不尽相同。一般而论,结合剂中炭素含量越高,在耐火物料表面上结合的炭素浓度和在孔隙中残留的炭素就越多,使构筑物或制品的结构越密实,强度也越高。焦油沥青、酚醛树脂和其它有机物的理论残碳率如表2-10所示。

一般热塑性树脂的炭素含量低,在常温下有一定的强度,但随着温度的提高而软化,温度较高,强度越低。这类材料不能作为永久性结合剂。

焦油沥青的炭素含量较高,在常温下有一定的强度,加热后软化并在相当宽的温度范围内保持塑性,随着温度的提高,沥青进行缩聚、焦化,约到500℃时强度达到最高值。

酚醛树脂的碳含量较多,常温下的强度与煤焦油沥青和一般热塑性树脂相近,当加热后也可软化,但保持塑性的温度范围很窄,在此后的升温过程中,在远较煤焦油沥青硬化温度低的情况下即迅速硬化,而具有较高的热态结合强度。酚醛树脂硬化快、强度高的特性是因其在加热过程中分解生成的CO、CO2、H2、CH4和H2O气体较少,因而结构比较致密。由于酚醛树脂的这些特点,这类结合剂不仅在定形制品中使用,而且在不定形耐火材料中已广泛使用。

因此不定形耐火材料,尤其是含碳不定形耐火材料,用酚醛树脂类结合剂是完全可以制造出来的,其中,捣打料用酚醛树脂配制的途径也很多。

2.2.4 铝酸盐水泥

(1)氯酸钙水泥

氯酸钙是由烧结法或熔融法生产的氯酸钙熟料经细磨而制成的水硬性胶凝材料。它具有快硬高强、耐火、抗硫酸盐侵蚀的特点。

氯酸盐水泥的结合性能主要是由于氯酸钙的水化而实现的。水泥的化学成分不同,其矿物组成是不同的。在氯酸钙水泥中,可能出现的矿物及其耐火性能与水化性能如表2-11所示。

铝酸盐水泥水化建立强度是因为片、针状水化产物与胶态AH3交织在一起,将耐火物料紧密地联系在一起,从而成为一个

2-临床肿瘤学-基本知识整理版

临床肿瘤学 第一章绪论 1.新生物(neoplasm)/肿瘤:是机体在各种致瘤因素作用下,局部组织的细胞在基因水平上失掉了对其生长的正常调控,导致细胞的异常增生而形成的新生物。 2.恶性疾患(malignancy):繁殖一切恶性细胞增生性疾病,包括各种恶性肿瘤及白血病。 3.癌(carcinoma):从上皮发生的恶性肿瘤称为癌。 4.肉瘤(sarcoma):间胚叶或结缔组织来源的恶性肿瘤称为肉瘤。 5.癌症(cancer):泛指所有恶性肿瘤,包括癌、肉瘤和白血病。 6.临床肿瘤学(clinical oncology):专门研究人类肿瘤的临床规律特别是诊断和治疗方法的学科。 第二章肿瘤流行病学 1.恶性肿瘤死亡率:某年某地恶性肿瘤死亡人数/该地区同年平均人口数*10万 2.前瞻性研究和回顾性研究的优缺点 前瞻性研究的优点:直接获取暴露资料,可靠性高。 缺点:观察人群大,随访时间长,研究花费大。 回顾性研究的优点:随访相对时间段,花费相对低,可较快完成。 缺点:质量取决于记录资料的准确性。 3.三级预防的内容、肿瘤的三级预防 (1)一级预防(病因预防):针对肿瘤的病因、致病因素、发病危险因素采取的预防措施。 1)改变不良卫生习惯,保持健康生活方式 2)合理营养膳食结构 3)研究、鉴定环境中致促癌物 4)建立疫苗接种和化学预防方法 (2)二级预防(三早):指肿瘤的早期发现、早期诊断、早期治疗。 筛查 (3)三级预防(康复、姑息止痛):指的使提高肿瘤治愈率、生存率和生存质量。 1)提供规范化治疗方案和康复指导 2)进行心理、生理、营养和锻炼指导 3)对晚期患者开展姑息和止痛疗法 第三章肿瘤病因学 1.化学致癌物(chemical carcinogen):能引起人或动物肿瘤形成的化学物质。 2.直接致癌物:这类化学物质进入体内后能与体内细胞互相作用,不需要经过代谢就能诱导正常细胞癌变的化学物质。 3.间接致癌物:这类化学物质进入人体后需要经体内微粒体混合功能氧化酶活化,变成化学性质活泼的形式方具有致癌作用的化学致癌物。 4.促癌物或肿瘤促进剂(tumor promoting agent):单独作用于机体无致癌作用,但能促进其他致癌物诱发肿瘤形成的物质。 5.化学致癌物的种类及共同特点 按作用方式分:直接致癌物、间接致癌物、促癌物(肿瘤促进剂) 按与人类的关系分:肯定致癌物、可疑致癌物、潜在致癌物 按是否引起基因突变分:遗传毒性致癌物、非遗传毒性致癌物 共同特点:引起人或动物肿瘤形成(?) 5.电离辐射在肿瘤发生中的作用: 电离辐射是最主要的物理性致癌因素,主要包括以短波和高频为特征的电磁波的辐射以及电子、质子、中子、α粒子等的辐射。

钢结构的八大基础知识

钢结构的八大基础知识 钢结构的八大基础知识 一、钢结构的特点 1钢结构自重较轻 2钢结构工作的可靠性较高 3钢材的抗振(震)性、抗冲击性好 4钢结构制造的工业化程度较高 5钢结构可以准确快速地装配 6容易做成密封结构 7钢结构易腐蚀 8钢结构耐火性差 二、常用钢结构用钢的牌号及性能 1炭素结构钢:Q195、Q215、Q235等 2低合金高强度结构钢 3优质碳素结构钢及合金结构钢 4专门用途钢 三、钢结构的材料选用原则 钢结构的材料选用原则是保证承重结构的承载能力和防止在一 定条件下出现脆性破坏,根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑的。

《钢结构设计规范》GB50017-2003提出的四种钢材型号是“宜”使用的型号,是在条件许可时的首先选择,并不禁止其它型号的使用,只要使用的钢材满足规范的要求即可。 四、主要钢结构技术内容 高层钢结构技术 根据建筑高度和设计要求分别采用框架、框架支撑、筒体和巨型框架结构,其构件可采用钢、劲性钢筋混凝土或钢管混凝土。钢构件质轻延性好,可采用焊接型钢或轧制型钢,适用于超高建层建筑;劲性钢筋混凝土构件刚度大,防火性能好,适用于中高层建筑或底部结构;钢管混凝土施工简便,仅用于柱结构。 空间钢结构技术 空间钢结构自重轻、刚度大、造型美观,施工速度快。以钢管为杆件的球节点平板网架、多层变截面网架及网壳等是我国空间钢结构用量最大的结构型式。具有空间刚度大,用钢量低的优点,在设计、施工和检验规程,并可提供完备的CAD。除网架结构外,空间结构尚有大跨悬索结构、索膜结构等。 轻钢结构技术 伴随着轻型彩色钢板制成墙体和屋面围护结构组成的新结构形式。由5mm以上钢板焊接或轧制的大断面薄壁H型钢墙梁和屋面檩条,圆钢制成柔性支持系统和高强螺栓连接构成的轻钢结构体系,柱距可从6m到9m,跨度可达30m或更大,高度可达十几米,并可设轻型吊四。用钢量20~30kg/m2。现已有标准化的设计程序和专业化生产企

不定形耐火材料在水泥烧成系统上的应用现状与发展

定形耐火材料在水泥烧成系统上的应用现状与发展 中国耐材之窗网[耐火材料基本知识] 2009年9月11日 在我国,不定形耐火材料在水泥烧成系统上的应用,已经有很长时间的历史,但是在新型干法水泥生产线烧成系统上使用耐火材料,仍然是最近几年的事。尽管国内众多水泥窑使用不定形耐火材料,但是许多水泥企业仍然为寻找合适的不定形耐火材料及其供应商而煞费苦心。不定形耐火材料的质量及相关服务仍然是困扰水泥生产商的难题之一,而与此同时,许多水泥生产商对不定形耐火材料仍然缺乏足够的了解。认真地分析、解决存在的问题,毫无疑问需要不定形耐火材料供应商与水泥生产企业共同的努力。作为不定形耐火材料研究与生产服务企业,自我完善、自我发展是我们应对竞争的惟一手段,同时,我们愿意与业内及相关领域内的有识之士共同探讨这些问题,期待能够达成共识,使不定形耐火材料在新型干法水泥上的应用不断完善、发展。 1.不定形耐火材料种类繁多、市场混乱随着国内新型干法水泥的迅猛发展,不定形耐火材料供应商日益增多。近几年,国外的供应商也开始进入国内市场,竞争日益激烈。激烈的竞争一方面促进了一些供应商不断地提高产品质量与服务质量,另一方面也出现了不正当竞争、低价竞争等不良现象,尤其出现了让许多供应商和用户十分头疼的市场混乱情况。水泥生产企业在采购不定形耐火材料时,由于不同供应商的产品名称、牌号、材质、价格及寿命有着极大的差异,往往很难做出正确的选择。 2.不定形耐火材料正确使用的重要性虽然不定形耐火材料在水泥生产线上的应用已经有 了较长时间的历史,但是由于国内新型干法水泥生产线发展迅猛,具有丰富应用经验的技术人员不足,不定形耐火材料在使用过程中依然存在着很严重的问题,这些问题大都集中体现在不定形耐火材料的施工、养护和烘烤上,常见的有以下几点:①为了追求施工速度,任意增加耐火浇注料的加水量,拌好的浇注料可以像水一样,用几米甚至十几米长的橡胶软管输送到模具中;②模具支设过高,这种做法也是为了提高施工速度,但是必然会导致浇注料加水量过大及振捣不密实的结果;③不支设模具,手工涂抹浇注料,这种情况一般在下料管衬里施工时使用,有时甚至出现在部分预热器锥体衬里的施工中;④模具强度差,导致衬里变形,或导致浇注料加水量增加,影响材料质量;⑤冬季施工中,加入食盐或其他物质作为防冻剂,降低了材料的高温使用性能,或在冬季施工时不采取合理的防冻措施;⑥养护时间短;

不定型耐火材料

不定形耐火材料(unshaped refractories) 由一定级配的骨料、粉料、结合剂和外加剂组成不定形状的不经烧成可供直接使用的耐火材料。不定形耐火材料的耐火度应不低于1500℃,有些隔热不定形耐火材料的耐火度允许低于1500℃。这类材料无固定的外形,呈松散状、浆状或泥膏状,因而也称为散状耐火材料,也可以制成预制块使用或构成无接缝的整体构筑物,也称为整体耐火材料。 不定形耐火材料具有工艺简单,生产周期短、节约能源、使用时整体性好、适应性强、便于机械化施工等特点。 简史不定形耐火材料是以耐火浇注料为基础而拓展的。早在1918年法国已开始销售铝酸盐水泥,一般认为在1925年欧美国家才以铝酸盐水泥作为耐火浇注料的结合剂,在第二次世界大战时期,美国用耐火浇注料和耐火可塑料作为锅炉和石油设备内衬。日本在1955年开始生产不定形耐火材料。到1960年美、日、联邦德国不定形耐火材料分别占耐火材料产量的12.6%、1.6%和1.6%。1966~1975年不定形耐火材料在工业发达国家实现了品种系列化,质量稳步提高、产量显著增长,1980年以前,美、日、联邦德国的不定形耐火材料产量已分别提高至37.1%、31.7%和36.8%,大致占耐火材料产量的三分之一或稍多一些。20世纪80年代以后,工业发达国家耐火材料产量逐步有所下降,而不定形耐火材料产量并无太大变化,因而不定形耐火材料产量比率相应提高,如以日本为例:1976~1985年耐火材料产量从270万t左右降至200万t左右,而其中不定形耐火材料始终维持在90万t左右,其比率从34%提高到44%。美国不定形耐火材料的比率已达到50%,西欧共同体为35%。到90年代初,不

钢材基础知识大全

钢材基础知识大全 This model paper was revised by LINDA on December 15, 2012.

钢材基础知识(一) 第一部分基础知识 一、钢及其分类 1、按冶炼方法分类: 平炉钢:包括碳素钢和低合金钢。按炉衬材料不同又分酸性和碱性平炉钢两种。 转炉钢:包括碳素钢和低合金钢。按吹氧位置不同又分底吹、侧吹和氧气顶吹转炉钢三种。 电炉钢:主要是合金钢。按电炉种类不同又分电弧炉钢、感应电炉钢、真空感应电炉钢和电渣炉钢四种。 沸腾钢、镇静钢和半镇静钢:按脱氧程度和浇注制度不同区分。 2、按化学成分分类: 碳素钢:是铁和碳的合金。据中除铁和碳之外,含有硅、锰、磷和硫等元素。 按含碳量不同可分为低碳(C<%)、中碳(C:%%)和高碳(C>%)钢三类。 碳含量小于%的钢称工业纯铁。 普通低合金钢:在低碳普碳钢的基础上加入少量合金元素(如硅、钙、钛、铌、硼和稀土元素等,其总量不超过3%)。而获得较好综合性能的钢种。

合金钢:是含有一种或多种适量合金元素的钢种,具有良好和特殊性能。按合金元素总含量不同可分为低合金 (总量<5%)、中合金(合金总量在5%-10%)和高合金(总量>10%)钢三类。 3、按用途分类: 结构钢:按用途不同分建造用钢和机械用钢两类。建造用钢用于建造锅炉、船舶、桥梁、厂房和其他建筑物。机械用钢用于制造机器或机械零件。 工具钢:用于制造各种工具的高碳钢和中碳钢,包括碳素工具钢、合金工具钢和高速工具钢等。 特殊钢:具有特殊的物理和化学性能的特殊用途钢类,包括不锈耐酸钢、耐热钢、电热合金和磁性材料等。 二、钢材及其分类 炼钢炉炼出的钢水被铸成钢坯,钢锭或钢坯经压力加工成钢材(钢铁产品)。钢材种类很多,一般可分为型、板、管和丝四大类。 1、型钢类 型钢品种很多,是一种具有一定截面形状和尺寸的实心长条钢材。按其断面形状不同又分简单和复杂断面两种。前者包括圆钢、方钢、扁钢、六角钢和角钢;后者包括钢轨、工字钢、槽钢、窗框钢和异型钢等。直径在的小圆钢称线材。 2、钢板类

肿瘤学基础知识-1

肿瘤学基础知识-1 (总分:100.00,做题时间:90分钟) 一、A1型题(总题数:43,分数:100.00) 1.我国目前居恶性肿瘤死亡前四位的恶性肿瘤是 (分数:3.00) A.肺癌、肝癌、胃癌、食管癌√ B.胃癌、肺癌、乳腺癌、结直肠癌 C.肝癌、肺癌、胃癌、乳腺癌 D.肺癌、肝癌、鼻咽癌、乳腺癌 E.胃癌、肺癌、乳腺癌、宫颈癌 解析:[解析] 我国20世纪70年代恶性肿瘤死亡顺序为胃癌、食管癌、肝癌、肺癌和宫颈癌;20世纪90年代的死亡顺序为胃癌、肝癌、肺癌、食管癌和结直肠癌;2000年为肺癌、肝癌、胃癌、食管癌和结直肠癌。我国正处在由发展中国家高发癌谱向发达国家高发癌谱的过渡时期,已经形成两者共存的局面,加大了恶性肿瘤的防治难度。 2.肿瘤目前成为多发病、常见病的主要原因不包括 (分数:3.00) A.以往严重威胁人类健康的感染性疾病得到了控制 B.环境致癌物愈来愈多 C.人类平均寿命延长 D.肿瘤诊断率提高 E.世界经济一体化√ 解析: 3.八种常见恶性肿瘤不包括 (分数:3.00) A.肺癌 B.乳腺癌 C.大肠癌 D.胰腺癌√ E.食管癌 解析:[解析] 八种常见恶性肿瘤是肺癌、胃癌、乳腺癌、大肠癌、口腔癌、肝癌、宫颈癌、食管癌,胰腺癌相对发病率比较低。 4.恶性肿瘤占全球人口死亡原因的 (分数:3.00) A.第一位 B.第二位 C.第三位√ D.第四位 E.第五位 解析:[解析] 根据世界卫生组织2002年的统计,恶性肿瘤已经是全球第三大死因。心脏病、卒中、癌症为全球死亡原因的前三位。 5.目前全世界发病率最高的恶性肿瘤是 (分数:3.00) A.肺癌√ B.胃癌 C.乳腺癌 D.结直肠癌 E.肝癌

钢结构八大基础知识

钢结构八大基础知识 一、钢结构的特点 1、钢结构自重较轻 2、钢结构工作的可靠性较高 3、钢材的抗振(震)性、抗冲击性好 4、钢结构制造的工业化程度较高 5、钢结构可以准确快速地装配 6、容易做成密封结构 7、钢结构易腐蚀 8、钢结构耐火性差 二、常用钢结构用钢的牌号及性能 1、炭素结构钢:Q195、Q215、Q235、Q255、Q275等 2、低合金高强度结构钢 3、优质碳素结构钢及合金结构钢 4、专门用途钢

三、钢结构的材料选用原则 钢结构的材料选用原则是保证承重结构的承载能力和防止在一定条件下出现脆性破坏,根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑的。 展开全文 《钢结构设计规范》GB50017-2003提出的四种钢材型号是“宜”使用的型号,是在条件许可时的首先选择,并不禁止其它型号的使用,只要使用的钢材满足规范的要求即可。 四、主要钢结构技术内容 (1)高层钢结构技术。根据建筑高度和设计要求分别采用框架、框架支撑、筒体和巨型框架结构,其构件可采用钢、劲性钢筋混凝土或钢管混凝土。钢构件质轻延性好,可采用焊接型钢或轧制型钢,适用于超高建层建筑;劲性钢筋混凝土构件刚度大,防火性能好,适用于中高层建筑或底部结构;钢管混凝土施工简便,仅用于柱结构。

(2)空间钢结构技术。空间钢结构自重轻、刚度大、造型美观,施工速度快。以钢管为杆件的球节点平板网架、多层变截面网架及网壳等是我国空间钢结构用量最大的结构型式。具有空间刚度大,用钢量低的优点,在设计、施工和检验规程,并可提供完备的CAD。除网架结构外,空间结构尚有大跨悬索结构、索膜结构等。 (3)轻钢结构技术。伴随着轻型彩色钢板制成墙体和屋面围护结构组成的新结构形式。由5mm以上钢板焊接或轧制的大断面薄壁H型钢墙梁和屋面檩条,圆钢制成柔性支持系统和高强螺栓连接构成的轻钢结构体系,柱距可从6m到9m,跨度可达30m或更大,高度可达十几米,并可设轻型吊四。用钢量20~30kg/m2。现已有标准化的设计程序和专业化生产企业,产品质量好,安装速度快,重量轻,投资少,施工不受季节限制,适用于各种轻型工业厂房。 (4)钢混凝土组合结构技术。以型钢或钢管理与混凝土构件组成的梁、柱承重结构为钢混组合结构,近年来应用范围日益扩大。组合结构兼有钢与混凝土两者的优点,整体强度大、刚性好、抗震性能良好,当采用外包混凝土构造时,更具有良好的耐火和耐腐蚀性能。组合结构构件一般可降低用钢量15~20%。组合楼盖及钢管混凝土构件,还具有少支模或不支模、施工方便快速的优点,推广潜

肿瘤学(主治医学)基础知识部分及答案详解

基础知识 一、A型题 1.规范化癌症疼痛处理的目的 A.缓解疼痛,改善功能,延长生存时间 B.缓解疼痛,控制肿瘤生长,延长生存时间 C.缓解疼痛,改善功能,提高生活质量 D.缓解疼痛,规范医疗质量 E.延长生存时间,改善生活质量 正确答案:C 2.目前流行病学调查研究显示导致肺癌发生率增加的最主要因素是 A.大气污染 B.支气管炎 C.吸烟 D.哮喘 E.肺气肿 正确答案:C解题思路:世界上绝大多数国家承认85%的男性肺癌和46%的女性肺癌是由于吸烟引起的。很多发展中国家吸烟的人越来越多,肺癌患者也日益增多;发达国家由于宣传戒烟,肺癌的发生率已不再增高。目前研究显示大气污染与肺癌的发病也有一定相关性。 3.止痛药物治疗的基本原则不包括 A.按阶梯给药 B.口服给药 C.按时给药 D.个体化给药 E.不要随便调整剂量 正确答案:E 4.目前全世界发病率最高的恶性肿瘤是 A.肺癌 B.胃癌 C.乳腺癌 D.结直肠癌 E.肝癌 正确答案:A解题思路:目前,由于吸烟和工业化的发展,肺癌是全世界发病率最高的恶性肿瘤,其次为乳腺癌,第三为结直肠癌。 5.非复方吗啡口服剂量15mg q4h换算为非肠道用药的等效镇痛剂量为 A.5mg q4h B.4mg q6h C.10mg q4h D.12mg q8h E.2mg q8h 正确答案:A解题思路:全天吗啡口服药物总量的1/3为非肠道用药的剂量。 6.关于肿瘤综合治疗的定义正确的是 A.手术+放疗+化疗 B.手术+放疗+化疗+靶向治疗

C.手术+放疗+化疗+免疫治疗 D.手术+放疗+化疗+生物治疗 E.根据患者的具体情况,有计划地合理应用现有的治疗手段,以期更好地提高治愈率正确答案:E 7.下列药物中不属于麻醉药品的是 A.度冷丁 B.芬太尼 C.强痛定 D.吗啡 E.氢可酮 正确答案:C 8.环境致癌因素包括 A.生物致癌因素 B.物理致癌因素 C.化学致癌因素 D.以上均是 E.以上均不是 正确答案:D 9.关于遗传因素和肿瘤发生的关系,说法错误的是 A.有些肿瘤具有明显的家族聚集现象 B.环境因素是肿瘤发生的始动因素,而个人的遗传特征决定肿瘤的易感性 C.暴露于同一致癌物环境中的人群均会患癌 D.抑癌基因的变异或丢失可致癌 E.癌基因的激活可致癌 正确答案:C解题思路:肿瘤的发生和发展是十分复杂的,除了外界致癌因素的作用外,机体的内在因素也起着重要作用,即人的遗传特征决定肿瘤的易感性。所以即使处于相同的致癌物环境中,有些人患肿瘤,而另外一些人却能活过正常寿命期,提示个体因素如遗传特征在肿瘤的发生中也起重要作用。 10.恶性肿瘤占全球人口死亡原因的 A.第一位 B.第二位 C.第三位 D.第四位 E.第五位 正确答案:C解题思路:根据世界卫生组织2002年的统计,恶性肿瘤已经是全球第三大死因。心脏病、卒中、癌症为全球死亡原因的前三位。 11.阿片类药物最常见的不良反应是 A.呼吸抑制 B.嗜睡 C.便秘 D.眩晕 E.腹泻 正确答案:C解题思路:恶心呕吐、便秘、呼吸抑制、嗜睡、眩晕等都属于阿片类药物的不良反应,但最常见的是恶心呕吐和便秘。在给予阿片类药物控制疼痛时,要同时辅助给

钢结构的八大基础知识

钢结构的八大基础知识! 一、钢结构的特点 1 钢结构自重较轻 2 钢结构工作的可靠性较高 3 钢材的抗振(震)性、抗冲击性好 4 钢结构制造的工业化程度较高 5 钢结构可以准确快速地装配 6 容易做成密封结构 7 钢结构易腐蚀 8 钢结构耐火性差 二、常用钢结构用钢的牌号与性能

1 炭素结构钢:Q195、Q215、Q235等 2 低合金高强度结构钢 3 优质碳素结构钢与合金结构钢 4 专门用途钢 三、钢结构的材料选用原则 钢结构的材料选用原则是保证承重结构的承载能力和防止在一定条件下出现脆性破坏,根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑的。

《钢结构设计规范》GB50017-2003提出的四种钢材型号是“宜”使用的型号,是在条件许可时的首先选择,并不禁止其它型号的使用,只要使用的钢材满足规范的要求即可。 四、主要钢结构技术内容 高层钢结构技术 根据建筑高度和设计要求分别采用框架、框架支撑、筒体和巨型框架结构,其构件可采用钢、劲性钢筋混凝土或钢管混凝土。钢构件质轻延性好,可采用焊接型钢或轧制型钢,适用于超高建层建筑;劲性钢筋混凝土构件刚

度大,防火性能好,适用于中高层建筑或底部结构;钢管混凝土施工简便,仅用于柱结构。 空间钢结构技术 空间钢结构自重轻、刚度大、造型美观,施工速度快。以钢管为杆件的球节点平板网架、多层变截面网架与网壳等是我国空间钢结构用量最大的结构型式。具有空间刚度大,用钢量低的优点,在设计、施工和检验规程,并可提供完备的CAD。除网架结构外,空间结构尚有大跨悬索结构、索膜结构等。 轻钢结构技术 伴随着轻型彩色钢板制成墙体和屋面围护结构组成的新结构形式。由5mm 以上钢板焊接或轧制的大断面薄壁H型钢墙梁和屋面檩条,圆钢制成柔性支持系统和高强螺栓连接构成的轻钢结构体系,柱距可从6m到9m,跨度可达30m或更大,高度可达十几米,并可设轻型吊四。用钢量20~30kg/ m2。现已有标准化的设计程序和专业化生产企业,产品质量好,安装速度快,重量轻,投资少,施工不受季节限制,适用于各种轻型工业厂房。 钢混凝土组合结构技术 以型钢或钢管理与混凝土构件组成的梁、柱承重结构为钢混组合结构,近年来应用范围日益扩大。组合结构兼有钢与混凝土两者的优点,整体强度大、刚性好、抗震性能良好,当采用外包混凝土构造时,更具有良好的耐火和耐腐蚀性能。组合结构构件一般可降低用钢量15~20%。组合楼盖与

最新不定形耐火材料的新进展18-44

不定形耐火材料的新进展18-44

不定形耐火材料的新进展 王守业1)曹喜营1,2)李再耕1)王战民1,2)张三华1)李少飞1) 1) 中钢集团洛阳耐火材料研究院有限公司河南省特种耐火材料重点实验室河南洛阳471039 2) 北京科技大学材料科学与工程学院北京 100083 1 概述[1] 近几年來,随着耐火材料所服务的钢铁等高温工业的快速发展,耐火材料行业进步很快,见图 1和图2。尤其是不定形耐火材料由于其具有工艺简单,施工方便,整体性好,节能降耗等优点,越来越得到大家的广泛关注和认可。目前我国不定形耐火材料的产量已达到耐火材料总产量的三分之一以上,与不定形耐火材料相关的新技术、新工艺、新方法和新装备也不断涌现。当前,受世界范围内金融危机的影响,耐火材料相关行业发展速度有所放缓。但从长远看,我国是一个发展中国家,具有很强的内部需求,尤其是我国陆续推出的产业振兴规划等一系列经济刺激措施的实施,可以预计这些行业在今后仍将得到平稳健康的发展。 图 1 中国粗钢产量(单位:万t)及增速(单位:%)走势

图2 2004年~2008年全国耐火材料行业产成品变化趋势图 2 原料 2.1 矾土基原料的均化、提纯和开发[2, 3, 4] 我国有丰富的矾土资源,建国以来,国家先后在原山西阳泉高铝矾土矿、贵州贵阳耐火材料厂、河南渑池煅烧厂依托当地铝土矿资源,建立了高铝耐火原料生产基地。但目前矾土生产仍以煅烧天然块料为主,品种单一,质量波动大,资源利用差,能耗比较高,污染较严重,产品附加值低。在目前铝矾土资源日益匮乏的情况下,需要重视耐火原料的研究,采取均化、提纯等技术路线,开发优质合成新材料,使天然原料的品位、质量发生质的提升,提高原料附加值和资源的利用率。 2.1.1 矾土均化 国内外的均化料生产一般采用湿法均化工艺,即采用的是湿法制粉、真空挤泥成型、干燥、烧结的生产工艺。该工艺尽管比较成熟,但存在着工艺流程长、能耗高、消耗大量水资源等缺点。为克服湿法工艺的缺点,新型的半干法均化工艺应运而生。新型半干法工艺简单地说就是干法制粉、半干法造粒、成型、烧结制备均化料的工艺。图3为湿法和新型半干法工艺流程的示意图。表 1为干法工艺均化料的理化指标。

肿瘤基础知识培训

第一部分:肿瘤的基本知识 一、概述 肿瘤是常见病,多发病,其中恶性肿瘤是目前危害人类健康最严重的一类疾病。我国最为常见和危害性最严重的肿瘤为肺癌、食管癌、胃癌、大肠癌、肝癌、乳腺癌、鼻咽癌、宫颈癌和淋巴瘤、白血病。20世纪以来,尽管恶性肿瘤已成为人类致死的第1或第2位原因,但肿瘤学的进展已使肿瘤患者的1/3有根治希望。 二、肿瘤的概念 肿瘤是机体在各种致瘤因素作用下,局部组织的细胞在基因水平上失去对其生长的调控,导致单克隆性异常增生而形成的新生物。这种新生物常形成局部肿块,因而得名。 肿瘤性增生与非肿瘤性增生具有本质的区别。非肿瘤性增生为机体生存所需,所增生的组织能够分化成熟,并且能够恢复原来正常组织的结构和功能,且这种增生是具有一定限度的,一旦原因去除后就不再继续。正常细胞转化为肿瘤细胞就具有异常的形态、代谢、功能,并在不同程度上失去了分化成熟的能力。肿瘤生长旺盛,并具有相对自主性。即使后来致瘤因素不存在时仍能持续生长。 根据肿瘤的生物学特性及其对机体的危害性的不同,一般分为良性肿瘤和恶性肿瘤两大类。三、肿瘤的生长和扩散 1.肿瘤是由一个转化细胞不断增生繁衍形成的。 一个典型的恶性肿瘤的自然生长史可以分为几个阶段:“一个细胞的恶性转化→转化细胞的克隆性增生→局部浸润→远处转移”。具有局部浸润和远处转移是恶性肿瘤最重要的特点,并且是恶性肿瘤致人死亡的主要原因。 在此过程中,恶性转化细胞的内在特点(如肿瘤的生长分数)和宿主对肿瘤细胞及其产物的反应(如肿瘤血管形成)共同影响肿瘤的生长和演进。 2.肿瘤的生长方式与扩散 (1)肿瘤的生长速度:各种肿瘤的生长速度有极大的差异,主要取决于肿瘤细胞的分化成熟程度。良性肿瘤生长缓慢,恶性肿瘤生长较快,良性肿瘤恶变时生长速度突然加快。 (2)肿瘤的生长方式:肿瘤可以呈膨胀性生长、外生性生长和浸润性生长。 1)膨胀性生长:是大多数良性肿瘤所表现的生长方式,肿瘤生长缓慢,不侵袭周围组织,往往呈结节状,有完整的包膜,与周围组织分界明显,对周围的器官、组织主要是挤压或阻塞的作用。一般均不明显破坏器官的结构和功能。因为其与周围组织分界清楚,手术容易摘除,摘除后不易复发。 2)外生性生长:发生在体表、体腔表面或管道器官(如消化道、泌尿生殖道)表面的肿瘤,常向表面生长,形成突起的乳头状、息肉状、菜花状的肿物,良性、恶性肿瘤都可呈外生性生长。但恶性肿瘤在外生性生长的同时,其基底部也呈浸润性生长,且外生性生长的恶性肿瘤由于生长迅速、血供不足,容易发生坏死脱落而形成底部高低不平、边缘隆起的恶性溃疡。 3)浸润性生长:为大多数恶性肿瘤的生长方式。由于肿瘤生长迅速,侵入周围组织间隙、淋巴管、血管,如树根之长入泥土,浸润并破坏周围组织,肿瘤往往没有包膜或包膜不完整,与周围组织分界不明显。临床触诊时,肿瘤固定不活动,手术切除这种肿瘤时,为防止复发,切除范围应该比肉眼所见范围大,因为这些部位也可能有肿瘤细胞的浸润。

不定型耐火材料和不定形耐火材料的区别

金京窑业详细的分析:耐火制品普通产品是粘土质、中级产品有高铝质和硅质、高级产品有莫来石、刚玉质、镁质、碳化硅质、锆质等等,这些材质均可做为定形与不定形耐材的耐火原料。那么具体定型与不定性材料有什么区别呢? 一、定形耐火材料——耐火砖的验收方法 1、量尺法,关于外形尺度要求较严的耐火砖和异型耐火砖及制品;一般选用钢尺和钢角尺对耐火砖及耐火制品进行逐块查看;量尺时应量砖的毎一面中心部位的尺度; 2、比较法,关于形状较规矩、单重不大的耐火砖,宜在金属查验台上放置规范耐火砖,进行逐块比较选分;当耐火砖标准不多,但数量较大时,宜用金厲薄板制造样板,逐块比较选分; 3、过门法,在选砖平台上,要放若干个顺次摆放的不同高度的金属结构,当耐火砖经过某一结构时,则其尺度按所经过的结构高度断定,

二、不定形耐火材料整体浇注的优点 1、不生成新的低熔点相,高温性能得到改善,使用温度得到提高; 2、由于加入了超细粉,改善了作业性能,同时提高了材料的致密度和材料的抗侵蚀性能; 3、由于加入的超细粉具有较大的表面活性,降低了烧结温度,提高了低、中温结合强度,而且也大大提高了高温机械强度; 4、不定形材料依靠衬体的温度梯度,在使用过程中,从工作衬到背衬逐渐烧结,逐步形成致密工作层,不易出现贯穿裂纹,使材料热震稳定性突显; 5、未烧结层的密度低于烧结层,因此导热系数低,热损失小。 但其实不定形耐火材料与定形耐火材料一般口语上来讲是一样的,不定形耐火材料通过字面的意思来理解就是,形状不是像标砖耐火砖那样有固定形状的耐

火材料制品。平时输入或者字面意思的时候形和型没有很明显的区分开。一般常见的不定性耐火材料有:浇注料,耐火泥,耐火水泥,耐火土等等,它们有一个共同点就是都是粉装,没有固定形状的,可以涂在窑炉表面,也可以填充砌筑缝隙等。 以上就是二者的区别,希望能帮到大家,感谢您的阅读!

钢厂与钢材基础知识

钢厂与钢材基础知识 口号:我爱一诺,一诺爱我 创业理念:创立新行业,树立新标准 管理理念:职业化管理,专业化经营 团队理念:敬业,专业,专注,创新 营销理念:每人都是信息员,每人都是业务员 协同理念:大营销,大服务 钢铁物流是以“钢铁”为载体,以“物流”为运作,以“信息”为核心,集钢材贸易、电子商务、三方物流为一体,资金流、信息流、物流相互促进、相互融合,涵盖建筑行业、冶金行业、信息产业、现代物流四大行业的交叉行业。 建筑钢厂分布: 东北地区:凌源,北台,抚钢,通钢,西林钢厂 华北地区大钢厂:首钢,天钢,河北钢铁,新兴铸管,敬业,邢钢,海鑫 小钢厂:河北:九江,东海,普阳,明顺(明芳),裕华,新金,元宝山,庆元 山西:晋钢,长治钢铁,中阳,中宇,黎城太行,宏达,长平,长信,长宁,海威 华东地区大钢厂:沙钢,永钢,合钢,马钢,南昌钢铁,新钢,萍钢,福建三钢,济钢,莱钢,石横 小钢厂:山东:日照,青钢,潍坊钢铁,济钢闽源,莱钢永锋,泰乐,西王钢铁,张店 上海:申特江苏:中天,溧阳三元,南京雨花 中南地区大钢厂:安钢,济源,武钢,鄂钢,湘钢,涟钢,广钢,韶钢,柳钢 小钢厂:河南:兴安,洛钢,伟业,安信,安阳亚新 湖北:湖北大展,鄂州鸿泰,大冶华鑫 广东:广钢裕丰,珠海粤钢,宝兴 西北地区大钢厂:八一钢铁,酒泉钢铁 小钢厂:龙钢,华阴钢铁,略阳钢铁 西南地区:成钢,水钢,重钢,云南德胜,昆钢 中厚板生产厂家: 华东:宝钢,马钢,新钢,济钢 中南:安钢,武钢,重钢,舞钢,韶钢,柳钢,湘钢等 北方:鞍钢,本钢,天钢,首钢,邯钢 二线钢厂: 华北:普阳,文丰,敬业,临钢 华东:江阴长达,上海春冶,江阴上钢,江苏张家港华伟,无锡兆顺,泰州兴化兆泰等 卷板生产厂家: 东北:鞍钢,本钢,北台,通钢 华北:邯钢,唐钢,包钢,太钢,国丰,港陆,首钢,迁安,德龙,天铁,津西(海鑫) 华东:宝钢,梅钢,上一,沙钢,马钢,济钢,莱钢,日照,南钢(南京)(宁波钢铁) 华南:广钢珠江,韶钢

肿瘤科出科小结2篇

肿瘤科出科小结2篇 在肿瘤科的6周实习中受益颇多,即将要出科了,却有好多的不舍。对于我们的实习,科里的老师们都很重视,每周的实习安排也谨然有序,从而让我们循序渐进的学习与成长。在此,对各位老师表示衷心的感谢。 尤记得第一天来到肿瘤科的我带着惶恐不安的心情杵在护士站,听着谭老师介绍肿瘤科的情况,直到跟着慢慢熟悉环境之后,心情才放松下来随着我的带教老师——李俊青开始接下来的实习生活。 护士这个职业,看是一回事,亲身做又是一回事。见习和实习中的感受是完全的不同,见习看的多,做的少;实习却是做的多,看的少了。在实习中我们不像见习时那么有空询问病人的情况,反而只是忙着做自己该做的事,做完后稍微喘口气。而且刚下科室的我对于操作并不是很熟悉,一开始也只能做些生活护理以及跟在老师身边看着,况且由于语言的障碍,好几次我都没听清楚老师的吩咐,跟病人的沟通更是困难,对此觉得挺无奈的。但是有的病人热情地告诉我有空的时候跟他们聊天,他们可以教我说重庆话时又是那么的令人感动。 在肿瘤科,我见到了护士们用专业的技术与知识为病人服务,用亲切和蔼的话语安抚关怀病人。肿瘤科的特色是放疗与化疗。放疗是专门在放射楼,我也就去过一次,虽然那次没看到治疗室是如何的,但从大体设置上能够看的出来环境是比较温暖的,而不是只有冷冰冰的仪器。化疗则是病房护理的重点,无论是化疗药物及其副作用和护理要点、化疗防护原则、picc的观察和护理,还有放疗的副作用和护理要点,老师通过自己的示范操作与专题讲课将知识传授给我们。而且李老师还教我要注意细节,合理安排工作,基础知识不可忘,在护理工作中绝对要牢记“三查七对”。至今让我印象深刻的是我发错了一颗止痛药,一直到交班的时候才发现,或许比较庆幸的是那颗药还没吃下去,所以我把那颗药给原本要服药的阿姨了。但是却让她忍痛了那么久,我感到很抱歉;还让老师为我道歉,又感到很愧欠。虽然说病人和老师都没有指责我,还反着安慰我不要太担心,要我以后更注意点。更是因为病人的体谅和老师的关心让

耐火材料标准

耐火材料标准精选(最新) G2273《GB/T 2273-2007 烧结镁砂》 G2608《GB/T 2608-2012 硅砖》 G2992.1《GB/T 2992.1-2011 耐火砖形状尺寸 第1部分:通用砖》 G2992.2《GB/T 2992.2-2014 耐火砖形状尺寸 第2部分:耐火砖砖形及砌体术语》 G2994《GB/T 2994-2008 高铝质耐火泥浆》 G2997〈GB/T2997-2000 致密定形耐火制品体积密度,显气孔率〉 G2998〈GB/T2998-2001 定形隔热耐火制品体积密度和真气孔率试验方法〉 G2999《GB/T2999-2002 耐火材料颗粒体积密度试验方法》 G3000〈GB/T3000-1999 致密定形耐火制品透气度试验方法〉 G3001《GB/T 3001-2007 耐火材料 常温抗折强度试验方法》 G3002《GB/T3002-2004 耐火材料 高温抗折强度试验方法》 G3003《GB/T 3003-2006 耐火材料 陶瓷纤维及制品》 G3007《GB/T 3007-2006 耐火材料 含水量试验方法》 G3994《GB/T 3994-2013 粘土质隔热耐火砖》 G3995《GB/T 3995-2014 高铝质隔热耐火砖》 G3997.1《GB/T3997.-1998 定形隔热耐火制品重烧线变化试验方法》 G3997.2《GB/T3997.2-1998 定形隔热耐火制品常温耐压强度试验方法》 G4513《GB/T4513-2000 不定形耐火材料分类》 G4984《GB/T 4984-2007 含锆耐火材料化学分析方法》 G5069《GB/T 5069-2007 镁铝系耐火材料化学分析方法》 G5070《GB/T 5070-2007 含铬耐火材料化学分析方法》 G5071《GB/T 5071-2013 耐火材料 真密度试验方法》 G5072《GB/T 5072-2008 耐火材料 常温耐压强度试验方法》 G5073《GB/T5073-2005 耐火材料 压蠕变试验方法》 G5988《GB/T 5988-2007 耐火材料 加热永久线变化试验方法》 G5989《GB/T 5989-2008 耐火材料 荷重软化温度试验方法 示差升温法》 G5990《GB/T 5990-2006 耐火材料 导热系数试验方法(热线法)》 G6646《GB/T 6646-2008 温石棉试验方法》 G6900《GB/T 6900-2006 铝硅系耐火材料化学分析方法》 G6901《GB/T 6901-2008 硅质耐火材料化学分析方法》 G6901.10《GB/T6901.10-2004 硅质耐火材料化学分析方法:火焰原子吸收光谱法测定氧化锰量》 G6901.11《GB/T6901.11-2004 硅质耐火材料化学分析方法:钼蓝光度法测定五氧化二磷量》 G7320《GB/T 7320-2008 耐火材料 热膨胀试验方法》 G7321《GB/T7321-2004定形耐火制品试样制备方法》 G7322《GB/T 7322-2007 耐火材料 耐火度试验方法》 G8071《GB/T 8071-2008 温石棉》 G8931《GB/T 8931-2007 耐火材料 抗渣性试验方法》 G10325《GB/T 10325-2012 定形耐火制品验收抽样检验规则》 G10326《GB/T10326-2001 定形耐火制品尺寸、外观及断面的检查方法》

YBT .- 不定型耐火材料试样制备方法 第部分 耐火浇注料

YBT 5202.1-2003 不定型耐火材料试样制备方法第1 部分耐火浇注料5366 YB/T 5<#004699'>20<#004699'>2.1-<#004699'>2003 前言 不定形耐火材料试样制备方法包括以下五个部分:第1部分:耐火浇注料;第<#004699'>2部分:耐火可塑料; 第3部分:耐火捣打料;第4部分:耐火涂抹料;第5部分:耐火喷射料。 本次修订主要参考了ASTM 0860-1995,BS 190<#004699'>2. 703-1987,JIS R<#004699'>2553-199<#004699'>2,DIN 51010- 1987等标准。 本部分与原标准相比,在以下方面作了修改: —对标准名称作了修改; —对标准适用范围重新作了调整; —采用流动值代替稠度来表述浇注料的流动性; —对搅拌机具和振动台的技术参数作了规定; —对搅拌时间和试样成型方法作了修改; —增加了化学分析和耐火度试样的取样方法; —对试样养护方法作了补充; —对试验报告内容作了补充。 本部分由全国耐火材料标准化技术委员会提出并归口。

本部分负责起草单位:洛阳耐火材料研究院。 本部分参加起草单位:河南省耕生耐火股份有限公司,北京利尔耐火材料有限公司,派力固(大连) 工业有限公司,中国长城铝业公司水泥厂本部分主要起草人:彭西高、毕振勇、毛晓刚、杨永涛、张宇振、赵建立、刘运政。 本部分所代替标准的历次版本发布情况为: YB <#004699'>2<#004699'>209-1977 《耐火混凝土检验制样规定》; GB/T 893<#004699'>2. 4-1988《致密耐火浇注料稠度测定和试样制备方法》; YB/T 5<#004699'>20<#004699'>2-1993 《致密耐火浇注料稠度测定和试样制备方法》。 .yang64>> YB/T 5<#004699'>20<#004699'>2.1-<#004699'>2003 不定形耐火材料试样制备方法 第I部分:耐火浇注料 1 范围

耐火陶瓷纤维基础知识

耐火陶瓷纤维基础知识一、耐火陶瓷纤维定义 以SiO 2、AL 2 O 3 为主要成分且耐火度高于1580℃纤维状隔热材料的总称。 二、耐火陶瓷纤维的特点 1、耐高温:使用温度可达950-1450℃。 2、导热能力低:常温下为0.03w/m.k,在1000℃时仅为粘土砖的1/5。 3、体积密度小:耐火陶瓷纤维制品一般在64-500kg/m3之间。 4、化学稳定性好:除强碱、氟、磷酸盐外,几乎不受化学药品的侵蚀。 5、耐热震性能好:具有优良的耐热震性。 6、热容量低:仅为耐火砖的1/72,轻质转的1/42。 7、可加工性能好:纤维柔软易切割,连续性强,便于缠绕。 8、良好的吸音性能:耐火陶瓷纤维有高的吸音性能,可作为高温消音材料。 9、良好的绝缘性能:耐火陶瓷纤维是绝缘性材料,常温下体积电阻率为 1×1013Ω.cm,800℃下体积电阻率为6×108Ω.cm。 10、光学性能:耐火陶瓷纤维对波长1.8-6.0um的光波有很高的反射性。 三、耐火陶瓷纤维的分类 1、按结构可分为晶质纤维和非晶质纤维两大类。 2、按使用温度可分为: 普通型耐火陶瓷纤维使用温度950℃ 标准型耐火陶瓷纤维使用温度1000℃ 高纯型耐火陶瓷纤维使用温度1100℃ 高铝型耐火陶瓷纤维使用温度1200℃ 锆铝型耐火陶瓷纤维使用温度1280℃ 含锆型耐火陶瓷纤维使用温度1350℃ 莫来石晶体耐火纤维(72晶体)使用温度1400℃ 氧化铝晶体耐火纤维(80、95晶体)使用温度1450℃ 3、生产方法 (1)非晶质纤维 原材料经电阻炉熔融,在熔融状态下,在骤冷(0.1S)条件下,在高速旋转甩丝辊离心力的作用下或在高速气流的作用下被甩丝而成或被吹制而成的玻璃态纤维。 (2)晶体纤维 生产方法主要有胶体法和先驱体法两种。 胶体法:将可融性的铝盐、硅盐,制成一定粘度的胶体溶液,按常规生产方法成纤后经热处理转变成铝硅氧化物晶体纤维。 先驱体法:将可溶性的铝盐、硅盐,制成一定粘度的胶体溶液,随后被先驱体(一种膨化了的有机纤维)吸收,再进行热处理,转变成铝硅氧化物晶体纤维。

型钢基础知识概述

型钢基础知识概述 一、型材的分类 1.简单断面型钢 ①方钢——热轧方钢、冷拉方钢;②圆钢——热轧圆钢、锻制圆钢、冷拉圆钢 ③线材;④扁钢;⑤弹簧扁钢;⑥角钢——等边角钢、不等边角钢;⑦三角钢 ⑧六角钢;⑨弓形钢;⑩椭圆钢 2.繁复断面型钢 ①工字钢——普通工字钢、轻型工字钢 ②槽钢——热轧槽钢(普通槽钢、轻型槽钢)、弯曲槽钢 ③H型钢(又称宽腿工字钢) ④钢轨——重轨、轻轨、起重机钢轨、其他专用钢轨⑤窗框钢 ⑥钢板桩 ⑦弯曲型钢——冷弯型钢、热弯型钢 ⑧其他 二、型钢中大、中、小型的划分 大型中型小型 工字钢高≥180mm高<180mm 槽钢高≥180mm高<180mm 等边角钢边宽≥160mm边宽50-140mm边宽20-45mm不等边角钢边宽 ≥160×100mm边

140×90-50×32mm边宽≤45×28mm 圆钢直径≥90mm直径38-80mm直径10-36mm方钢边宽≥90mm边宽50-75mm边宽10-25mm扁钢宽≥120mm宽60-100mm宽12-55mm 螺纹钢直径≥40mm直径10-36mm 铆钉钢直径10-22mm 其它异型钢:履带板、钢板桩等异型钢、小农具用复合扁钢等异型钢、农具钢、窗框钢等 三、热轧带肋钢筋 1.品种规格 热轧带肋钢筋的牌号由HRB和牌号的屈服点最小值构成。 H、R、B分别为热轧(Hotrolled)、带肋(Ribbed)、钢筋(Bars)三个词的英文首位字母。热轧带肋钢筋分为HRB335(老牌号为20MnSi)、HRB400(老牌号为20MnSiV、20MnSiNb、20MnTi)、HRB500三个牌号。 2.含钒Ⅲ级螺纹钢筋 ①含钒Ⅲ级螺纹钢筋市场前景广漠 含钒新Ⅲ级螺纹钢筋(20MnSiV、400Mpa)在生产过程中加入了钒、铌、钛等合金,与普通Ⅱ级螺纹钢筋相比,具宽有强度高、韧性好、焊接性能和抗震性能优良的优点。在欧洲等发达国家建筑市场、Ⅲ级螺纹钢筋占整个螺纹钢总量的80%,如英国、德国、澳大利亚、日本等国家使用高强度含钒Ⅲ级螺纹钢筋已达80-90%。在我国1995年原冶金部和建设部联合发文推广应用,建设部将新Ⅲ级螺纹钢筋技术条件纳入国家标准GBJ10-89《混凝土结构设计规范》,自97年1月1日起施行,现新Ⅲ级螺纹钢已在高层建筑、大型电站、桥梁、隧道、机场等工程项目中得到了胜利的应用,市场前景广漠。建设部要求2002年新Ⅲ级钢筋用量要达到螺纹钢总量的50%,“十五”末期达到80%。但由于宣传、推广力度不够,使用量还大大低于老Ⅱ级335Mpa普通级螺纹钢筋,因此还需要对新Ⅲ级螺纹钢筋大力进行宣传和推广。

耐火材料的发展历史

1. 耐火材料的发展历史,研究现状,发展趋势,资源的回收与利用 时间:2010-10-10来源:国炬高温科技点击:587次 1.1. 概述 中国在4000多年前就使用杂质少的粘土,烧成陶器,并已能铸造青铜器。东汉时期(公元25~220)已用粘土质耐火材料做烧瓷器的窑材和匣钵。20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时发展了完全不需烧成、能耗小的不定形耐火材料和高耐火纤维(用于1600℃以上的工业窑炉)。前者如氧化铝质耐火混凝土,常用于大型化工厂合成氨生产装置的二段转化炉内壁,效果良好。50年代以来,原子能技术、空间技术、新能源开发技术等的迅速发展,要求使用耐高温、抗腐蚀、耐热震、耐冲刷等具有综合优良性能的特种耐火材料,例如熔点高于2000℃的氧化物、难熔化合物和高温复合耐火材料等。 耐火材料-分类分为普通和特种耐火材料两大类。普通耐火材料按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。特种耐火材料按组成分为高温氧化物、难熔化合物和高温复合材料此外,按照耐火度强弱可分为普通耐火制品(1580~1770℃)、高级耐火制品(1770~2000℃)和特级耐火制品(2000℃以上)。按照制品的外形可分为块状(标准砖、异形砖等)、特种形状(坩埚、匣钵、管子等)、纤维状(硅酸铝质、氧化锆质和碳化硼质等)和不定形状(耐火泥、浇灌料和捣打料等)。按照烧结工艺分为烧结制品、熔铸制品、熔融喷吹制品等。 耐火材料-主要品种在普通和特种耐火材料中,常用的品种主要有以下几种: 酸性耐火材料 中性耐火材料 碱性耐火材料 用量较大的有硅砖和粘土砖。硅砖是含93%以上的硅质制品,使用的原料有硅石、废硅砖等。硅砖抗酸性炉渣侵蚀能力强,但易受碱性渣的侵蚀,它的荷重软化温度很高,接近其耐火度,重复煅烧后体积不收缩,甚至略有膨胀,但是抗热震性差。硅砖主要用于焦炉、玻璃熔窑、酸性炼钢炉等热工设备。粘土砖中含30%~46%氧化铝,它以耐火粘土为主要原料,耐火度1580~1770℃,抗热震性好,属于弱酸性耐火材料,对酸性炉渣有抗蚀性,用途广泛,是目前生产量最大的一类耐火材料。 高铝质制品中的主晶相是莫来石和刚玉,刚玉的含量随着氧化铝含量

相关文档