文档库 最新最全的文档下载
当前位置:文档库 › 2019-2020学年高三数学 第二章函数与导数第2课时 教案.doc

2019-2020学年高三数学 第二章函数与导数第2课时 教案.doc

2019-2020学年高三数学 第二章函数与导数第2课时 教案.doc
2019-2020学年高三数学 第二章函数与导数第2课时 教案.doc

2019-2020学年高三数学 第二章函数与导数第2课时 教案

【考点概述】

了解构成函数的要素,会求一些简单函数的定义域和值域.

【重点难点】: 掌握函数解析式与定义域的常见求法及其在实际中应用

.

【知识扫描】

1.常见基本初等函数的定义域:

①分式函数中分母不等于零 ②偶次根式函数、被开方式大于或等于0

③一次函数、二次函数、

,sin ,cos x y a y x y x ===的定义域均为_____________。 ④tan y x =定义域为______________ _______。

⑤函数0()f x x =的定义域为_________。⑥函数

x x f a log )(=的定义域为_________。 2.基本初等函数的值域

①(0)y kx b k =+≠的值域是___________. ②(0)k y k x =≠的值域为_____________。

2(0)y ax bx c a =++≠:当0a >时,值域为_ ____;当0a <时,值域为___ ____. ④

(01)x y a a a =>≠且的值域是______。⑤log (01)a y x a a =>≠且的值域是_____。 ⑥sin ,cos y x y x ==的值域是_________。⑦tan y x =的值域是_________________。

3.最大(小)值

一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:

(1)对于任意的x I ∈,都有_________________.

(2)存在0x I ∈,使得___________,那么我们称M 是函数()y f x =的最大(小)值。【自

我检测】1.

函数

1()1f x x =+的定义域是_________________(必修一23P 例2改编) 2. 函数

21()log (2)f x x =

-的定义域是 . 3.函数{}

2()(1)1,1,0,1,2,3f x x x =+-∈-的值域是___________.(必修一23P 例3改编)

4.已知函数

2

log(0)

(),

3(0)

x

x x

f x

x

>

?

=?

?则

1

[()]

4

f f

的值是.

5.设集合

}0

2

|

{2≥

-

-

=x

x

x

P

}

,1

2

1

|

{2P

x

x

y

y

Q∈

-

=

=

,则

=

Q

P .

【范例透析】

【例1】函数

)3

4(

log

1

5.0

-

=

x

y

的定义域为

【变式训练】(1)函数

()1

lg(2)

3

f x x

x

=-+

-的定义域是。

(2

)函数

y

x

=

的定义域为.

【例2】(1)已知

()

f x的定义域为[0,2],求2

()

f x的定义域。

※(2)函数

)

2(x

f的定义域是)2

,1(

,分别求函数

)

(x

f和函数)

(log

2

x

f的定义域。

]

【例3】 求下列函数的值域

(1

)y x = (2)322--=x x y ;①R x ∈,②]4,1(-∈x ,③]4,1(∈x .

(3)22++-=x x y ; (4)

=y 221x x +. ※(5)112+++=x x x y

*【例4】已知二次函数

1)(2+-=bx ax x f . (1)若0)(

43,求实数a ,b 的值;

※(2)若a 为正整数,2+=a b ,且函数)(x f 在[0,1]上的最小值为1-,求a 的值.

【方法规律总结】

1.求函数的定义域、值域问题最后结果都要写成集合的形式。

2.掌握求函数值域的几种常用方法。

【巩固练习】

1.函数)

13lg(13)(2++-=

x x x x f 的定义域是 。

2.

若函数()f x A ,函数()lg g x x =,[1,10]x ∈的值域为B ,则A B 为 .

3.若函数2x y =的定义域是{1,2,3},P =则该函数的值域是

4.设函数2211()21x x f x x x x ?-?=?+->??,,,, ≤则1(2)f f ??

???的值为

。 5.已知集合}0,2|{)},2lg(|{2>==-==x y y B x x y x A x ,

R 是实数集,则()R C B A = .

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用 第三章 (对应学生用书(文)、(理)33~36页 ) , 1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m. 答案:1 900 解析:(26-14.6)÷0.6×100=1 900. 2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331 解析:1 000×(1+10%)3 =1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________. 答案:(5,10) 4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ? ?? ??1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6 -1 解析:由2 000ln ? ?? ??1+M m =12 000,得1+M m =e 6,所以M m =e 6 -1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函 数关系为P =? ????t +20,0

同济第六版《高等数学》教案WORD版-第02章-导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s ??=??, 这个比值可认为是动点在时间间隔t ?t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t ?t 0→0, 取

比值 0) ()(t t t f t f ??的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t ??=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000) ()(tan x x x f x f x x y y ??=??=?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x ??=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 令, x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x ??→ . , 当自变量x 在x 0处取得增量?x (点x 0+?x ?y =f (x 0+?x )?f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ???+=??='→?→?)()(lim lim )(00000,

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

第二章 函数与导数第2课时 函数的定义域和值域 第三章 (对应学生用书(文)、(理)9~10页 ) 1. (必修1P 27练习6改编)函数f(x)=x +1+12-x 的定义域为________. 答案:{x|x≥-1且x≠2} 2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是 ________. 答案:{-1,0,3} 解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}. 3. (必修1P 31习题3改编)函数f(x)=2x 5x +1 的值域为____________. 答案:? ?????y|y≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25 ,∴ 值域为? ?????y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ; ② f(x)=x x ,g(x)=x ; ③ f(x)=x 2,g(x)=(x)4; ④ f(x)=|x|,g(x)=? ????x ,x ≥0,-x ,x<0.

答案:④ 解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合. 5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则 b -a 的取值范围是________. 答案:[2,4] 解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1 时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4]. 1. 函数的定义域 (1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤 ① 写出使函数式有意义的不等式(组). ② 解不等式组. ③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零. ② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R . ④ y =a x ,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }. ⑥ 函数f(x)=x a 的定义域为{x|x≠0}. 2. 函数的值域 (1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域. (2) 基本初等函数的值域 ① y =kx +b(k≠0)的值域是R . ② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a ,+∞);当a<0时,值域为? ???-∞,4ac -b 24a . ③ y =k x (k≠0)的值域为{y|y≠0}. ④ y =a x (a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值 一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M); (2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

2014年全国高考数学分类详解 第二章 函数与导数

第二章 函数与导数 一、函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上 的解析式为f (x )=? ????x (1-x ),0≤x ≤1,sin πx ,1

03第三章-导数与微分

第三章 导数与微分 一、本章学习要求与内容提要 (一)学习要求 1. 理解导数和微分的概念及其几何意义,会用导数(变化率)描述一些简单的实际问题. 2.熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式. 3.熟练掌握复合函数、隐函数以及由参数方程所确定的函数的一阶导数的求法. 4.了解高阶导数的概念,熟练掌握初等函数的二阶导数的求法. 5.了解可导、可微、连续之间的关系. 重点 导数的概念及其几何意义,计算导数的方法,初等函数的二阶导数的求法. 难点 求复合函数和隐函数的导数的方法. (二) 内容提要 1.导数的概念 ⑴导数 设函数)(x f y =在点0 x 的某一邻域内有定义,当自变量x 在点0 x 处有增量)0(≠??x x ,x x ?+0 仍在该邻域内时,相应地,函数有增量)()(0 x f x x f y -?+=?,若极限 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 存在,则称)(x f 在点0 x 处可导,并称此极限值为)(x f 在点0 x 处的导数,记为)(0 x f ',也可记为0 00 0d d d d , ,)(x x x f x x x y x x y x y ===' '或,即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000. 若极限不存在,则称)(x f y =在点0 x 处不可导. 若固定0 x ,令x x x =?+0 ,则当0→?x 时,有0x x →,所以函数)(x f 在 点0 x 处的导数)(0 x f '也可表示为 00 ) ()(lim )(x x x f x f x f x --='→.

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

第二章 函数与导数第12课时 导数在研究函数中的应用 第三章 (对应学生用书(文)、(理)30~32页 ) , 1. (选修22P 28例1改编)函数f(x)=x 3 -15x 2 -33x +6的单调减区间为______________. 答案:(-1,11) 解析:f′(x)=3x 2 -30x -33=3(x -11)(x +1),由(x -11)(x +1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间. 2. (选修22P 34习题3改编)若函数f(x)=e x -ax 在x =1处取到极值,则a =________. 答案:e 解析:由题意,f ′(1)=0,因为f′(x)=e x -a ,所以a =e. 3. (选修22P 34习题8)函数y =x +sinx ,x ∈[0,2π]的值域为________. 答案:[0,2π] 解析:由y′=1+cosx ≥0,所以函数y =x +sinx 在[0,2π]上是单调增函数,所以值域为[0,2π]. 4. (原创)已知函数f(x)=-12x 2 +blnx 在区间[2,+∞)上是减函数,则b 的取值范 围是________. 答案:(-∞,4] 解析:f′(x)=-x +b x ≤0在[2,+∞)上恒成立,即b≤x 2 在[2,+∞)上恒成立. 5. (选修22P 35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大. 答案:10 解析:设容器的高为xcm ,即小正方形的边长为xcm ,该容器的容积为V ,则V =(90- 2x)(48-2x)x =4(x 3-69x 2+1080x),00;当10

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

第三章导数与微分习题解答

P61 习题3-1 1、根据定义求导数: (1)cos y x = 00000cos()cos lim 2sin sin 22lim sin()sin 22lim 2 sin 2lim sin()lim 22 sin x x x x x x x x y x x x x x x x x x x x x x x x x ?→?→?→?→?→+?-'=?+?++?--=???+=-???=-+?=- 12 (2)y x = 112 2 012()lim lim lim 12x x x x x x y x x ?→?→?→-+?-'=?==== (3)y = 033 223 2 2 2(lim lim lim lim x x x x x x y x ?→?→?→?→+?'=?==== =(4)x y a = 001lim lim x x x x x x x a a a y a x x +???→?→--'==?? 设t x =?,则 01 lim t x t a y a t →-'= 再设t s a =,则log a t s =,于是 11 1 1 110 1 1lim log 1lim log 1 lim log [1(1)] 1log ln x s a x s s a x s s a x a x s y a s a s a s a e a a →→--→--'===+-== 2、

0000000()()(1)lim [(()]() lim () x x f x x f x x f x x f x x f x ?→-?→-?-?+-?-=--?'=- 00000000000000000000000()()(2)lim ()()()()lim ()()()()lim lim ()()()()lim lim ()[()]2() x x x x x x f x x f x x x f x x f x f x f x x x f x x f x f x f x x x x f x x f x f x x f x x x f x f x f x ?→?→?→?→?→?→+?--??+?-+--?=?+?---?=+??+?--?-=-??''=--'= 000()(3)lim ()lim (0)(0)lim (0) x x x f x x f x x f x f x f →?→?→?=?+?-=?'= 00001001 (4)lim [()()]1 ()() lim 1() n n n f x f x n f x f x n n f x →∞→+-+-='= 3、证: ()f x 为偶函数且(0)0f =,则 00000(0)(0)(0)lim ()(0) lim ()(0) lim ()(0) lim ()(0) lim (0)x x x x x f x f f x f x f x f x f x f x f x f x f x f - - - - + -?→?→?→?→-?→++?-'=??-=?-?-=?-?-=--?-?-=--?'=- 又()f x 在0x =处可导,则 (0)(0)f f -+''= 即(0)(0)f f ++''=- 所以(0)0f +'= 故(0)0f '=。 4、证: (1)设()f x 为可导的奇函数,则: 0000()()()lim ()()lim ()() lim [()]() lim ()x x x x f x x f x f x x f x x f x x f x x f x x f x x f x x f x ?→?→?→-?→-+?--'-=?--?+=?-?-=-?+-?-=-?'= 所以()f x '为偶函数。 (2)设()f x 为可导的偶函数,则:

高考数学第二章函数与导数第3课时函数的单调性

第二章函数与导数第3课时函数的单调性第三章(对应学生用书(文)、(理)11~12页) 1. (必修1P54测试4)已知函数y=f(x)的图象如图所示,那么该函数的单调减区间是

________. 答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ① y =1-3x ;② y=-1x ;③ y=x 2 +1;④ y=|x +1|. 答案:②③④ 3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)2a , 解得-1≤a<1. 4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________. 答案:???? ??0,32 解析:y =(x -3)|x|=?????-x (x -3),x<0,x (x -3),x ≥0, 画图可知单调递减区间是??????0,32. 5. (必修1P 54测试6改编)已知函数f(x)=mx 2 +x +m +2在(-∞,2)上是增函数,则 实数m 的取值范围是________. 答案:???? ??-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须?????m<0,-12m ≥2,解得-1 4≤m<0.综 上,实数m 的取值范围是-1 4 ≤m ≤0.

1. 增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是单调减函数.(如图(2)所示) 2. 单调性与单调区间 如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间). 3. 判断函数单调性的方法 (1) 定义法:利用定义严格判断. (2) 利用函数的运算性质. 如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1 f(x) 为减函数(f(x)>0); ③ f(x)为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

第三章 导数与微分 习题及答案

第三章 导数与微分 同步练习 一、填空 1、若[]1cos 1)0()(lim =--→x f x f x x ,则)0(f '= 。 2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。 3、若)(x e f y -=,且x x x f ln )(=',则 1 =x dx dy = 。 4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。 5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。 6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。 7、已知x x y ln =,则)10(y = 。 8、已知2arcsin )(),232 3( x x f x x f y ='+-=,则:0 =x dx dy = 。 9、设1 111ln 2 2++-+=x x y ,则y '= 。 10、设方程y y x =确定y 是x 的函数,则dy = 。 11、已知()x ke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dy x d 。 二、选择 1、设f 可微,则=---→1 ) 1()2(lim 1 x f x f x ( ) A 、)1(-'-x f B 、)1(-'f C 、)1(f '- D 、)2(f ' 2、若2)(0-='x f ,则=--→) ()2(lim 000 x f x x f x x ( ) A 、 41 B 、4 1 - C 、1 D 、-1 3、设?? ???=≠=0001arctan )(x x x x x f ,则)(x f 在0=x 处( ) A 、不连续 B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 3 2+= B、x x y sin =

2015届高考数学总复习第二章 函数与导数第1课时 函数及其表示课时训练

第二章 函数与导数第1课时 函数及其表示 1. 下列对应f 是从集合A 到集合B 的函数有________个. ① A =N ,B =N *,f :x →y =|x -2|; ② A ={1,2,3},B =R ,f(1)=f(2)=3,f(3)=4; ③ A =[-1,1],B ={0},f :x →y =0. 答案:2 2. 已知函数y =f(x),集合A ={(x ,y)|y =f(x)},B ={(x ,y)|x =a ,y ∈R },其中a 为常数,则集合A ∩B 的元素有________个. 答案:0或1 解析:设函数y =f(x)的定义域为D ,则当a ∈D 时,A ∩B 中恰有1个元素;当a ?D 时,A ∩B 中没有元素. 3. 若f(x +1)=x +1,则f(x)=___________. 答案:x 2-2x +2(x ≥1) 解析:令t =x +1,则x =(t -1)2,所以f(t)=(t -1)2+1. 4. 已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ????13=16,φ(1)=8,则φ(x)=________. 答案:3x +5 x (x ≠0) 解析:由题可设φ(x)=ax +b x ,代入φ????13=16,φ(1)=8,得a =3,b =5. 5. 已知函数f(x)=3x -1,g(x)=? ????x 2-1,x ≥0,2-x ,x<0.若x ≥1 3,则g(f(x))=________. 答案:9x 2-6x 解析:当x ≥1 3 时,f ()x ≥0,所以g(f(x))=(3x -1)2-1=9x 2-6x. 6. 工厂生产某种产品,次品率p 与日产量x(万件)间的关系为p =? ?? 1 6-x ,0c (c 为常数,且0c 解析:当x>c 时,p =23,所以y =????1-23·x ·3-23·x ·32=0;当0

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

相关文档
相关文档 最新文档