文档库 最新最全的文档下载
当前位置:文档库 › 用拉伸法测金属丝的杨氏模量数据及其数据处理

用拉伸法测金属丝的杨氏模量数据及其数据处理

用拉伸法测金属丝的杨氏模量数据及其数据处理

表1 增(减)1kg及4kg砝码时望远镜中标尺读数

表2 钢丝的直径

L= D= b=

E=×1011N/m2

动态悬挂法测杨氏模量数据处理参考范例

动态悬挂法测杨氏模量数据处理参考范例 1. 数据记录 表1 各测量量测量值 样品 () L m m () m L m m ? ()m g ()m m g ? () 1f H z ()1 m f H z ? 黄铜 0.05 0.01 0.1 不锈钢 0.05 0.01 1 表2 样品直径测量值 次数 黄铜直径 () d m m () m d m m ? 不锈钢直径 () d m m () m d m m ? 1 0.005 0.005 2 3 4 5 6 2. 数据处理 (1)黄铜: L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f :0.10.058B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.998d m m = 1.110.0170.019A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.020u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001037.9310 701.0 1.6067 1.6067 5.99810 L m f Y d ---????==? ? 10 2 9.47710 N m = ?Y E = =

1.3%= 则101029.47710 1.3%0.1310Y Y u Y E N m =?=??=? (2)不锈钢 L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f : 10.58B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.945d m m = 1.110.0210.024A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.025u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001034.4310 1014 1.6067 1.6067 5.94510L m f Y d ---????==? ? 11 2 1.86510 N m =?Y E = = 1.7%= 则11 11 2 1.86510 1.7%0.03210 Y Y u Y E N m =?=??=? 3. 实验结果 (1)室温下测得黄铜样品的杨氏模量为: ()10 2 9.50.210Y N m =±? () 0.683p = 1.3% Y E = (2)室温下测得不锈钢样品的杨氏模量为: ()11 2 1.860.0410Y N m =±? () 0.683p = 1.7% Y E = 备注:不确定度u 在计算过程中保留两位有效数字,在最后计算结果中保留一位有效数字。

弹性模量测量方法

弹性模量测量方法 点击次数:3972 发布时间:2010-10-22 弹性模量测量方法最简单的形变是线状或棒状物体受到长度方向上的拉 力作用,发生长度伸长。设金属丝(或杆)的原长为L,横截面积为S,在弹性限度内的拉力F作用下,伸长了L。比值F/S为金属丝单位横截面积上所受的力,叫做胁强(或应力),相对伸长量L/L叫胁变(或应变)。据虎克定律,胁强和胁变成正比,即: (1) 比例系数: (2) E叫做物体的弹性模量(或称杨氏模量)。E的大小与物体的粗细、长短等形状无关,只决定于材料的性质,它是表示各种固体材料抗拒形变能力的重要物理量,是各种机械设计和工程技术选择构件用材必须考虑的重要力学参量。 任何固体在外力作用下都会改变固体原来的形状大小,这种现象叫做形变。一定限度以内的外力撤除之后,物体能完全恢复原状的形变,叫弹性形变。杨氏弹性模量的测量方法有静态测量法、共振法、脉冲传输法等,其中以共振法和脉冲法测量精度较高。杨氏弹性模量的静态测量法就是在物体加载以后,测出物体的应力和应变,根据一定的计算式得到E值,主要有拉伸法、梁弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离处的绝对形变不同(AA'>BB'),而相对形变则相等,即弹性模量测量方法(6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号表示切应力,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的 1.掌握测量固体杨氏弹性模量的一种方法。 2.掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。 3.学会一种数据处理方法——逐差法。 弹性模量测量方法实验仪器 杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02mm)及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平台水平。

拉伸法测钢丝的杨氏模量(已批阅)教学文案

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种 数据处理的方法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直 接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光 线转过2θ,而且有: 故:)2(D b l L =?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体 重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表 面共面。

(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面 (1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜 处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰, 用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上 的读数r i ,然后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值 i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

动弹性模量试验方法

6. 动弹性模量试验 6.0.1 本方法适用于采用共振法测定混凝土动弹性模量。 6.0.2 动弹性模量试验采用尺寸为100mm×100mm×100mm的棱柱体试件。6.0.3 试验设备应符合下列规定: 1 共振法混凝土动弹性模量测定仪输出频率可调节范围应为(100—200)Hz,输出功率应能使试件产生受迫振动。 2 试件支撑体应采用厚度为20mm的泡沫塑料垫,宜采用表观密度为(16—18)Kg/m3的聚苯板 3 称量设备的最大量程应为20kg,感量不应超过5g。 6.0.4 试验步骤 1 首先应测量试件的质量与尺寸。试件的质量应精确至0.01kg,尺寸的测量应精确至1mm。 2 测定完试件的质量和尺寸后,应将试件放置在支撑体中心位置,成型面应向上,并应将激振换能器的测杆轻轻的压在试件长边侧面中线的1/2处,接收换能器的测杆轻轻的压在试件长边侧面中线距端面5mm处。在测杆接触试件前,宜在测杆于试件接触面涂一薄层黄油或凡士林作为耦合介质,测杆压力的大小应以不出现噪音为准。 3 放置好测杆后,应先调整共振仪的的激振功率和接收增益旋钮至适当位置,然后变换激振频率,并应注意观察指示电表的指针偏转。当指针偏转为最大时,表示试件到达共振状态,应以这时所示的共振频率作为试件的基频振动频率。每一次测量应重复测量两次以上。当两次连续测值之差不超过两个测值的算术平均值的0.5%时,应取这两个测值的算术平均值作为试件的基频振动频率。 4 当用示波器作为显示的仪器时,示波器的图形调成一个正圆时,应将接收换能器移至距试件端部0.224倍试件长处,当指示电表示值为零时,应将其作为真实的共振峰值。 6.0.5 试验结果计算及处理应符合下列规定: 1 动弹性模量应按下式计算: =13.244×10-4×WL3f2/a4 E d ——混凝土动弹性模量(Mpa); 式中:E d a——正方形截面试件的边长(mm);

杨氏模量数据表格及数据处理要求

杨氏模量测定(横梁弯曲法) 一、实验目的 1.学会用横梁弯曲法测定金属材料的杨氏模量; 2.学会读数显微镜的使用方法,掌握测量微小长度变化的方法; 二、实验仪器及用具 FD-YZ-MT杨氏模量测试仪1套JC—10读数显微镜米尺游标卡尺千分尺待测矩形金属条 三、实验原理 这部分内容请同学们按照实验报告写作要求来写 四、实验步骤(供参考) (1)将矩形待测材料安放在仪器的刀口上,套上铜刀口(下端挂一砝码盘)并使其刀刃恰 好在仪器两刀口的中间。 (2)调节显微镜的目镜,看清楚镜简内的叉丝.松开显微镜的底座并使镜筒轴线正对着铜 刀上的基线,前后移动底座,直到从镜中看清楚铜刀基线,锁定底座和升降杆;转动读数显微镜的镜筒使得目镜中看到直尺方向与竖直方向一致,读数显微镜的手轮朝上,锁紧读数显微镜镜筒,转动手轮移动十字叉丝与基线像完全重合,记下读数.(3)在砝码盘上顺序地加法码.共加7次,每次砝码的质量为10 g,同时,每次转动显微 镜的手轮,使得十字叉丝水平线与目镜中基线像重合,记下相应读数. (4)由梁上每取下一片砝码,仿照步骤(3)记下相应的读数. (5)测出仪器两刀口间的距离l,测量1—3次,再测出待测样品的厚度h和宽度a,各测 量6次,记录下相应的测量结果. (6)实验完毕整理好实验仪器 (7)利用逐差法求出对应10g的弛垂度λ ?,代入表达式(1)计算杨氏模量并求出其测量不确定度。 注意事项: 1.从初始读数到增加每一片砝码,转动读数显微镜的手轮使得叉丝与基线像重合过 程中叉丝移动方向要保持一致 2.整个测量过程确保读数显微镜或者铜刀口位置不发生移动,因此调节好读数显微 镜一定锁紧相应部位以免测量产生转动,增加砝码或减少砝码时要谨慎切莫碰动 铜刀口的位置。倘若发生了它们的位置有一个发生了变化,就必须从头开始测量。 3.使用千分尺和游标卡尺之前先记下相应的零点读数;再则,使用千分尺测量样品 厚度时应注意测量杆与固定砧别卡得太紧以免样品发生形变,使用游标卡尺测量 样品宽度时内量爪也别卡得太紧。 五、数据表格 表1 待测样品及支架两刀口距离测量 支架两刀口距离d度为:cm 千分尺零点读数:mm

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量 实验目的 1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量; 2. 掌握有效数字的读取、运算以及不确定度计算的一般方法. 3. 掌握用逐差法处理数据的方法; 4. 了解选取合理的实验条件,减小系统误差的重要意义. 实验仪器 YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干. 1.标尺 2.锁紧手轮 3.俯仰手轮 4.调焦手轮 5.目镜 6.内调焦望远镜 7.准星 8.钢丝上夹头 9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝. 实验原理 设一粗细均匀的钢丝,长度为L 、横截面 积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即 F L E S L ?= 或 //F S E L L =? 式中E 称为杨氏模量,单位为 N·m -2,在数值上等于产生单位应变的应力. 由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题. 本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放 在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动. 设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此 时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度). 由图可知 2 tan L d θ?= ,1011tan 2s s s d d θ-?== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有 θtan ≈θ2d L ?= ,θ2tan θ2≈1 101d s d s s ?=-= 由此可得 2 1 2d L s d ?= ? 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式: 1 228mgLd E D d s = π? 其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E . 实验内容 1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度; 2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次; 3. 用游标卡尺测量光杠杆常数d 2一次; 4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度; 5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果. 实验步骤 1. 杨氏模量测定仪的调整 (1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直; (2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直. (3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在 支架上. 调整到平面镜法线和望远镜轴线等高共轴. (4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节 平面镜倾角,直到在平面镜中看到镜筒或标尺的像. (6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝. 杠杆架 反射镜 固定平台 砝码 光杠杆结构图 θ θ 光杠杆 望远镜 标尺 s 0 s 1 d 1 d 2 ΔL θ θ Δs

水泥混凝土抗弯拉弹性模量试验方法

水泥混凝土抗弯拉弹性模量试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗弯拉弹性模量的方法和步骤。抗弯拉弹性模量是以 1/2抗弯拉强度时的加荷为准。 2、每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强 度,3根则用作抗弯拉弹性模量试验。 3、试验步骤 (1)至试验龄期时,自养护室取出试件,用湿布覆盖, 避免其湿度变化。清除试件表面污垢,修平与装置接触的 试件部分(对抗弯拉强度试件即可进行试验)。在试件上 下面即成型时两侧面)戈U出中线和装置位置线,在千分 表架共四个脚点处,用于毛巾先擦干水分,再用 502胶 水粘牢小玻璃片,量出试件中部的宽度和高度,精确至 1mm。 (2)将试件安放在支座上,使成型时的侧面朝天上, 千分表架放在试件上,压头及支座线垂直于试件 中线且无偏心加载情况,而后缓缓加上约1kN压 力,停机检查支座等各接缝处有无空隙(必要时需加金属

薄垫片),应确保试件不扭动,而后安装千分表,其触 电及表架触点稳立在小玻璃片上。 (3)取抗弯拉极限荷载平均值的 1/2 为抗弯拉弹性模 量试验的荷载标准(即F0.5)进行5次加卸荷载循环,由 1kN 起,以 0.15Kn/s-0.25Kn/s 的速度加荷, 至 3kN 刻度处停机(设为 Fo ),保持约 30s (在此段 加荷时间中,千分表指针应能起动,否 则应提高Fo至4kN等),记下千分表读数△ o, 而后 继续加至F0.5,保持约30s,记下千分表读数△ 0.5;再以同样速度卸荷至 1kN,保持约30s,为第一 次循环。 (4)同第一次循环,共进行五次循环,取第五次循环 的挠度值相差大于 0.5g时,须进行第六次循环, 直到两次相邻循环挠度值之差符合上述要求为止,取最后 一次挠度值为准。 ( 5)当最后一次循环完毕,检查各读数无误后,立即 去掉千分表,继续加荷直至试件折断,记下循环 后抗弯拉强度f‘ f观察断裂面形状和位置。如 1 > 断面在三分点外侧,则此根试件结果无效;如有两根试件 结果无效,则该组试验无效。

弹性模量、泊松比测试

弹性模量、泊松比测试 测样品的弹性模量通常分动态法和静态法,静态法是在试样上施加一个恒定的拉伸(或压缩)应力,测定其弹性变形量;动态法包括共振和超声波测试。 静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会。动态法属于不破坏试样结构和性能的一种无损检测方法,试样可重复测试,因此对于力学性能波动较大的脆性材料,反复多次的无损力学检测显得重要而有意义。 超声波法测弹性模量 1.原理: 在各向同性的固体材料中,根据应力和应变满足的胡克定律,可以求得超声波传播的特征方程: 其中,为势函数,c为超声波传播速度。 当介质中质点振动方向与超声波的传播方向一致时,成为纵波;当质点振动方向与超声波的传播方向垂直时,称为横波,在固体介质内部,超声波可以按纵波和横波两种波形传播,无论是材料中的纵波还是横波,其速度可表示为: 其中,d为声波传播距离,t为声波传播时间。 对于同一种材料,其纵波波速和横波波速的大小一般不一样,但是它们都由弹性介质的密度,杨氏模量,泊松比等弹性参数决定,即影响这些物理常数的因素都对声速有影响,因此,利用超声波方法可以测量材料有关的弹性常数。 固体在外力作用下,其长度的方向产生变形,变形时应力与应变之比定义为杨氏模量,用E表示。 固体在应力作用下,沿纵向有一正应变,沿横向有一负应变,横向纵向应变之比定义为泊松比,用u表示。 在各向同性固体介质中,各种波形的超声波声速为: 纵波声速: 横波声速: 相应的通过测量介质的纵波声速和横波声速,利用以上公式可以计算介质的弹性常数,计算公式如下: 弹性模量: 泊松比: 其中,,为密度 2.测试方法: 使用25DL PLUS型超声波弹性模量测试仪分别测试材料的纵波声速和横波声速,代入上述公式,计算得到弹性模量和泊松比数值。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

2 用拉伸法测金属丝的杨氏弹性模量 一、 实验目的 1. 学会用光杠杆法测量杨氏弹性模量; 2. 掌握光杠杆法测量微小伸长量的原理; 3. 学会用逐差法处理实验数据; 4. 学会不确定的计算方法,结果的正确表达; 5. 学会实验报告的正确书写。 二、 实验仪器 杨氏弹性模量测量仪 ( 型号见仪器上 )(包括望远镜、测量架、光杠杆、标尺、砝 码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。 本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体 能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度 方向施力F 后,物体的伸长 L ,则在金属丝的弹性限度内,有: L 我们把E 称为杨氏弹性模量。 如上图: E = S L L x n tg L = 2x D n n = n - n )

4 四、 实验内容 < 一> 仪器调整 1. 杨氏弹性模量测定仪底座调节水平; 2. 平面镜镜面放置与测定仪平面垂直; 3. 将望远镜放置在平面镜正前方 1.5-2.0m 左右位置上; 4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准 星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜, 然后继续调节物镜焦距并能看到尺子清晰的像; 6. n 0 一般要求调节到零刻度。 <二>测量 7. 计下无挂物时刻度尺的读数n 0 ; 8. 依次挂上1kg 的砝码,七次,计下n 1,n 2,n 3,n 4,n 5,n 6,n 7 ; 9. 依次取下1kg 的砝码,七次,计下 n 1',n 2',n 3',n 4',n 5 ,n 6',n 7'; 10. 用米尺测量出金属丝的长度 L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处 理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是 不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: (n 4-n 0)+(n 5-n 1)+(n 6-n 2)+(n 7 -n 3) 五、 实验数据记录处理 4 8 FLD x d 2 x n 2D 3. 注:上式中的 n 为增重4kg 的金属丝的伸长量。

动态法测杨氏模量实验报告

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

Brugg 弹性模量和疲劳测试方法

Event: SCX9项目确认 SCX9钢绳检测方法 一.弹性模量和伸长率测试方法: 1. 试验准备 a) 钢丝绳试样长度1.2-2m,应足以代表整根钢丝绳的特性,不应有缺陷。 b) 参考下图制作钢丝绳试样的两个固定端头。 c) 钢丝绳试样在试验机夹头或固定端的自由长度L0至少应为钢丝绳直径的30倍。 d) 在试样中部放置位移测试架,测试段间距L1为600mm 。 注:图中所示A,B:固定夹模,1:钢丝绳,2:位移传感器,3:紧固装置 2. 测试方法 a) 将制好的钢丝绳试样安装到拉伸试验机夹块之间. b) 检查所有的安装连接牢固可靠. c) 对试样加载至3%的钢丝绳最小破断力,位移传感器自动采集测试段长度 L1记录为初始长度So . d) 继续加载至8.5%的钢丝绳最小破断力,位移传感器自动采集测试段长度 L1记录为St . e) 对试样卸载至3%钢丝绳最小破断力,反复上述d)-e)步(加载-卸载)10次 f) 保持第十次3%的钢丝绳最小破断力的状态下,采集测试段L1的长度 记录为最终长度S1 g) 第十次加载至8.5%的钢丝绳最小破断力,采集测试段L1的长度记录为 载荷长度S2 注:长度测量误差: ±1mm 3. 伸长率的计算 %1001%结构(永久)伸长率x So So S -= %1001 1 2%弹性伸长率x S S S -= L0 L1 1 A B 3 2

二.含油率标准: 外层股含油率0.75%-1.3% ; 内层股&中心股含油率:1.0-2.5% 三.疲劳测试: 1 适用范围 电梯用钢丝绳弯曲疲劳寿命的要求和测试方法适用于本公司使用的各种结构和规格的电梯用钢丝绳。电梯用钢丝绳弯曲疲劳寿命的测试方法适用于钢丝绳疲劳试验机PL-1 2 注意事项 (1) 试验运行期间,应注意安全。并有专人随时观察试验运行情况。 (2) 每次记录前,应首先切断电源,等机器完全停稳后方可进行检测记录。 3 测试准备 3.1 样品准备 选取满足 GB 8903-2005 要求的试验钢丝绳一段,长约4.6 米左右。要求外观应光洁,无损伤、锈蚀、扭结等缺陷。在两端10到25mm 处钢丝绳分别用胶带扎紧,扎紧长度不应小于钢丝绳直径。在样品上挂标签,标签上包括:钢丝绳型号、结构、制造商、样品编号、日期和运行次数的表格。 3.2 测试仪器和工具准备 4 钢丝绳弯曲疲劳的测试过程 4.1 钢丝绳在设备上的安装(设备是指钢丝绳疲劳试验机,以下相同) (1) 根据钢丝绳的规格,调整配重箱的重量,使其符合表 1 的要求; (2) 顶起配重箱,使中间轮和配重轮间的间隙为 6 ~ 12 ㎜; (3) 松开夹头螺帽,穿过钢丝绳并将钢丝绳夹紧; (4) 将钢丝绳的一端穿过配重轮,绕到摆臂下下端的套管; (5) 在固定端用钢丝绳夹夹紧钢丝绳,并在固定端与标记处间隔 100~150 ㎜处系上标志或用其他相应的方法,以利于监测试验期间钢丝绳的滑移。此处标记为 A ; 注:应尽可能使夹具保持靠近套管,夹具间应尽可能靠拢。

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

水泥混凝土抗弯拉弹性模量试验方法

水泥混凝土抗弯拉弹性 模量试验方法 Revised at 2 pm on December 25, 2020.

水泥混凝土抗弯拉弹性模量试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗弯拉弹性模量的方法和步骤。抗弯拉弹性模量是以1/2抗弯拉强度时的加荷为准。 2、每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强 度,3根则用作抗弯拉弹性模量试验。 3、试验步骤 (1)至试验龄期时,自养护室取出试件,用湿布覆盖,避免其湿度变化。清除试件表面污垢,修平与装置接触 的试件部分(对抗弯拉强度试件即可进行试验)。在 试件上下面即成型时两侧面)划出中线和装置位置 线,在千分表架共四个脚点处,用于毛巾先擦干水 分,再用502胶水粘牢小玻璃片,量出试件中部的宽 度和高度,精确至1mm。 (2)将试件安放在支座上,使成型时的侧面朝天上,千分表架放在试件上,压头及支座线垂直于试件中线且无 偏心加载情况,而后缓缓加上约1kN压力,停机检查 支座等各接缝处有无空隙(必要时需加金属薄垫

片),应确保试件不扭动,而后安装千分表,其触电 及表架触点稳立在小玻璃片上。 (3)取抗弯拉极限荷载平均值的1/2为抗弯拉弹性模量试验的荷载标准(即)进行5次加卸荷载循环,由1kN 起,以s的速度加荷,至3kN刻度处停机(设为 Fo),保持约30s(在此段加荷时间中,千分表指针 应能起动,否则应提高Fo至4kN等),记下千分表 读数△o,而后继续加至,保持约30s,记下千分表读 数△;再以同样速度卸荷至1kN,保持约30s,为第 一次循环。 (4)同第一次循环,共进行五次循环,取第五次循环的挠度值相差大于μm时,须进行第六次循环,直到两次 相邻循环挠度值之差符合上述要求为止,取最后一次 挠度值为准。 (5)当最后一次循环完毕,检查各读数无误后,立即去掉千分表,继续加荷直至试件折断,记下循环后抗弯拉 强度f′f,观察断裂面形状和位置。如断面在三分点外 侧,则此根试件结果无效;如有两根试件结果无效, 则该组试验无效。 4、试验结果 (1)混凝土抗弯拉弹性模量E f按支梁在三分点各加荷载2的跨中挠度公式反算求得:

弹性模量和泊松比的测定

弹性模量和泊松比的测定

弹性模量和泊松比的测定

目录 一、弹性模量和泊松比 (2) 二、弹性模量测定方法 (2) 三、泊松比测定方法 (4) 四、结论 (4) 五、参考文献 (4)

一、弹性模量和泊松比 金属材料的弹性模量E为低于比例极限的应力与相应应变的比值;金属材料的泊松比μ指低于比例极限的轴向应力所产生的横向应变与相应轴向应变的负比值(详见GB/T 10623-2008 金属材料力学性能试验术语)。 二、弹性模量测定方法 铝合金材料的弹性模量E是在弹性范围内正应力与相应正应变的比值,其表达式为: E=σ/ε 式中E为弹性模量;σ为正应力;ε为相应的正应变。 铝合金材料弹性模量E的测定主要有静态法、动态法和纳米压痕法。 1.静态法 1.1测量原理 静态法测量铝合金材料的弹性模量主要采用拉伸法,即采用拉伸应力-应变曲线的测试方法。 拉伸法是用拉力拉伸试样来研究其在弹性限度内受到拉力的伸长变形。由上式有: E=σ/ε=FL/A△L 式中各量的单位均为国际单位。 可以看出,弹性模量E是在弹性范围所承受的应力与应变之比,应变是必要的参数。因此,弹性模量E的测试实质是测试弹性变形的直线段斜率,故其准确度由应力与应变准确度所决定。 应力测量的准确度取决于试验机施加的力值与试样横截面积,此时试验机夹具与试样夹持方法也非常关键,夹具与试样要尽量同轴;应变测量的准确度要求引伸计要真实反映试样受力中心轴线与施力轴线同轴受力时所产生的应变。 由于试样受力同轴是相对的,且在弹性阶段试样的变形很小,所以为获得真实应变,应采用高精度的双向平均应变机械式引伸计。 拉伸法测量弹性模量适用于常温测量,由于拉伸时载荷大,加载速度慢,

杨氏模量_数据处理(1)

《杨氏模量》实验报告数据处理 测量数据: 1.单次直接测量量测量参考值: 金属丝长度:L=37.42cm ; 钢卷尺仪器误差:0.1cm 光杠杆与镜尺组距离:D = 151.5 cm ; 钢卷尺仪器误差:0.1cm 光杠杆常数:b = 84.00 mm ; 卡尺仪器误差:0.02mm 砝码质量: 360g/个砝码 ; 误差: 1g/ 个砝码 2.多次直接测量量测量参考值: 金属丝直径测定: 螺旋测微计零点读数:0.000 mm 151r r l -== , 262r r l -=, 373r r l -=, 484r r l -= 1.杨氏模量E 的测量参考值: 将各测量量代入公式 Pa bl d FLD E 11226221060.11063.0104.81049.014.3515 .13742.08.94360.088?=???????????==---π

由不却定度传递公式: 2222222??? ??+??? ??+??? ??+??? ??+??? ??+??? ??=l u b u d u D u L u F u E u l b d D L F E )(03.031 8.910143N u F =????=- )(11.148.9360.04N F =??= %21.011 .1403.0==F u F cm u L 03.03 1 05.0=?= %080.042.3703.0==L u L cm u D 06.03 1 1.0=?= %040.050.15106.0==D u D mm u b 0 2.031 02.0=?= %024.000.8402.0==b u b (0.630.65)0.029c m A l ?= = )0.058cm B l ?== mm l l u B A l 06.0058.0029.02222=+=?+?= %3.664 .004.0==l u l mm d A 001.04 5)490.0490.0()492.0490.0()489.0490.0()490.0490.0()488.0490.0(2 2222=?-+-+-+-+-=?mm d B 002.03 004 .0==? mm d d u B A d 003.0002.0001.02222=+=?+?= %61.0490.0003.0==d u d 222222)()()2()()()(l l b b d d D D L L F F E u E ?+?+?+?+?+?= %4.6%)3.6(%)024.0(%)22.1(%)040.0(%)080.0(%)21.0(222222=+++++=1111101.0%4.61060.1%4.6?=??=?=E u E Pa 实验结果表示:a E P ?±=1110)1.06.1( %4.6=E u E 683.0=P

弹性模量的测定整理

弹性模量的定义及其相互关系 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量(Elastic Modulus )。弹性模量的单位是GPa 。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 线应变:对一根细杆施加一个拉力F ,这个拉力除以杆的截面积S ,称为“线应力”,杆的伸长量dL 除以原长L ,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L)。 剪切应变:对一块弹性体施加一个侧向的力f (通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a 称为“剪切应变”,相应的力f 除以受力面积S 称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 。 体积应变:对弹性体施加一个整体的压强P ,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E 是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 说明:弹性模量只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。 泊松比(Poisson's ratio ),以法国数学家 Simeom Denis Poisson 为名,是横向应变与纵向应变之比值它是反映材料横向变形的弹性常数。 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变 e' 与轴向应变 e 之比称为泊松比ν。 泊松比ν与杨氏模量E 及剪切模量G 之间的关系 ()()??? ? ??+=+==ννν1G 2orE 12E orG 1-G 2E 材料弹性模量的测试方法 弹性模量的测试有三种方法:静态法、波传播法、动态法。 静态法测试的是材料在弹性变形区间的应力-应变,静态法指在试样上施加一恒定的弯曲应力,测定其弹性弯曲挠度,根据应力和应变计算弹性模量。静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会,且测试精度低,测试结果波动大。另外,静态法只能对材料的杨氏模量进行测定,不能测试材料的剪切模量及泊松比。 其主要缺点是: 1.应力加载的速度会影响弹性模量的数值 2.脆性材料如陶瓷无法测量 3.不能在高温下测试.在高温下,材料发生蠕变,使得应变测试值增大。 超声波法:测试超声波在试样中的传播时间及试样长度得到纵向或横向传播速度,然后计算

相关文档
相关文档 最新文档