文档库 最新最全的文档下载
当前位置:文档库 › 水箱液位matlab模糊控制例程sltank详解

水箱液位matlab模糊控制例程sltank详解

水箱液位matlab模糊控制例程sltank详解
水箱液位matlab模糊控制例程sltank详解

一问题描述

水位控制系统是由水箱(Tank),进水管、出水管和控制阀门等构成。在进水管上,安装有一液压阀门,控制它的位置,可以控制流入水箱的流量。出水管道的面积(Out pipe crossection) 保持常数,因此,流出出水管的流量主要与水箱的水位和水压有关。系统具有明显的非线性特性。

我们的目的是构建一个模糊闭环控制系统。其控制目的是通过调整控制阀门的开度,达到控制水箱水位的目的,并使其能够快速跟随所设定的水位(给定输入)。

除控制对象外,控制系统应包含有水位检测装置,控制器(常规PID 控制器或模糊控制器)及执行机构。

二 控制系统动态结构图

流速计算依据为简化伯努利方程或托里拆利定律,二者结论一致。其中托里拆利定律内容为:忽略粘滞性,任何液体止点从小孔中流出的速度与它从h 高度处自由落下的速度相等。

动态模型中主要用到的计算关系式如下:

Level

flow out

被控对象水箱模型

搭建按照上述动态结构图进行,实际设计的水箱模型如下:

封装后

执行机构:

VALVE

三水位控制系统模型

四模型使用方法

启动matlab,命令行输入sltank,既可打开水位模糊控制仿真模型。设置const大于等于0,系统工作于PID控制模式

设置const小于0,系统工作于模糊控制模式

模糊控制时液位输入输出关系(双击Comparison示波器)

液位动画

PID控制时液位的输入输出关系

比较两种控制模式下液位曲线可以发现PID控制有超调,这一点在液位动画中也有体现。

修改模型参数

PID参数的调整可以直接双击PID Controller模块设置,这里着重介绍模糊控制器参数的修改。用到的主要命令如下:

例如可通过以下代码以文本形式显示tank

a=readfis('tank') %读取tank文件

showfis(a); %显示

在这里通过模糊推理的用户界面来修改水位控制的规则库,查看对控制效果的影响。具体步骤如下:

(1)输入sltank打开simulink仿真界面

(2)输入fuzzy tank打开FIS界面,可编辑变量和推理规则。

(3)打开tank的模糊规则编辑界面,将规则4和5删除,新的规则如下:

(4)单击File —Export—to workspace,弹出的对话框直接点ok。

注意:建议不要选to file,因为会改变原始文件。

(5)运行sltank,控制效果如下,可见调节效果比PID控制还差。

(6)关闭sltank模型和tank fis界面,均选择不保存修改,以保

证例程的完整性。

五结论

模糊控制效果取决于模糊推理规则,如果规则设置不当,则控制效果会比传统PID控制效果更差。模糊控制一般和其他智能控制算法结合使用,比如模糊PID,模糊神经网络等,其主要作用是智能控制算法中的一些控制参数进行模糊调节。

伍银波2012年11月13日星期二

水箱液位模糊控制系统的仿真

水箱液位模糊控制系统的仿真 近年来模糊控制在许多控制应用中都取得了成功,模糊控制应用于控制系统设计不需要知道被控对象精确的数学模型,对于许多无法建立精确数学模型的复杂系统能获得较好的控制效果,同时又能简化系统的设计,因此,在水箱水位自动控制系统中,模糊控制就成为较好的选择。本文主要论述了应用模糊控制理论控制水箱水位系统,首先详尽的介绍了模糊控制理论的相关知识,在此基础上提出了用模糊理论实现对水箱水位进行控制的方案,建立了简单的基于水箱水位的模糊控制器数学模型。 本试验系统还充分利用了MATLAB的模糊逻辑工具箱和SIMULINK相结合的功能,首先在模糊逻辑工具箱中建立模糊推理系统FIS作为参数传递给模糊控制仿真模块,然后结合图形化的仿真和建模工具,再通过计算机仿真模拟出实际系统运行情况。通过试验模拟,证明了其可行性。 水箱液位模糊控制系统的描述 本章利用模糊数学工具及模糊控制理论知识,建立一个水箱水位模糊控制器,水位模糊控制器可以设计为二维控制器,即输入量是水位误差和误差变化率,输出量是阀门控制,即单输入——单输出统,较复杂的二维系统将在下一章里利用MATLAB软件构建,并仿真。图1为水位模糊控制系统的基本结构。 图 1 水位模糊控制系统 1.1输入输出语言变量语言值的选取及其赋值表 我们选取误差语言变量、控制语言变量的语言值为5个,即{PL,PS,O,NS,NL}。 设误差、控制量语言变量的论域分别为X、Y,量化等级都为9个。有 X = Y = {-4,-3,-2,-1,0,1,2,3,4} 图3—2 给出了输入、输出语言变量的隶属函数。表3-1给出了语言变量的赋值表

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

双容水箱实验报告(采用PID+模糊控制)

目录 摘要2 一.PID控制原理、优越性,对系统性能的改善3 二.被控对象的分析与建模6 三.PID参数整定方法概述8 3.1 PID控制器中比例、积分和微分项对系统性能影响分析8 3.1.1 比例作用8 3.1.2 积分作用8 3.1.3 微分作用9 3.2 PID参数的整定方法10 3.3 临界比例度法12 3.4 PID参数的确定15 四.控制结构16 4.1 利用根轨迹校正系统16 4.2 利用伯德图校正系统18 4.3 调整系统控制量的模糊PID控制方法20 4.3.1模糊控制部分20 4.3.2 PID控制部分23 五.控制器的设计24 六.仿真结果与分析25 七.结束语27 参考文献28

针对双容水箱大滞后系统,采用PID方法去控制。首先对PID控制中各参数的作用进行分析,采用根轨迹校正、伯德图校正的方法,对系统进行校正。最后采用调整系统控制量的模糊PID控制的方法,对该二阶系统进行控制。同时,在MATLAB下,利用Fuzzy工具箱和Simulink仿真工具,对系统的稳定性、反应速度等各指标进行分析。 关键字:双容水箱,大滞后系统,模糊控制,PID,二阶系统,MATLAB ,Simulink

For T wo-capacity water tankbig lag system,using PID to control this system. First, to analyze the effectofeach parameter of PID. And the root-locus technique and bode diagram is adopted to design the correcting Unit.Then, fuzzy PID control method was used to adjust this second-order system.And a simulation model of this system is built with MATLAB Fuzzy and SIMULINK,with it analyzing the system stability ,reaction velocity and other indexs. Keywords:two-capacity water tank,big lag system,fuzzy control,PID,second-order system 一.PID控制原理、优越性,对系统性能的改善

三容水箱液位控制

三容水箱液位过程控制设计 专业:自动化 班级:2011级4班 组员:孙健 组员:姜悦2 组员:黄潇20115041 指导老师:陈刚 重庆大学自动化学院 2015年1月

目录 一、现代工业背景 (1) 二、问题的提出 (2) 三、模型的建立 (3) 3.1 单容水箱的数学模型 (3) 3.2 双容水箱的数学模型 (5) 3.3 三容水箱模型 (6) 四、算法的描述 (8) 4.1对原始模型的仿真 (8) 4.2添加P控制并对其仿真 (9) 4.3添加单回路控制并对其仿真 (10) 4.4添加PID控制和单回路控制并对其仿真 (11) 五、结果及分析 (14) 六、总结与体会 (15) 6.1 组长孙健的总结 (15) 6.2 组员姜悦的总结 (15) 6.3 组员黄潇的总结 (15) 七、参考文献 (17) 八、附录 (18)

一、现代工业背景 世界上任何国家的经济发展,都伴随着人民生活水平的改善和城市化进程的不断加快。但是相应的淡水资源的需求和消耗也在不断增多。水,作为一种必不可少的资源,长期以来一直被认为是取之不尽、用之不竭的。在这种观点的驱使下,水环境的质量越来越恶劣、水资源短缺也越来越严重,这一切都加重了城市的负荷,带来一系列危及城市生存与发展的生态环境问题。污水也是造成环境污染的来源之一。这个污染源的出现引起了世界各国政府的关注,治理水污染环境的课题被列入世界环保组织的工作日程。 建设污水处理厂,消除水污染也是为人民造福的一项事业,政府一时又拿不出巨大的资金投入到治理项目的建设中去。为了使污染快速得到控制,向公民投放建设专项债券,给公民一定的高于银行存款利息的待遇,使公民的资金投入到基础设施建设,发挥这部分资金的作用,也能为政府解除一些资金筹措的忧虑,又体现了全民的环保意识。 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。 经济发展与水环境污染是成正比的,也就是说经济发展的速度越快,相应带来的水环境污染就越严重。人民生活离不开水,工农业生产发展更离不开水,排出来的无论是生活污水还是工业废水都会带来不同程度的污染。经济的发展是需要资金投入的,保护环境不受污染,同样也需要钱,当资金有限的时候,就需要将经济发展和保护环境这两项硬指标进行有机的协调,不能造成顾此失彼或厚此薄彼的局面。若顾经济发展失环境保护,就会产生环境严重受到污染,再投入相当的资金也不会治理到原来的清洁环境。国外的反面教训警示了我们,日本的伊势湾受到沿海石化生产废水的污染,使伊势湾的水产品受到严重的损失,产生了不能食用的后果,虽经多年的治理也难以恢复污染前的环境状况。这也充分证明了经济发展与环境保护的密切关系。

双容水箱液位串级控制系统设计(精)教学总结

双容水箱液位流量串级控制系统设计 ◆设计题目 双容水箱液位流量串级控制系统设计 ◆设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱1 水箱2 图1 系统示意图◆设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1,针对该水箱工作过程设计单回路PID 调节器,要求画出控制系统方框图及实施方案图,并给出PID 参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1,针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID 控制与串级控制进行仿真试验结果比较,并说明原因。 ◆设计任务分析

一、系统建模 系统建模基本方法有机理法建模和测试法建模两种建模方法。 机理法建模就是根据生产过程中实际发生的变化机理,写出各种有关的平衡方程,从中获得所需的数学模型 测试法一般只用于建立输入—输出模型。它是根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模型。它的特点是把研究的工业过程视为一个黑匣子,完全从外特性上测试和描述它的动态性质。 对于本设计而言,由于双容水箱的各个环节的数学模型已知,故采用机理法建模。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:水箱2液位; 主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 控制对象特性: Gm1(S )=1/(0.1S+1)(水箱1传递函数); Gm2(S )=1/(0.1S+1)(水箱2传递函数)。 控制器:PID ; 执行器:流量控制阀门;

文献翻译-单容水箱液位模糊控制系统设计

英文翻译 系别自动化系 专业自动化 班级 学生姓名 学号 指导教师

Single tank water level fuzzy control system design In industrial process control, the amount usually charged with the following four kinds, namely, level, pressure, flow and temperature. Where in the liquid is not only common in industrial process parameters, and for direct observation, easy to measure. Level control is a common industrial process control, impact on production can not be ignored. For level control system, although the conventional PID control parameters fixed, it is difficult to ensure the control parameters of the system to adapt to changes and changes in working conditions, it is difficult to get the desired effect; fuzzy control parameters have not sensitive and robust and strong features . Single-tank liquid level control system with linearity, hysteresis, coupling characteristics, this paper for the study of the level system, the application of fuzzy control theory to control research. Single tank water system structure Tank level control system consists of a single tank water system ontology and AD / DA data acquisition card and other components, allows the computer to set the level value by controlling the regulator, at the entrance of a regulator valve to control and maintain the water level does not change; valve at the outlet of the receiver D-A converter output signal directly controlled tank. Valves on the inlet and discharge control rely on typical self-balancing system. Fuzzy Control Fuzzy logic control referred to fuzzy control, based on fuzzy set theory, fuzzy linguistic variables and fuzzy logic of a computer-based digital control technology. In 1965, the United States LAZadeh founded the fuzzy set theory; 1973 he gives definitions and theorems related to fuzzy logic control. In 1974, the British EH

基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真 摘要:本文对模糊控制器进行了主要介绍。提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。 关键词:模糊控制,隶属度函数,仿真,MA TLAB 1 引言 模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。 模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。 2 模糊控制器简介 模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。 随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。同时还很容易被实现的,简单而灵活的控制方式。于是模糊控制理论极其技术应运而生。 3 模糊控制的特点 模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。模糊控制的任务正是要用计算机来模拟这种人的思维和决策方式,对这些复杂的生产过程进行控制和操作。所以,模糊控制有以下特点: 1)模糊控制的计算方法虽然是运用模糊集理论进行的模糊算法,但最后得到的控制规律是确定

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

单容水箱液位模糊控制系统的设计与研究_杨杰

第6期(总第181期) 2013年12月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.6 Dec. 文章编号:1672-6413(2013)06-0135-0 3单容水箱液位模糊控制系统的设计与研究 杨 杰,齐向东 (太原科技大学电子信息工程学院,山西 太原 030024 )摘要:针对传统工业单容水箱液位控制过程中存在的稳定性差、响应慢等问题,提出了一种模糊控制方法对液位进行控制。首先根据单容水箱液位的控制要求设计了模糊控制器,然后搭建了基于远程数据采集模块的计算机控制系统,最后在VB环境下,设计了单容水箱液位监控人机界面进行液位控制。实验结果表明,在单容液位过程控制系统中,采用模糊控制与闭环PID控制相比,稳定性更好、响应速度更快,液位控制性能明显提高。 关键词:模糊控制;水箱液位控制;数据采集模块 中图分类号:TP273+ .4 文献标识码:A 收稿日期:2013-04-17;修回日期:2013-05-1 8作者简介:杨杰(1987-) ,男,山西大同人,在读硕士研究生,主要从事智能拖动控制、工业智能化控制等方向的研究。0 引言 液位是工业生产过程中的四大热工参数之一,因 此,液位控制已成为工业生产中研究的重要课题[ 1] 。传统的液位控制系统大多采用常规PID控制, 由于常规PID控制器结构简单, 使用方便,被广泛使用[2-6 ],但常规PID在系统参数、工作环境发生改变时控制效果较差, 且液位控制系统对稳定性和快速性要求较高,这样不依赖数学模型的模糊控制给这类问题的解决带 来了新思路[ 7] 。本文基于VB开发环境设计了一个采用模糊控制方法的液位控制系统, 主要包括硬件系统搭建和软件开发设计。以THSA-I型过程控制综合自动化控制系统实验平台为研究平台,采用该平台的计算机作为直接控制器, 通过数据采集模块实现计算机和传感器或执行器之间的数据转换,通过设计模糊控制器,在VB开发环境实现液位控制。实验分别采用常规闭环 PID控制和模糊控制对单容水箱液位进行控制,并对比控制效果,验证了模糊控制在单容水箱液位控制上的优越性。 1 单容液位过程模糊控制器设计 1.1 确定模糊控制器的结构 根据单容液位过程控制的特点和控制要求,模糊控制器选用二维结构,如图1所示。系统给定r,以液位的偏差e和液位偏差的变化ec为输入变量,经过量化后得到E、EC, 然后经过控制表得到控制量的数字量UC,经过去模糊化z-1得到输出量u,控制液位过程。其中k1、k2、k3是对应变化中的比例系数 。 图1 离散控制器结构框图 1.2 确定输入输出变量的基本论域 在单容液位控制系统中,液位的给定值为Sp,由液位传感器测量并变化的水位值为PV,则可以得到水位偏差E和水位偏差的变化EC为: E(k)=PV(k)-Sp。(1 )……………………… EC(k)=E(k)-E(k-1)。(2 )…………………将E(k)和EC(k)作为液位控制器的输入量,输出量u为执行器电动调节阀的开度。根据实验情况,考虑到传感器的偏差,确定输入和输出的论域,要求液位偏差E的范围为[-15,+15],偏差变化EC的范围为[-0.1,+0.1] 。液位控制量为输出变量u(即电动阀的开度),它的范围为0%~100%,相应的控制信号为4mA~20mA。 1.3 定义模糊子集及隶属函数 在本设计中,输入变量E的模糊子集为{负大,负中,负小,零,正小,正中,正大}、EC的模糊子集为{负大, 负中,负小,零,正小,正中,正大};输出控制量u的模糊子集为{负大,负中,负小,零,正小,正中,正大} 。

单容水箱液位控制系统的PID算法

自动控制原理课程设计报告

单容水箱液位控制系统的PID算法 摘要随着科技的进步,人们对生产的控制精度要求越来越高,水箱液位系统是过程控制中一种典型的控制对象,提高液位控制系统的性能十分重要。本文针对理想的单容水箱液位系统,将包括单容水箱、电动机等在内的部分分别建立数学模型,并加入常规PID对系统性能进行调节。但由于实际单容水箱液位系统具有时滞性和非线性,实际生产中若要对其建立精确的数学模型比较困难。因此,将模糊控制的方法引用到对单容水箱液位系统的PID控制中,通过Simulink仿真验证了算法的有效性。结果表明,和常规PID控制相比,模糊PID控制具有良好的动静态品质。 关键词单容水箱液位; PID控制; MA TLAB; Simulink; 模糊控制. PID control method in water level systemof single-tank ABSTRACT With the development of technology, the control precision is more and more important. And thewater level system of single-tankis a typical control target in process control. The article mainly deals with the water level system of single-tank. It establishes mathematics model for every part of the system, and uses the traditional PID to improve the function . But in actual industry,it’s hard to establishes precise mathematics model. So, it introduces fuzzy PID control in this system. The result suggests that fuzzy PID control is more suitable than the traditional one. KEY WORDS the water level of single-tank; PID control; MA TLAB ; Simulink; fuzzy control. 在工业过程控制中,被控量通常有:液位、压力、流量和温度。其中,液位控制是工业中常见的过程控制,广泛运用于水塔、锅炉、高层建筑水箱等受压容器的液位测量,是工业自动化的一个重要的组成部分。因此,对它进行研究有很高的价值。 单容水箱是一个自衡系统,自衡调节过程比较缓慢,液位很难达到预期值。加入闭环调整后,系统的性能有所改善。但是,实际过程中往往要求要求水箱系统超调小、响应快、稳态误差小。并且要求水箱在一定扰动下,即出水阀门打开后,液位能够平稳、快速、准确地恢复到一个恒定值。因此,在水箱液位控制过程中引入PID调节。 常规PID适用于数学模型容易确定的系统。理想模型下,引入PID调节后,系统的动态和静态性能改善。但是实际中,液位控制具有滞后、非线性、时变性、数学模型难以准确建立等特点。常规的PID控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化。而模糊控制具有对参数变化不敏感和鲁棒性强等特点,但控制精度不太理想。如果将模糊控制和常规的PID控制结合,用模糊控制理论来整定PID控制器的比例、积分、微分系数,就能更好地适应控制系统的参数变化和工作条件的变化。 本文主要对单容水箱闭环系统建立模型,分析其闭环系统、引入常规PID控制及引入模糊PID控制后的系统性能,并用MATLAB进行仿真。 1 单容水箱液位控制系统模型 1.1原理图 1.2系统闭环结构框图 负载阀 调节阀 电机浮子 减速器 电位器 图1单容水箱液位闭环控制系统

双容水箱液位控制系统

双容水箱液位控制系统 郭晨雨

目录 摘要 --------------------------------------------------------------------------- 错误!未定义书签。 一.PID控制原理、优越性,对系统性能的改善----------------- 错误!未定义书签。二.被控对象的分析与建模--------------------------------------------- 错误!未定义书签。 三.PID参数整定方法概述---------------------------------------------- 错误!未定义书签。 PID控制器中比例、积分和微分项对系统性能影响分析错误!未定义书签。 比例作用 --------------------------------------------------------- 错误!未定义书签。 积分作用 --------------------------------------------------------- 错误!未定义书签。 微分作用 --------------------------------------------------------- 错误!未定义书签。 PID参数的整定方法 ------------------------------------------------ 错误!未定义书签。 临界比例度法 ------------------------------------------------------- 错误!未定义书签。 PID参数的确定 ----------------------------------------------------- 错误!未定义书签。 四.控制结构 ---------------------------------------------------------------- 错误!未定义书签。 利用根轨迹校正系统 ----------------------------------------------- 错误!未定义书签。 利用伯德图校正系统 ----------------------------------------------- 错误!未定义书签。 调整系统控制量的模糊PID控制方法------------------------- 错误!未定义书签。 模糊控制部分----------------------------------------------------- 错误!未定义书签。 PID控制部分 ---------------------------------------------------- 错误!未定义书签。五.控制器的设计---------------------------------------------------------- 错误!未定义书签。 六.仿真结果与分析--------------------------------------------------------- 错误!未定义书签。 七.结束语---------------------------------------------------------------------- 错误!未定义书签。参考文献 ---------------------------------------------------------------------- 错误!未定义书签。

双容水箱液位模糊控制

双容水箱液位模糊控制 一、实验目的 熟悉双容液位控制系统的组成原理。 通过实验进一步掌握模糊控制原理及模糊控制规则的生成。 了解量化因子和比例因子对控制效果的影响。 掌握解模糊方法及实现。 二、实验设备 实验对双象为TKGK-1双容液位系统 TKGK-1型实验装置:GK-06、GK-07-2 万用表一只 计算机系统 三、实验原理 图1 双容水箱液位模糊控制系统方框图 图1为双容水箱液位控制系统。控制的目的 是使下水箱的液位等于给定值,并能克服来自系 统部和外部扰动的影响。双容水箱液位系统如图

2,该被控对象具有非线性和时滞性,建立精确的数学模型比较困难;模糊控制不仅可以避开复杂的数学模型,通常还能得到比较好性能指标。模糊控制器的结构图如图3。 模糊控制器的输入为误差和误差变化率:误差e=r-y,误差变化率ec=de/dt,其中r和y分别为液位的给定值和测量值。把误差和误差变化率的精确值进行模糊化变成模糊量E和EC,从而得到误差E和误差变化率EC的模糊语言集合,然后由E和EC模糊语言的的子集和模糊控制规则R(模糊关系矩阵)根据合成推理规则进行模糊决策,这样就可以得到模糊控制向量U,最后再把模糊量解模糊转换为精确量u,再经D/A转换为模拟量去控制执行机构动作。 图3 模糊控制器组成原理图 模糊量化:根据精确量实际变化围[a,b],合理选择模糊变量的论域为[-n,n],通过量化因子 k=,将其转换成若干等级的离散论域,如七个等级为{负大,负中,负小,零,正小,正中,正大},简写为{NB,NM,NS,O,PS,PM,PB}。确定模糊子集的隶属函数曲线。一般常采用三角形、梯形和正态分布等几种曲线。然后由隶属函数曲线得出模糊变量E、EC、U的赋值表。 根据经验,E模糊子集的隶数度函数取正态分布曲线,则赋值表见表一: 表一:变量E隶属函数赋值表 E -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 NB NM NS O PS PM PB 1.0 0.3 0.7 0.6 0.1 0.4 1.0 0.2 0.2 0.6 0.5 0.1 0.3 1.0 0.1 0.1 0.5 0.4 0.1 0.2 1.0 0.2 0.1 0.4 0.5 0.1 0.1 1.0 0.3 0.1 0.5 0.6 0.2 0.2 1.0 0.4 0.1 0.6 0.7 0.3 1.0 模糊控制规则:模糊控制规则是操作经验和专家知识的总结,是进行模糊推理的依据。在设计模糊控制规则时,必须考虑控制规则的完备性、交叉性和一致性。既保证对于任意给定的输入,均有相应的控制规则起作用;控制器的输出值总是由数条控制规则来决定;控制规则

双容水箱液位定值控制系统实验报告

XXXX大学 电子信息工程学院 专业硕士学位研究生综合实验报告 实验名称:双容水箱液位定值控制系统专业:控制工程 姓名: XXX 学号:XXXXXX 指导教师: XXX 完成时间:XXXXX

实验名称:双容水箱液位定值控制系统 实验目的: 1.通过实验进一步了解双容水箱液位的特性。 2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。 3.研究调节器相关参数的改变对系统动态性能的影响。 4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。 5.掌握双容液位定值控制系统采用不同控制方案的实现过程。 实验仪器设备: 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI通讯电缆一根。 实验原理: 本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。调节器的参数整定可采用本章第一节所述任意一种整定方法。本实验系统结构图和方框图如图所示。

基于MATLAB的水箱水位模糊控制

目录 前言 1.模糊控制概述 模糊控制的产生及特点 (3) 模糊控制技术的发展 (4) 模糊控制理论的研究现状 (5) 2.模糊推理原理 模糊控制的基本工作原理 (6) 3.基于MATLAB的水箱供水模糊控制 水箱水位模糊控制系统设计 (8) 小结 (16) 参考文献 (17)

前言 随着社会经济的迅速发展,水对人们生活与工业生产的影响越来越重要,尤其是近几年,随着居民生活水平的显著提高和城市化进程的加快,居民生活用水和工业用水增长幅度加大,原有的供水系统已经不能满足人们的需求。为了保证正常的供水,这里应用模糊控制技术,实现对水箱水位的自动控制。

3、基于MATLAB的水箱供水模糊控制 水箱水位模糊控制系统设计 本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:(1)打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。 图在FIS Editor窗口中新建水位控制模糊推理系统 (2)增加一个输入变量,将输入变量命名为水位误差、误差变化,将输出变量命名为阀门开关速度。这样就建立了一个两输入单输出的模糊推理系统,保存为。

图增加一个输入变量 (3)设计模糊化模块:设水位误差的论域为[-1 1],误差变化的论域为[ ]; 两个输入量的模糊集都定为5个:其中水位误差定为高、偏高、合适、偏低、低五等;参数分别为[ -1]、[ ]、[ 0]、[ ]、[ 1];

图设计水位误差模块 误差变化分为大、偏大、合适、偏小、小五等。参数分别为[ ]、[ ]、[ 0]、[ ]、[ ], 隶属度函数均为高斯函数。

水箱液位模糊控制

水箱液位模糊控制器的设计 1.水箱液位控制系统 已知一个容器中液体的流出是随机变化的,无法建立它的数学模型。但是,通过人工控制进液阀门的开度和进液流速,却能调节容器中液位的高低,保持液位恒定。根据人工操作经验,我们已经归纳出如下保持液位恒定的操作规则: ①如果液位偏低,则快开阀门; ②如果液位正好,则阀门开度不变; ③如果液位偏高,则快关阀门; ④如果液位正好而进液流速慢,则慢关阀门; ⑤如果液位正好而进液流速快,则慢开阀门。 图1-1水箱液位控制系统原理图 为此,我们可以设计如图1-2所示的双输入--单输出模糊控制系统: 图1-2二维模糊控制系统原理框图 模糊控制器的两个输入变量分别为液位差e(设定液位高度r-实测液位高度y)和液位差变化率ec(单位时间内的偏差改变量),输出模糊变量为u。 输入变量e和ec、输出变量u的论域、覆盖变量论域的模糊子集明朝、隶属

度函数类型及拐点参数等,初步设定为表1-1所列的数值。 2.构建模糊控制器的FIS结构文件 2.1编辑出名称为“tank”的液位模糊控制系统FIS 启动Matlab后,在主窗口中键入fuzzy回车,进入“FIS Editor”编辑器界面,完成下列任务: ①增加一个输入变量; ②将输入、输出变量的名称分别改成e、ec和u; ③将这个FIS文件名定为“tank”并予以存盘。 得出如图2-1所示的FIS编辑器界面。

图2-1 液位模糊控制FIS编辑器 2.2 编辑覆盖输入、输出变量的模糊子集 在图2-1所示的FIS编辑器上,单机输入变量e模框,按表1-1列出的数据编辑e、ec和u的模糊子集。在FIS编辑器界面上,双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。 在MF编辑器界面上,单击“变量模框索引区”中待编辑变量的小模框,使其边框变粗、变红,则界面下部“当前变量区”内就显示该变量的性态,以供编辑。如图2-2为输入量e的MF编辑器,在“Name”一项上讲该模框的名称命名为“negative”,在“Type”一项上将该模框的隶属函数类型定为“gaussmf”(高斯型),在“Params”一项上将其拐点定为“[0.45 -1]”。以此类推,将ec和u的模糊子集也按表1-1列出的数据编辑完成。

模糊控制系统及其MATLAB实现

模糊控制系统及其MATLAB实现 1. 模糊控制的相关理论和概念 1.1 模糊控制的发展 模糊控制理论是在美国加州伯克利大学的L.A.Zadeh教授于1965 年建立的模 糊集合论的数学基础上发展起来的。之后的几年间Zadeh又提出了模糊算法、模糊 决策、模糊排序、语言变量和模糊IF-THEN规则等理论,为模糊理论的发展奠定了 基础。 1975年,Mamdani和Assilian创立了模糊控制器的基本框架,并用于控制蒸 汽机。 1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。 20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁 模糊控制系统的成功应用引起了模糊领域的一场巨变。到20世纪90年代初,市场 上已经出现了大量的模糊消费产品。 近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息并且渗透到社会科学和检索、地震研究、环境预测、楼宇自动化等学科和领域, 自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。 1.2 模糊控制的一些相关概念 用隶属度法来定义论域U中的集合A,引入了集合A的0-1隶属度函数, 用,()x表示,它满足: A xA,1, ,x(),,AxA,0,

用0-1之间的数来表示x属于集合A的程度,集合A等价与它的隶属度函 数,()x A 模糊系统是一种基于知识或基于规则的系统。它的核心就是由所谓的IF-THEN 规则所组成的知识库。一个模糊的IF-THEN规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN形式的陈述。例如: 如果一辆汽车的速度快,则施加给油门的力较小。 这里的“快”和“较小”分别用隶属度函数加以描述。模糊系统就是通过组合IF-THEN规则构成的。 构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN规则,然后将这些规则组合到单一系统中。不同的模糊系统可采用不用的组合原则。 用隶属度函数表征一个模糊描述后,实质上就将模糊描述的模糊消除了。 模糊控制系统设计的关键在于模糊控制器的设计。模糊控制器的设计主要有三个部分: (1) 输入量的模糊化 所谓模糊化(Fuzzification) 就是先将某个输入测量量的测量值作标准化处理,把该输入测量量的变化范围映射到相应论域中,再将论域中的各输入数据以相应的模糊语言值的形式表示,并构成模糊集合。这样就把输入的测量量转换为用 隶属度函数表示的某一模糊语言变量。 (2) 模糊逻辑推理 根据事先已定制好的一组模糊条件语句构成模糊规则库,运用模糊数学理论对 模糊控制规则进行推理计算,从而根据模糊控制规则对输入的一系列条件进行综合评估,以得到一个定性的用语言表示的量,即模糊输出量。完成这部分功能的过程就是模糊逻辑推理过程。

相关文档
相关文档 最新文档