文档库 最新最全的文档下载
当前位置:文档库 › 基于simulink的仿真

基于simulink的仿真

基于simulink的仿真
基于simulink的仿真

河北北方学院

毕业论文

题目:数字调制系统的SIMULINK实现研究

三种基本调制制度的功率谱密度研究院系:信息工程系

专业:信息工程

年级:07级

河北北方学院教务处制

三种基本调制制度的功率谱密度研究

摘要

随着通信系统的规模和复杂度不断增加,传统的设计方法已经不能适应发展的需要,通信系统的模拟仿真技术越来越受到重视。而通信系统的计算机模拟仿真技

术是一种全新的系统设计方法,它可以让用户在很短的时间内建立整个通信系统模型,并对其进行模拟仿真。本文首先介绍了SIMULINK应用及通信技术的发展状况。然后对SIMULINK的工作原理及使用方法进行阐述,接着介绍基本的数字调制系统并分析三种调制制度2ASK、2FSK和2PSK的基本原理。再对三种调制制度的功率谱密度进行分析,最后利用SIMULINK建立系统模型对三种调制制度的功率谱密度进行模拟仿真并分析结果。

关键词:调制制度 SIMULINK 功率谱密度系统模型

Abstract

As communications systems continue to increase in size and complexity, traditional design methods have been unable to meet the needs of development, communication system simulation technology more and more attention. Er Communication System Computer simulation technology is a new design method, which allows users in a very short period of time to establish the communication system model, and its

simulation. This paper introduces the application and communication technologies SIMULINK development. Then the working principle and the use of SIMULINK method described, then introduced the basic digital modulation systems and analyze the three modulation system 2ASK, 2FSK and 2PSK the basic principles.

Re-modulation system, the three power spectral density analysis, and finally create a system model using SIMULINK three modulation power spectral density of the system simulation and analysis results.

Key words: Modulation system SIMULINK The power spectral density System Model

目录

摘要 0

Abstract (1)

1.绪论 (4)

1.1研究目的及意义 (4)

1.2 SIMULINK简介 (5)

1.3.1通信的概念 (6)

1.3.2 通信的发展史简介 (8)

1.3.3 通信技术的发展现状和趋势 (8)

1.4本论文的任务 (9)

1.4 研究内容与安排 (9)

2.SIMULINK工作原理 (10)

2.1Simulink求解器 (10)

2.1.1 连续求解器 (10)

2.1.2 离散求解器 (11)

2.1.3 关于求解器的其他内容 (11)

2.2过零检测和时间通知 (12)

2.2.1 过零检测 (12)

2.2.2 时间通知 (14)

2.3 代数环 (15)

2.3.1 直接馈入电路(direct feedthrough) (15)

2.4改善仿真的性能和精确度 (15)

2.4.1 加速仿真 (16)

2.4.2 改善仿真的精度 (17)

2.5 本章小结 (17)

3.数字调制系统基本原理 (17)

3.1二进制振幅键控(2ASK) (18)

3.1.1 2ASK 信号的功率谱密度 (20)

3.2二进制移频键控(2FSK) (22)

3.2.1 2FSK 信号的功率谱密度 (25)

3.3二进制移相键控(2PSK) (27)

3.3.1 2PSK的功率谱密度 (30)

3.4二进制差分相位键控(2DPSK) (30)

3.5 本章小结 (34)

4.Simulink的模型建立和仿真 (34)

3.2.1 Suzuki衰落分布 (35)

3.2.2 Suzuki信道模型 (35)

3.3 本章小结 (36)

4.平坦衰落信道仿真 (37)

4.1 计算机模型的参数计算 (38)

4.1.1 均方误差法(MSEM) (38)

4.1.2 等面积取样法(MEA) (42)

4.1.3 实际多普勒扩散法(MEDS) (46)

4.2 平均多普勒偏移因子及多普勒扩散因子 (50)

4.3 Suzuki信道仿真 (53)

4.4 本章小结 (55)

5. 总结与展望 (56)

致谢 (57)

参考文献 (58)

附录 (59)

1.绪论

1.1研究目的及意义

随着现代通信系统的飞速发展,计算机仿真已经成为分析和设计通信系统的主要工具,在通信系统的研发和教学中具有越来越重要的意义。计算机仿真是衡量系统性能的工具,它通过构建模型运行结果来分析实物系统的性能从而为新系统的建立或原系统的改造提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈,优化系统的整体性能。因此,仿真是通信系统研究和工程建设中不可缺少的环节。

1.2 SIMULINK简介

SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。

Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

Simulink是MATLAB中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。它的主要特点在于:1、建模方便、快捷;2、易于进行模型分析;

3、优越的仿真性能。它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。Simulink模块库(或函数库)包含有Sinks(输出方式)、Sources(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和Extra(其他环节)等具有不同功能或函数运算的Simulink库模块(或库函数),而且每个子模型库中包含有相应的功能模块,用户还可以根据需要定制和创建自己的模块。用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,

包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。构架在Simulink 基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与MATLAB紧密集成,可以直接访问MATLAB 大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

1.3通信技术发展状况

1.3.1通信的概念

通信就是克服距离上的障碍,从一地向另一地传递和交换消息。消息是信息源所产生的,是信息的物理表现,例如,语音、文字、数据、图形和图像等都是消息(Message)。消息有模拟消息(如语音、图像等)以及数字消息(如数据、文字等)之分。所有消息必须在转换成电信号(通常简称为信号)后才能在通信系统中传输。所以,信号(Signal)是传输消息的手段,信号是消息的物质载体。

相应的信号可分为模拟信号和数字信号,模拟信号的自变量可以是连续的或离散的,但幅度是连续的(分别如图1-2-1所示) ,如电话机、电视摄像机输出的信号就是模拟信号。数字信号的自变量可以是连续的或离散的,但幅度是离散的(分别如图1-2-2所示) ,如电船传机、计算机等各种数字终端设备输出的信号就是数字信号。

通信的目的是传递消息,但对受信者有用的是消息中包含的有效内容,也即信息(Information) 。消息是具体的、表面的,而信息是抽象的、本质的,且消息中包含的信息的多少可以用信息量来度量。

通信技术,特别是数字通信技术近年来发展非常迅速,它的应用越来越广泛。通信从本质上来讲就是实现信息传递功能的一门科学技术,它要将大量有用的信息无失真,高效率地进行传输,同时还要在传输过程中将无用信息和有害信息抑制掉。当今的通信不仅要有效地传递信息,而且还有储存、处理、采集及显示等功能,通信已成为信息科学技术的一个重要组成部分。

通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1-2-3所示。

→→→→信息源发送设备信道接收设备受信者

噪声源

图1-2-3通信系统一般模型

通信系统可分为数字通信系统和模拟通信系统。数字通信系统是利用数字信号来传递消息的通信系统,其模型如图1-2-4所示,

→→→→→→→→信数信信

数信信

源道字受道源字信息编编调 解译译信源码码调码码者

道器器器器器器

噪声源

图1-2-4 数字通信系统模型

模拟通信系统是利用模拟信号来传递消息的通信系统,其模型如图1-2-5所示。

→→→→信息源调制器信道解调器受信者

噪声源

图1-2-5 模拟通信系统模型

数字通信系统较模拟通信系统而言,具有抗干扰能力强、便于加密、易于实现集成化、便于与计算机连接等优点。因而,数字通信更能适应对通信技术的越来越高的要求。近二十年来,数字通信发展十分迅速,在整个通信领域中所占比重日益增长,在大多数通信系统中已代替模拟通信,成为当代通信系统的主流1.3.2 通信的发展史简介

远古时代,远距离的传递消息是以书信的形式来完成的,这种通信方式明显具有传递时间长的缺点。为了在尽量短的时间内传递尽量多的消息,人们不断地尝试所能找到的各种最新技术手段。1837年发明的莫尔斯电磁式电报机标志着电通信的开始,之后,利用电进行通信的研究取得了长足的进步。1866年利用海底电缆实现了跨大西洋的越洋电报通信。1876年贝尔发明了电话,利用电信号实现了语音信号的有线传递,使信息的传递变的既迅速又准确,这标志着模拟通信的开始,由于它比电报更便于交流使用,所以直到20世纪前半叶这种采用模拟技术的电话通信技术比电报的到了更为迅速和广泛的发展。1937年瑞威斯发明的脉冲编码调制标志数字通信的开始。20世纪60年代以后集成电路、电子计算机的出现,使得数字通信迅速发展。在70年代末在全球发展起来的模拟移动电话在90年代中期被数字移动电话所代替,现有的模拟电视也正在被数字电视所代替。数字通信的高速率和大容量等各方面的优越性也使人们看到了它的发展前途。

1.3.3 通信技术的发展现状和趋势

进入20世纪以来,随着晶体管、集成电路的出现与普及、无线通信迅速发展。特别是在20世纪后半叶,随着人造地球卫星的发射,大规模集成电路、电子计算机和光导纤维等现代技术成果的问世,通信技术在以下几个不同方向都取得了巨大的成功。

(1)微波中继通信使长距离、大容量的通信成为了现实。

(2)移动通信和卫星通信的出现,使人们随时随地可通信的愿望可以实现。(3)光导纤维的出现更是将通信容量提高到了以前无法想象的地步。

(4)电子计算机的出现将通信技术推上了更高的层次,借助现代电信网和计算机的融合,人们将世界变成了地球村。

(5)微电子技术的发展,使通信终端的体积越来越小,成本越来越低,范围越来越广。例如,2003年我国的移动电话用户首次超过了固定电话用户。

根据国家信息产业部的统计数据,到2005年底移动电话用户近4亿。

随着现代电子技术的发展,通信技术正向着数字化、网络化、智能化和宽带化的方向发展。随着科学技术的进步,人们对通信的要求越来越高,各种技术会不断地应用于通信领域,各种新的通信业务将不断地被开发出来。到那时人们的生活将越来越离不开通信。

1.4本论文的任务

1、对数字调制系统的功能、原理能够深入的理解。同时学会使用MATLAB并熟悉SIMULINK的工作原理,能够利用SIMULINK进行建模和仿真。

2、学会三种基本调制制度2ASK、2FSK和2PSK的基本原理并能够分别对它们的功率谱密度进行分析。

3、基本掌握利用SIMULINK建立模型并能够对三种基本调制制度的功率谱密度进行仿真。

最后通过研究数字调制系统的三种基本调制制度及其功率谱密度,培养独立思考研究的能力,并能够对研究结果进行分析。对数字调制系统有了进一步的理解,学会利用工具软件SIMULINK建立仿真模型并能对研究结果进行仿真。

1.4 研究内容与安排

第1章介绍了课题研究的意义及目的,简要的介绍了通信技术的发展状况,最后介绍本论文的主要任务。

第2章简要地介绍了移动衰落信道建模的几种常见方法,并对每种方法的优缺点以及使用场合作了说明。

第3章主要介绍了描述常见移动通信信道衰落的两种常见模型,即Clarke 信道模型和Suzuki信道模型。本章是以介绍Suzuki信道模型为主的。在本章中研究了Suzuki信道模型的理论基础。

第4章主要是实现衰落信道的计算机模型的仿真。本章是本文的重点,在本章中介绍了目前比较流行的有色高斯噪声的计算机模拟方法,即用有限个正弦信号的Rice和来近似有色高斯噪声过程,本章对该方法中如何选择有限个正弦信号的频率、幅度和相位的三种方法,即等面积取样法、最小均方误差法、实际多普勒扩散法进行了比较,随后实现了Suzuki信道的计算机模型仿真。

第5章总结论文研究的成果、不足以及下一阶段的努力方向。

2.SIMULINK工作原理

在本章中将详细介绍Simulink工作原理,主要包括Simulink的求解器、过零检测、代数环和回调函数等。只有深入的理解Simulink的工作原理,才能更好地建立系统模型、设置Simulink系统模型的仿真参数等,从而能够快速、准确地实现系统设计、仿真和分析。

2.1Simulink求解器

Simulink求解器是Simulink进行动态系统仿真的核心,Simulink仿真都需要调用求解器,它是Simulink仿真的“大脑”。

Simulink对系统仿真的控制是通过系统模型和求解器之间建立对话的方式

进行的:Simulink将系统模型、模块参数和系统方程传递给Simulink的求解器,而求解器将计算得到的系统状态和仿真时间通过Simulink环境传递给系统模型本身,通过这样的交互作用方式来完成动态系统仿真。

Simulink求解器分为两种:连续求解器和离散求解器。

2.1.1 连续求解器

连续求解器具有连续的输入与输出,并且系统中一般都存在连续的状态变量。连续系统中存在的状态变量往往是系统中吗某些信号的微分或积分,因此连

续系统一般由微分方程来描述。但是由于Simulink是用数字来逼近连续,进而达到仿真的目的,因而得到仿真结果并不是精确的结果,只能是近似。

建立连续系统的模型相当于建立系统的微分方程,而进行系统仿真的过程就是通过连续求解器对该微分方程求解的过程。

对微分方程求解的近似方法分为定步长和变步长两种,定步长和变步长又有ode45、ode23、ode113、ode5和ode3等。连续求解器类型的选择会影响到连续系统的仿真结果和仿真速度,但是一般情况下不会产生太大的影响,如果要想得比较满意的结果(精度)和仿真速度,需要了解这些求解器。

2.1.2 离散求解器

与连续求解器不同,离散系统一般是由差分方程描述的。离散系统的输入和输出都是离散的,系统状态每隔一段时间才更新一次。实际离散系统的仿真就是离散求解器对离散系统模型的差分方程的求解过程。Simulink可以做到对离散系统仿真的绝对精确。

在纯粹的离散系统进行仿真时,需要选择离散求解器对其进行求解。用户只需选择Simulink仿真参数设置对话框中的求解器选项卡中的discrete(no contimuous state)选项,即没有连续状态的离散求解器,也可以对离散系统进行精确的仿真。

2.1.3 关于求解器的其他内容

求解器有两个非常重要的参数:误差容限和仿真步长,它们分别对应求解器对话框上面的“Relative tolerance”项和“Step size”项。对于固定步长连续求解器,并不存在误差容限的问题,只有采用变步长连续求解器,才会根据积分误差修改步长,以满足误差容限的要求。

由于不能精确计算连续系统状态变量,因而积分误差是一个近似值。通常连续求解器采用两个不同阶次的近似方法进行积分,然后计算它们之间的积分差值作为积分误差。

实际的系统,通常是混合系统,很少有纯粹的离散系统和纯粹的连续系统。连续变步长求解器不仅考虑了连续状态的求解,而且也考虑了系统中离散状态的

求解。连续变步长求解器首先尝试使用最大步长进行求解,如果在这个仿真区间内没有离散状态的更新,步长便减小到与离散状态的更新相吻合。

2.2过零检测和时间通知

Simulink对系统仿真的控制是通过系统模型和求解器之间建立对话框的方式进行的,对话框公式的核心是时间通知。所谓时间通知,是指系统模型通过Simulink仿真环境告知求解器在前一仿真步内系统中所发生的事件,以用于当前仿真时刻求解器的计算。事件的发生与否是通过检测系统的过零检测实现的。过零检测和事件通知实现了系统模型与Simulink求解器的交互。

2.2.1 过零检测

Simulink用过零检测来检测连续信号的不连续的地方。过零检测在两个方面扮演着重要的角色。

一、状态事件的获取

一个系统发生一个状态事件,是指系统的某个状态值发生了能使系统产生显著变化的变化。

Simulink使用过零检测使仿真步精确地发生在状态事件发生的时刻,于是因为仿真的时间步准确地取在接触时刻,所以仿真就不会产生穿透现象。

二、不连续信号的积分

数字积分方法建立在所积分的信号时连续的,并且具有连续微分的假设下。如果在一个积分过程中遇到了不连续点,Simulink使用过零检测来寻找不连续点发生的时间,而积分的上限只取到不连续点的左边沿。最后Simulink略过不连续点,并对信号的下一段分段连续进行积分。

Simulink模块中使用过零检测的一个例子是Saturation模块。过零点检测Saturation模块中的这些事件:

●输入信号到达上限

●输入信号离开上限

●输入信号到达下限

●输入信号离开下限

定义了自己的状态事件的Simulink模块被认为具有固有的过零点。如果用户需要一个过零点事件的显示通知,可以使用Hit Crossing模块。

状态事件的检测依赖于一个内部过零点信号,即zcSignal=UpperLimit-u,其中u是输入信号。

过零点信号有方向属性,它的取值有三种。

1.rising

当一个信号上升到零或者穿过零,或者离开并且变化成正数时发生的过零点。

2.falling

当一个信号下降到零或者穿过零,或者离开零并且变化成正数时发生的过零点。

3.either

rising或falling,有其一发生时就发生。

对于Saturation模块的上限而言,过零点的方向是either。这样使得信号进入饱和或者离开饱和的事件可以通过相同的过零点信号来检测到。

误差容限的大小对过零点的检测有很大的影响。如果误差容限太大,Simulink就有可能检测不到过零点。在数学里面有这样的一条定律:对于连续信号,如果有两点的符号相异,那么在这两点之间必定存在一个过零点。这个定律是Simulink检测过零点的数学基础,它通过检查一个仿真时间步的首尾两点的符号,来判定在该时间步里是否存在过零点。如果误差容限太大,就将导致仿真的时间步不是足够小,有些过零点就不能检测出来了。

为了防止这种情况的发生,Simulink允许用户修改误差容限,通过缩小误差容限,可以使Simulink采用更小的仿真步长。

在使用过零检测时,需要注意以下几点:

(1)关闭系统仿真参数设置中的过零事件检测,可以使动态系统的仿真速度得到很大的提高,但可能引起系统的仿真结果不精确,甚至出现错误的结果。

(2)关闭系统过零检测对Hit Crossing零交叉模块并无影响。

(3)对于离散模块及其产生的离散信号不需要进行过零检测。这是因为用于离散系统仿真器与连续变步长求解器都可以很好地匹配离散信号的更新时刻。

此外,对于某些比较特殊的动态系统而言,对其进行仿真时,有可能在一个非常小的区间内多次通过零点。这将导致在同一时间内多次探测到信号的过零,从而使得Simulink仿真终止。在这种情况下,应该在仿真参数设置中关闭过零检测功能。当然,这些系统通常是某些物理现象的理想模型。但是对于某些系统而言,这些模块的过零非常重要,此时可以采用在系统模型中串入零交叉Hit Crossing模块,并关闭仿真过零检测功能来实现过零的使用。

2.2.2 时间通知

在动态系统仿真中,采用变步长求解器可以使Simulink正确地检测到系统模块与信号中过零事件的发生。当一个模块通过Simulink仿真环境通知求解器,在系统前一仿真步长时间内发生了过零事件,变步长求解器就会缩小仿真步长,即使求解误差满足绝对误差和相对误差的上限要求。缩小仿真步长的目的是判断事件发生的准确事件(也就是过零事件的发生时刻)。

当然,这样做会使系统仿真的速度变慢,但正如前所述,这对于系统的某些模块是至关重要的。因为这些模块的输出可能表示了一个物理值,它的零值有着重要的意义:或者是标志系统运行状态的改变,或者用来控制另外一个模块。事实上,只有少量的模块能够发出事件通知。每个模块发出专属于自己的事件通知,而且可能与不止一个类型的事件发生关联。

事件通知是Simulink进行动态系统仿真的核心。Simulink动态系统仿真时基于事件驱动的,这符合当前交互式设计与面向对象设计的思想。在系统仿真中,系统模型与求解器均可以视为某种对象,事件通知相当于对象之间的消息传递:对象通过消息的传递来完成系统仿真的目的。

2.3 代数环

2.3.1 直接馈入电路(direct feedthrough)

在Simulink中,直接馈入指具有直接馈入的模块在不知道输入端口值的前提下无法计算输出端口值。也就是当前时刻输出值的计算依赖于当前时刻的输入值,从模块的内部结构上说,模块内不存在延迟的单元。

在Simulink中,直接馈入的模块有:

●Elementary Math 模块

●Gain block 模块

●Integrator 模块

●Product 模块

●有非零的D矩阵的State-Space 模块

●Sum模块

●分子和分母多项式具有相同阶数的Transfer Fcn模块

●零点数和极点数相同的Zero-Pole模块

直接馈入中的直接是指仿真时间意义上的,而不是指是否经过处理,即和直接连线不是等同的。

当具有直接馈入的端口由该模块的输出驱动时,或者是经过别的直接馈入的模块的反馈环路驱动时,就发生了代数环。

如果系统中出现了代数环,由于代数环的输入和输出之间是相互依赖的,组成代数环的所有模块都要求在同一时刻计算输出。这与系统仿真的顺序概念相反,因此,最好使用其他的方法对系统方程进行求解。通常,代数环进行代数约束或切断环来解决代数环的求解问题。

2.4改善仿真的性能和精确度

仿真的性能和精确度受到很多事情的影响,包括模型的设计和仿真参数的选择。对于大多数问题,使用默认的仿真参数值,求解器可以精确而有效地解决。对于这些模型而言,适当地调整求解器和仿真参数可以得到更好的仿真结果。如果用户知道模型行为的信息,并把它输入求解器也会提升性能。

2.4.1 加速仿真

一个模型的仿真速度过慢是由许多因素造成的,下面列举了一些因素及部分解决方法。

(1)模型包括一个MATLAB Fcn模块。当执行一个包含MATLAB Fcn模块的模型,Simulink在每一个仿真时间步都要调用MATLAB解调器。所以应该尽可能地使用Simulink的内置Fcn模块或者是做基本的math模块。

(2)模型包含用M文件的S函数,M文件的S函数同样会使Simulink在每一个仿真时间步调用MATLAB解释器。替代的方法是把M文件的S函数转化为c-mex函数或者是建立一个等价的子系统。

(3)模型包含一个存储模块。使用存储模块将使阶数可变的求解器在每个仿真时间步被重置回1阶。

(4)仿真的时间步长太小。解决的方法是把最大仿真步长参数设置回Simulink的默认值-auto。

(5)仿真的精度要求过高。一般来说,相对误差容限设为0.1%就已经足够了。当模型存在取值趋向于零的状态,仿真时如果绝对误差限度太小,会使仿真在接近零的状态附近耗费过多的仿真步。

(6)仿真的时间过长。解决的方法是酌情减小仿真的时间间隔。

(7)所解决的问题是stiff问题,却选择了一个非stiff的求解器。解决的方法是使用ode15s。

(8)模型所设置的采样时间的公约数过小,这样使Simulink可以采用的基准采样时间过小,因为Simulink会选择足够小的时间步以保证所设置的采样点都能取到。

(9)模型包含一个代数环。代数环的求解方法就是在每一个时间步迭代地进行计算,这样会严重地降低仿真的性能。

(10)模型把一个random number模块作为integrator模块的输入。对于连续系统,可以使用source子库里的Band-Limited WhiteNoise模块。

2.4.2 改善仿真的精度

检验仿真精度的方法是修改仿真的相对误差和绝对误差容限,在一个合适的时间跨度反复运行仿真,看看仿真的结果有没有大的变化,如果变化不大,则表示是收敛的。

如果仿真在开始时错过了吗模型的关键行为,那么可以更改初始步长,使仿真不会忽略这些关键的行为。

如果仿真的结果不稳定,可能是以下原因:

(1)系统本身不稳定

(2)如果正在使用ode15s,用户可以把最大阶数定为2或者尝试ode23s。

(3)如果仿真的结果看起来不很精确,可能是由两种原因引起的:

a)模型有取值接近零的状态,如果模型的绝对误差容限过大,会使仿真在

接近零的区域所包含的仿真时间步太少。解决的方法是修改绝对误差容

限参数或者在积分模块的对话框修改起始状态。

b)如果改变绝对误差容限不能达到预期的效果,可以修改相对误差容限,

使可接受的误差降低,并减小仿真步长。

2.5 本章小结

本章主要介绍了Simulink的工作原理。首先介绍了Simulink求解器,Simulink求解器是Simulink进行动态系统仿真的核心,Simulink仿真都需要调用求解器,它是Simulink仿真的“大脑”。Simulink求解器分为两种:连续求解器和离散求解器。其次对过零检测和事件通知、代数环和如何改善仿真的性能和精确度都做了详细介绍。只有深入的理解Simulink的工作原理,才能更好地建立系统模型、设置Simulink系统模型的仿真参数等,从而能够快速、准确地实现系统设计、仿真和分析。

3.数字调制系统基本原理

在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输

特性,数字基带信号不能直接在这种带通传输特性的信道中传输。必须用数字基带信号对载波进行调制,产生各种已调数字信号。

图3-1 数字调制系统的基本结构

数字调制与模拟调制原理是相同的,一般可以采用模拟调制的方法实现数字调制。但是,数字基带信号具有与模拟基带信号不同的特点,其取值是有限的离散状态。这样,可以用载波的某些离散状态来表示数字基带信号的离散状态。基本的三种数字调制方式是:振幅键控(ASK)、移频键控(FSK)和移相键控(PSK 或DPSK)。

3.1二进制振幅键控(2ASK)

振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为

(3-1-1)

其中:

(3-1-2)Ts是二进制基带信号时间间隔,g(t)是持续时间为Ts的矩形脉冲:

(3-1-3)则二进制振幅键控信号可表示为

(3-1-4)二进制振幅键控信号时间波型如图3- 2 所示。由图3- 2 可以看出,2ASK信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK信号)。二进制振幅键控信号的产生方法如图3 - 3 所示,图(a)是采用模拟相乘的方法实现,图(b)是采用数字键控的方法实现。由图 3 - 2 可以看出,2ASK信号与模拟调制中的AM信号类似。所以,对2ASK信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图3 - 4 所示,2ASK信号非相干解调过程的时间波形如图3 - 5 所示,

图3 – 2 二进制振幅键控信号时间波型

图3-3 二进制振幅键控信号调制器原理框图

通信仿真课程设计-matlab-simulink

成都理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 201620101133 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,电话,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

Matlab Simulink 仿真步骤

MATLAB基础与应用简明教程 张明等编著 北京航空航天大学出版社(2001.01) MATLAB软件环境是美国New Mexico大学的Cleve Moler博士首创的,全名为MATrix LABoratory(矩阵实验室)。它建立在20世纪七八十年代流行的LINPACK(线性代数计算)和ESPACK(特征值计算)软件包的基础上。LINPACK和ESPACK软件包是从Fortran语言开始编写的,后来改写为C语言,改造过程中较为复杂,使用不便。MA TLAB是随着Windows环境的发展而迅速发展起来的。它充分利用了Windows环境下的交互性、多任务功能语言,使得矩阵计算、数值运算变得极为简单。MA TLAB语言是一种更为抽象的高级计算机语言,既有与C语言等同的一面,又更为接近人的抽象思维,便于学习和编程。同时,它具有很好的开放性,用户可以根据自己的需求,利用MA TLAB提供的基本工具,灵活地编制和开发自己的程序,开创新的应用。 本书重点介绍了MA TLAB的矩阵运算、符号运算、图形功能、控制系统分析与设计、SimuLink仿真等方面的内容。 Chap1 MATLAB入门与基本运算 本章介绍MATLAB的基本概念,包括工作空间;目录、路径和文件的管理方式;帮助和例题演示功能等。重点介绍矩阵、数组和函数的运算规则、命令形式,并列举了可能得到的结果。由于MA TLAB的符号工具箱是一个重要分支,其强大的运算功能在科技领域有特殊的帮助作用。 1.1 MATLAB环境与文件管理 1.2 工作空间与变量管理 1.2.1 建立数据 x1=[0.2 1.11 3]; y1=[1 2 3;4 5 6]建立一维数组x1和二维矩阵y1。分号“;”表示不显示定义的数据。 MATLAB还提供了一些简洁方式,能有规律地产生数组: xx=1:10 %xx从1到10,间隔为1 xx=-2:0.5:1 %xx从-2到1,间隔为0.5 linespace命令等距离产生数组,logspace在对数空间中等距离产生数组。对于这一类命令,只要给出数组的两端数据和维数就可以了。 xx=linespace(d1,d2,n) %表示xx从d1到d2等距离取n个点 xx=logspace(d1,d2,n) %表明xx从10d1到10d2等距离取n个点 1.2.2 who和whos命令 who: 查看工作空间中有哪些变量名 whos: 了解这些变量的具体细节 1.2.3 exist命令 查询当前的工作空间内是否存在一个变量,可以调用exist()函数来完成。 调用格式:i=exist(…A?); 式中,A为要查询的变量名。返回的值i表示A存在的形式: i=1 表示当前工作空间内存在一个变量名为A的矩阵; i=2 表示存在一个名为A.m的文件; i=3 表示MATLAB的工作路径下存在一个名为A.mex的文件;

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目:信息系统课程设计仿真 院(系):信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012 年 1 月 14 日至2012 年 1 月 25 日 华中科技大学武昌分校制

信息系统仿真课程设计任务书

目录 摘要 (5) 一、Simulink仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLAB仿真设计 (12) 2.1、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2自编matlab程序: (13) 2.1.3 仿真图形 (13) 2.1.4仿真结果分析 (15) 2.2用双线性变换法设计IIR数字滤波器 (15) 2.2.1双线性变换法的基本知识 (15) 2.2.2采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3自编matlab程序 (16) 2.2.4 仿真波形 (17) 2.2.5仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20)

摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,目前已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图形处理系统、MATLAB数学函数库和MATLAB应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM编码器对一连续信号进行编码。最后利用MATLAB进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

通信仿真课程设计-matlab-simulink

理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 3 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

simulink-matlab仿真教程

simulink matlab 仿真环境教程 Simulink 是面向框图的仿真软件。 演示一个Simulink 的简单程序 【例1.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB 的命令窗口运行simulink 命令,或单击工具栏中的图标,就可以打开Simulink 模块库浏览器 (Simulink Library Browser) 窗口,如图1.1所示。 (2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白 模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图1.2 所示。 图7.1 Simulink 界面

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope ”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图1.3所示。 (7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。如图1.4所示。 (8) 保存模型,单击工具栏的图标,将该模型保存为“Ex0701.mdl”文件。 1.2 Simulink的文件操作和模型窗口 1.2.1 Simulink的文件操作 1. 新建文件 新建仿真模型文件有几种操作: ?在MATLAB的命令窗口选择菜单“File”“New”“Model”。 图7.2 Simulink界面 图7.3 Simulink模型窗口 图7.4 示波器窗口

基于MATLAB的M文件仿真

M文件: k=1; Int_F=inline('t','t'); for x=[1,3,5] f_x(k)=x^3+x+log(x)*sin(x)+quad8(Int_F,0,x); k=k+1; end f_x >> Calcfx Warning: QUAD8 is obsolete. We use QUADL instead. > In quad8 at 35 In Calcfx at 4 f_x = 2.5000 34.6550 140.9567 M文件: function[mean,stdev]=stat(x) n=length(x); mean=sum(x)/n; stdev=sqrt(sum(x-mean).^2/n); >> x=[1,3,2]; >> [k,l]=stat(x) k = 2 l = 微积分方程组的MA TLAB函数: 文件funcforex123.m function xdot=funcforex123(t,x,flag,r,l,c) xdot=zeros(2,1); xdot(1)=-r/l*x(1)-1/l*x(2)+1/l*f(t); xdot(2)=1/c*x(1); function in=f(t) in=(t>0)*1; 文件Ex123.m l=1; c=0.1; for r=[1.5 3 5]

[t,x]=ode45('funcforex123',[-1,10],[0;0],[],r,l,c); figure(1);plot(t,x(:,1));hold on;xlabel('time sec'); text(0.9,0.17,'\lefttarrow i_L(t)');grid; figure(2);plot(t,x(:,2));hold on;xlabel('time sec'); text(0.5,0.3,'\leftarrow u_C(t)');grid; End >> ex123 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 5 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 7 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 7

Simulink建模方法

Simulink 建模方法 在一些实际应用中,如果系统的结构过于复杂,不适合用前面介绍的方法建模。在这种情况下,功能完善的Simulink 程序可以用来建立新的数学模型。Simulink 是由Math Works 软件公司1990年为MATLAB 提供的新的控制系统模型图形输入仿真工具。它具有两个显著的功能:Simul(仿真)与Link(连接),亦即可以利用鼠标在模型窗口上“画”出所需的控制系统模型。然后利用SIMULINK 提供的功能来对系统进行仿真或线性化分析。与MATLAB 中逐行输入命令相比,这样输入更容易,分析更直观。下面简单介绍SIMULINK 建立系统模型的基本步骤: (1) SIMULINK 的启动:在MATLAB 命令窗口的工具栏中单击按钮或者在命令提示符>>下键入simulink 命令,回车后即可启动Simulink 程序。启动后软件自动打开Simullink 模型库窗口,如图 7所示。这一模型库中含有许多子模型库,如Sources(输入源模块库)、Sinks(输出显示模块库)、Nonlinear(非线性环节)等。若想建立一个控制系统结构框图,则应该选择File| New 菜单中的Model 选项,或选择工具栏上new Model 按钮,打开一个空白的模型编辑窗口如图 8所示。 (2) 画出系统的各个模块:打开相应的子模块库,选择所需要的元素,用鼠标左键点中后拖 到模型编辑窗口的合适位置。 (3) 给出各个模块参数:由于选中的各个模块只包含默认的模型参数,如默认的传递函数模 型为1/(s+1)的简单格式,必须通过修改得到实际的模块参数。要修改模块的参数,可以用鼠标双击该模块图标,则会出现一个相应对话框,提示用户修改模块参数。 (4) 画出连接线:当所有的模块都画出来之后,可以再画出模块间所需要的连线,构成完整 的系统。模块间连线的画法很简单,只需要用鼠标点按起始模块的输出端(三角符号),再拖动鼠标,到终止模块的输入端释放鼠标键,系统会自动地在两个模块间画出带箭头的连线。若需要从连线中引出节点,可在鼠标点击起始节点时按住Ctrl 键,再将鼠标拖动到目的模块。 (5) 指定输入和输出端子:在Simulink 下允许有两类输入输出信号,第一类是仿真信号, 可从source(输入源模块库)图标中取出相应的输入信号端子,从Sink(输出显示模块库)图标中取出相应输出端子即可。第二类是要提取系统线性模型,则需打开Connection(连接模块库)图标,从中选取相应的输入输出端子。 例9 典型二阶系统的结构图如图9所示。用SIMULINK 对系统进行仿真分析。 图 7 simulink 模型库 图8 模型编辑窗口

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

基于Simulink的简单电力系统仿真

实验六 基于Simulink 的简单电力系统仿真 实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 电力系统工具箱的使用; 3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型 实验内容 输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=, F C C μ967.021==。 图1 简单电力系统仿真示意图 1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压; 2) 结合理论知识分析上述观测信号变化的原因; 3) 比较不同功率因数,如cos φ=1、cos φ=0.8(感性)、cos φ=0.8(容性)负载条件下的仿真结果 实验原理与方法 1、系统的仿真电路图 实验步骤 根据所得建立模型,给定参数,得到仿真结果 cos φ=1 cos φ=0.8(感性) cos φ=0.8(容性)

实验结果与分析 cosφ=1 cosφ=0.8(感性) cosφ=0.8(容性) 仿真结果分析 (1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量。 (2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小。 (3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。 (4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。 总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大。 感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。Simulink的仿真电路简洁、参数调整方便。仿真结果直观。 通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

Simulink建模与仿真

《通信系统仿真》实验报告 姓名杨利刚班级A0811 实验室203 组号28 学号28 实验日期 实验名称实验三Simulink建模与仿真实验成绩教师签字 一、实验目的 1、了解simulink的相关知识 2、掌握Matlab/simulink提供的基本模块库和常用的模块 3、掌握simulink建模仿真的基本方法 二、实验原理 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模。它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率,并且提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。 Simulink基本库是系统建模中最常用的模块库,原则上一切模型都是可以由基本库中的模块来构建,为了方便专业用户使用,Simulink还提供了大量的专业模块库,如为通信系统和信号处理而提供的CDMA参考库、通信模块库和DSP模块库等,但是,建议初学者不宜过多使用这些专业库,而应当从所建摸的系统原理入手,利用基本模块来构建系统,以深入理解系统运行情况。 Simulink的常用库模块有12个: (1)连续时间线性系统库;(2)非连续系统库;(3)离散系统库;(4)查表操作模块;(5)数学函数库;(6)模型检查和建模辅助工具;(7)端口和子系统;(8)信号路由库;(9)信号属性转换库;(10)信号源库;(11)信宿和仿真显示仪器库;(12)用户自定义函数库。 Simulink的建模主要是子系统的建模,子系统建模完成后,再对其进行封装,即完成了一个基本模型的建立。 三、实验内容 1、现有对RLC充放电电路进行仿真的模型。请参照仿真模型,进行Simulink的建模仿真,相关参数按照例题中的参数设置。

单闭环直流调速系统simulink仿真课程设计

目录 一、摘要.......................................................... - 3 - 二、课程设计任务 .................................................................................................... - 3 - 三、课程设计内容 .................................................................................................... - 3 - 1、PID控制原理及PID参数整定概述.................................................................... - 3 - 2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ............................ - 5 - 3、利用Simulink建立仿真模型............................................................................ - 8 - 4、参数整定过程 .................................................................................................- 12 - 5、调试分析过程及仿真结果描述.........................................................................- 16 - 四、总结 ...................................................................................................................- 17 - 五、参考文献 ...........................................................................................................- 17 -

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

Matlab与通信仿真课程设计报告

《MATLAB与通信仿真》课程设计指导老师: 张水英、汪泓 班级:07通信(1)班 学号:E07680104 姓名:林哲妮

目录 目的和要求 (1) 实验环境 (1) 具体内容及要求 (1) 实验内容 题目一 (4) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目二 (8) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目三 (17) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目四 (33) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 心得与体会 (52)

目的和要求 通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。在强调基本原理的同时,更突出设计过程的锻炼。强化学生的实践创新能力和独立进行科研工作的能力。 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 实验环境 PC机、Matlab/Simulink 具体内容及要求 基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题: (1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系; (2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系; 分析突发干扰的持续时间对误码率性能的影响。 (3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰) 的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。 (4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰) 的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。

基于simulink的仿真

河北北方学院 毕业论文 题目:数字调制系统的SIMULINK实现研究 三种基本调制制度的功率谱密度研究院系:信息工程系 专业:信息工程 年级:07级 河北北方学院教务处制 三种基本调制制度的功率谱密度研究 摘要 随着通信系统的规模和复杂度不断增加,传统的设计方法已经不能适应发展的需要,通信系统的模拟仿真技术越来越受到重视。而通信系统的计算机模拟仿真技

术是一种全新的系统设计方法,它可以让用户在很短的时间内建立整个通信系统模型,并对其进行模拟仿真。本文首先介绍了SIMULINK应用及通信技术的发展状况。然后对SIMULINK的工作原理及使用方法进行阐述,接着介绍基本的数字调制系统并分析三种调制制度2ASK、2FSK和2PSK的基本原理。再对三种调制制度的功率谱密度进行分析,最后利用SIMULINK建立系统模型对三种调制制度的功率谱密度进行模拟仿真并分析结果。 关键词:调制制度 SIMULINK 功率谱密度系统模型 Abstract As communications systems continue to increase in size and complexity, traditional design methods have been unable to meet the needs of development, communication system simulation technology more and more attention. Er Communication System Computer simulation technology is a new design method, which allows users in a very short period of time to establish the communication system model, and its

相关文档
相关文档 最新文档