文档库 最新最全的文档下载
当前位置:文档库 › 算法的概念及误差分析方法(精)

算法的概念及误差分析方法(精)

算法的概念及误差分析方法(精)
算法的概念及误差分析方法(精)

3.2算法

3.2.1算法的概念

3.2.1.1 什么叫算法

算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。算法和程序之间存在密切的关系。

算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。

对算法的学习包括五个方面的内容:①设计算法。算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;②表示算法。描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点;

③确认算法。算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④分析算法。算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤验证算法。用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。

3.2.1.2算法的特性

算法的特性包括:①确定性。算法的每一种运算必须有确定的意义,该种运算应执行何种动作应无二义性,目的明确;②能行性。要求算法中有待实现的运算都是基本的,每种运算至少在原理上能由人用纸和笔在有限的时间内完成;③输入。一个算法有0个或多个输入,在算法运算开始之前给出算法所需数据的初值,这些输入取自特定的对象集合;④输出。作为算法运算的结果,一个算法产生一个或多个输出,输出是同输入有某种特定关系的量;⑤有穷性。一个算法总是在执行了有穷步的运算后终止,即该算法是可达的。

满足前四个特性的一组规则不能称为算法,只能称为计算过程,操作系统是计算过程的一个例子,操作系统用来管理计算机资源,控制作业的运行,没有作业运行时,计

算过程并不停止,而是处于等待状态。

3.2.2算法的描述

算法的描述方法可以归纳为以下几种:

(1 自然语言;

(2 图形,如N S图、流程图,图的描述与算法语言的描述对应;

(3 算法语言,即计算机语言、程序设计语言、伪代码;

(4 形式语言,用数学的方法,可以避免自然语言的二义性。

用各种算法描述方法所描述的同一算法,该算法的功用是一样的,允许在算法的描述和实现方法上有所不同。

人们的生产活动和日常生活离不开算法,都在自觉不自觉地使用算法,例如人们到商店购买物品,会首先确定购买哪些物品,准备好所需的钱,然后确定到哪些商场选购、怎样去商场、行走的路线,若物品的质量好如何处理,对物品不满意又怎样处理,购买物品后做什么等。以上购物的算法是用自然语言描述的,也可以用其他描述方法描述该算法。

图3.3用流程图描述算法的例子,其函数为:

图3.3是用流程图图形描述算法

3.2.3算法的复杂性

算法的复杂性是算法效率的度量,在评价算法性能时,复杂性是一个重要的依据。算法的复杂性的程度与运行该算法所需要的计算机资源的多少有关,所需要的资源越多,表明该算法的复杂性越高;所需要的资源越少,表明该算法的复杂性越低。

计算机的资源,最重要的是运算所需的时间和存储程序和数据所需的空间资源,算法的复杂性有时间复杂性和空间复杂性之分。

算法在计算机上执行运算,需要一定的存储空间存放描述算法的程序和算法所需的数据,计算机完成运算任务需要一定的时间。根据不同的算法写出的程序放在计算机上运算时,所需要的时间和空间是不同的,算法的复杂性是对算法运算所需时间和空间的一种度量。不同的计算机其运算速度相差很大,在衡量一个算法的复杂性要注意到这一点。

对于任意给定的问题,设计出复杂性尽可能低的算法是在设计算法时考虑的一个重要目标。另外,当给定的问题已有多种算法时,选择其中复杂性最低者,是在选用算法时应遵循的一个重要准则。因此,算法的复杂性分析对算法的设计或选用有着重要的指导意义和实用价值。

在讨论算法的复杂性时,有两个问题要弄清楚:

(1 一个算法的复杂性用怎样的一个量来表达;

(2 怎样计算一个给定算法的复杂性。

找到求解一个问题的算法后,接着就是该算法的实现,至于是否可以找到实现的方法,取决于算法的可计算性和计算的复杂性,该问题是否存在求解算法,能否提供算法所需要的时间资源和空间资源。

第二章数据处理与误差分析

一切科学实验都要进行测量,总会记录大量的数据。所有的测量均存在误差,大学物理实验当然也不例外。误差理论和数据处理是每一个实验都会遇到的问题,两者是不可分割的有机整体,已经成为一门广受科技界重视的科学。限于篇幅和学时,本章只介绍误差理论与数据处理的初步知识,有的只引用它的结论和计算公式,以满足大学物理实验的基本要求。

§2—1 测量与误差

1. 直接测量和间接测量

在大学物理实验中,我们不仅要定性地观察和描述物理现象及其变化,还要定量地测量某些物理量的值。研究物理现象、了解物质的性质及验证物理原理都离不开测量。所谓测量就是将被测的物理量与同类已知物理量进行比较,用已知量来表示被测量。这些已知量称作计量单位。测量时,待测量与已知量比较得到的倍数称为测量值。例如某一物体的长度是单位米的 1.1196倍,则该物体的测量值为 1.1196米。

在人类历史的不同时期、不同国家乃至不同地区,同一物理量有许多不同的计量单位。为了便于国际贸易以及科技文化的交流,国际计量大会于1960年确定了国际单位制,其国际代号为SI。国际单位制中有七个基本单位,它们分别是长度单位米(m,质量单位千克(kg,时间单位秒

(s,电流强度单位安培(A ,热力学温度单位开尔文(K,物质

的量单位摩尔(mol,发光强度单位坎德拉(cd。

测量可分为直接测量和间接测量两类。直接测量是指某些物理量可以通过相应的测量仪器直接得到被测量的量值的方法。如用米尺量长度,用天平和砝码测物体的质量,用电桥或欧姆表测导体的电阻等。间接测量是指利用直接测得量与被测量之间已知的函数关系,经过计算而得到被测量值的方法。例如,用单摆测量重力加速度g时,先直接测出摆长L和摆动周期T,再依据公式g =

4π2L/T2进行计算,求出g值。再如要测量导体的电阻R,

可用电压表测量导体两端的电压U,用电流表测量通过该导体的电流I,然后用公式R = U/I计算出导体的电阻。

2. 测量误差及其表示方法

任何测量过程中必然伴随有误差产生,这是因为任何测量仪器、测量方法都不可能绝对正确,测量环境不可能绝对稳定,测量者的观察能力和分辨能力也不可能绝对精细和严密。因此,分析测量中可能产生的各种误差,尽可能地消除其影响,并对测量结果中未能消除的误差做出估计,是科学实验中不可缺少的工作。为此,我们必须了解误差的概念、特性、产生的原因、消除的方法、以及对未能被消除的误差如何做出估计等有关知识。

1 误差的定义

大学物理实验 8

测量误差就是测量值x与被测量的真值μ之差值,若用δ表示,则有

μδ?=x (2-1-1

δ反映了测量值偏离真值的大小,即反映了测量结果的可靠程度。所谓真值是指该物理

量本身客观存在的真实量值,但由于客观实际的局限性,真值一般是不知道的。通常我们只能测得物理量的近似真值,故对测量误差的量值范围也只能给予估计。国际上规定用不确定度(Uncertainty)来表征测量误差可能出现的量值范围,它也是对被测量的真值所处的量值范围的评定。

有时为了使用上的需要,在实际测量中,常用被测量的实际值来代替真值。而实际值是指满足规定精确度的用来代替真值使用的量值(又称约定真值)。例如,在检定工作中,把高一等级精度的标准所测得的量值称为实际值。如,用0.5级电流表来测得某电路的电流为

2.100A,用0.2级电流表测得为2.102A,则后者视为实际值。

2 误差的表示方法

误差δ常称为绝对误差,其大小不同,反映了测量结果的优劣不等,但它只能适用于同一物理量。例如,20mm厚的平板,用千分尺测得的绝对误差分别为0.005mm和0.003mm,则显然后者优于前者。但若要比较两个不同的物理量,如20mm和2mm厚的两块平板,用千分尺测得它们的绝对误差都为0.005mm,若用绝对误差来评价,则测量误差相同。显然,用绝对误差表示没有能反映出它的本质特征。另外,若要比较两类不同物理量的测量优劣,如某物长

20mm,绝对误差为0.05mm,某物质量为17.03g,绝对误差为0.02g,因绝对误差数值与单位

都不同而无法比较。基于上述两种情况,还需引入相对误差的概念,即

100%rEδμ=× (2-1-2

所以相对误差也称为百分误差。由上式可见相对误差是不带单位的一个纯数,所以它既可评价量值不同的同类物理量的测量,也可评价不同

类物理量的测量,以判断它们之间的优劣。

3. 误差的分类及其处理方法

按照误差的特点与性质,误差可分为系统误差、随机误差(也称偶然误差)和粗大误差三类。

1 系统误差

在同一条件下(指方法、仪器、人员及环境不变),多次测量同一量值时,绝对值和符号保持不变的误差;或在条件改变时,按一定规律变

化的误差,称为系统误差。系统误差的来源大致有以下几个方面:§2—1 测量与误差9

①仪器误差:由于仪器本身的缺陷或未按规定条件使用仪器而造成的误差。如仪表指针在测量前没有调准到零位而带来的测量误差;米尺本身由于刻度划分得不准,或因环境温度的变化导致米尺本身长度的伸缩带来的测量误差均属于这一类型。

②理论或方法的误差:由于所依据的理论及公式本身的近似性、测量时未能达到公式理想化的条件或实验方法不完善而带来的误差。如用伏安法测电阻,由于没有考虑电流表或电压表内阻带来的测量误差。

③环境误差:由于外界环境,如温度、湿度、电场、磁场和大气压强等因素的影响而带来的误差。

④个人误差:由于观测者本身的感官,特别是眼睛或其它器官的不完善以及心理因素而导致的习惯性误差。这种误差,往往是因人而异,如停表计时,有人反应较慢,所以计时总是失之过长。

系统误差可以通过校准仪器、改进实验装置和实验方法,或对测量结果进行理论上的修正来加以消除或尽可能减小。然而发现和减小实验中的系统误差并非易事,这需要实验者深入了解实验的原理、方法与步骤,熟悉所使用仪器的特点和性能,还要在实验中不断积累理论知识和

实践经验,才能找出产生系统误差的原因以及消除、减小系统误差的方法。

2 随机误差

随机误差是在对同一被测物理量进行多次测量过程中,绝对值与符号都以难以预知的方式变化着的误差。这种误差是由于实验中各种因素的微小变化而引起的,如温度、气流、光照强度、电磁场的变化引起的环境变化;观测者在判断、估计读数上的偏差等使得多次测量值在某一值附近有涨落。就某一次测量而言,这种涨落完全是随机的,其大小和方向都是难以预测的。但对某个量进行足够多次的测量,随机误差总是按照一定的统计规律分布。常见的一种情况是:测量值比真值大或比真值小的概率相等;误差较小的数据比误差大的数据出现的概率大;同时,绝对值很大的误差出现的概率趋于零。这是称之为正态分布(即高斯分布)的一种情况。事实上随机误差还有其他的分布情况,如t

分布、均匀分布、2x分布等。

由于正态分布的随机误差有上述特点,因此减小随机误差对测量结果的影响的有效办法是进行多次测量,并尽可能增加测量次数。

在相同的条件下,对某物理量x作n次的独立测量,得到的x值为。于是平均值n xxxx,...,,,321x 为测量结果的最佳值,

可以证明,当系统误差已被消除,则测量值的算术平均值最接近被测量的真值。因此常用测量值的算术平均值x表示测量结果。大学物理实验10

对于测量值的可靠程度常用标准偏差来估计。标准偏差小,说明多次测量数据的分散程度小,测量的可靠性就大。反之,测量的可靠性就小。在大学物理实验中,多次独立测量得到的数据一般可近似看作正态分布,此时实验的标准偏差以表示,(Sx

((211nii xxSxn=?=?Σ (2-1-4

其意义为任一次测量的结果落在[(]到[区间的概率为0.683,式中i xx?是每一次测量值与算术平均值之差,称为残差。

平均值x的标准偏差为

(((211nii xxSxnn=?=?Σ (2-1-5

其意义为待测物理量处于[(]到[区间的概率为0.683。(关于“标准偏差”的意义请参阅本章附录。

3 粗大误差(或称过失误差)

实验测量中出现的那些用测量的客观条件不能合理解释的突出误差称为粗大误差。它是由于实验者的疏忽而引进的差错,例如,读数或计算出现的错误等。对这种数据应当予以剔除。

4. 精度

反应测量结果与真值接近程度的量称为精度,它与误差的大小相对应。精度可分为:

① 准确度:指测量数据的算术平均值偏离真值的程度,它反映了系统误差的大小。

② 精密度:指测量数据本身的离散程度,它反映了随机误差的大小。

③ 精确度:指测量数据偏离真值的离散程度,它反映了系统误差和随机误差的综合影响的大小。

对于具体的测量,精密度高的,准确度不一定高;准确度高的,精密度也不一定高;但精确度高的,精密度和准确度都一定高。如下图所示的打靶结果,子弹落在靶心周围有三种情况,图2-1-1(a表示系统误差小而随机误差大,即准确度高而精密度低;图2-1-1(b表示系统误差大而随机误差小,即准确度低而精密度高;图2-1-1(c表示系统误差和随机误差均小,即精密度高。

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

半偏法及其系统误差分析

半偏法及其系统误差分 析 Company Document number:WTUT-WT88Y-W8BBGB-

半偏法及其系统误差分析 1.电流表半偏法 如图是用半偏法测电流表内阻的电路.实验时,先断开开关2S , 闭合开关1S ,调节0R 使电流表指针满偏.然后保持0R 的滑片不动, 闭合开关2S ,调节R,使电流表的指针处于半满偏状态, 则电流表的内阻A R =R . 用如图1所示的电路测电流表的内阻时,设电流表的满偏电流为Ig,则开关2S 断开时 1 R R I A g += ε ① 开关2S 闭合时,有A A R g R R RR R I I ++ = +12 1 ε ② R I R I R A g =2 1 ③ 由①、②、③式,得11R R R R R A A += A R R < ∴测量值小于真实值 当滑动变阻器阻值远大于电阻箱电阻误差较小 2.电压表半偏法 如图是用半偏法测电压表内阻的电路.实验时,先闭合开关2S 和1S , 调节0R 使电压表指针满偏.然后保持0R 的滑片不动(即1R 、2R 不变), 断开开关2S ,调节R,使电压表的指针半满偏,则电压表的内阻V R =R 用如图的电路测电压表的内阻时,设电压表的满偏电压为g U , 则开关2S 闭合时

21 )( R R U R U U g V g g + +=ε ④ 开关2S 断开时, 有21 ( R R U R R U U AB V AB AB +++=ε )(2R R R U U V V g AB += ⑥ 由④、⑤、⑥式,得 0 2 1R R R R R V + = V R R >,∴ V R 的测量值大于真实值. 1、要测量内阻较大的电压表的内电阻,可采用“电压半值法”,其实验电路 如图9所示。其中电源两端的电压值大于电压表的量程, 电阻箱R 2的最大阻值大于电压表的内电阻。 先将滑动变阻器R 1的滑动头c 调至最左端,将R 2的阻值调至最大,依次 闭合S 2和S 1, 调节R 1使电压表满偏,然后断开S 2,保持滑动变阻器 的滑动头c 的位置不变,调节R 2使电压表半偏,此时 R 2的示数即可视为电压表的内电阻值。 (1)实验时,在断开S 2调节R 2的过程中,a 点与滑动变阻器的滑 动头c 之间的电压应 。 (2)实验室备有如下四个滑动变阻器,它们的最大阻值分别为 A .10Ω B .1k Ω C .10k Ω D .100k Ω 为减小测量误差,本实验中的滑动变阻器R 1应选择 。(填序号) 2、(12分)用半偏法测电流表内阻,提供的器材如下:

统计公差分析方法概述

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk 指标是1.33并且制程是在中心

统计分析法_误差分析

机械加工误差的综合分析------统计分析法的应用

班级: 学号: 姓名: 一、实验目的 运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1. M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验内容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间内连续加工的零件120件,由此计算出X、σ,并做出尺

寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘 在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调 ---微调---水平调整步骤进行(注意大调和水平调整一般都予 先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将 冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位臵。 4. 检查磨床的挡片,支片位臵是否合理(如果调整不好,将会引 起较大的形变误差)。对于挡片可通过在机床不运转情况下, 用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉, 直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均 尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削 一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

项目管理偏差分析法的应用

第36卷第8期 2016年8月 Application of deviation analysis method in project management ZHANG Zhen-xin (China Harbour Engineering Co.,Ltd.,Beijing 100027,China ) Abstract :Project cost and schedule performance is an important indicator to measure the progress of a project.Deviation analysis method is considered a system management standard for a trade -off control on the project cost and schedule management,coordination and management,and use of scientific management methods to achieve the desired goal of project management.This paper,based on the implementation of Phase I of Hambantota Port in Sri Lanka and through deviation analysis method,analyzed the reasons of deviation during the implementation of the project and developed appropriate measures to improve management of a project cost and progress.At the same time,the paper proposes ideas and considerations in the application of the deviation analysis method so as to explore the best way for project management.Key words :project management;progress control;cost control;deviation analysis 摘 要:项目成本和进度绩效是衡量项目进展的重要指标。偏差分析法被认为是一种系统管理规范,在项目成本和 进度上进行权衡控制,协调管理,运用科学的管理方法,达到项目管理的预期目标。文章结合斯里兰卡汉班托塔港一期项目的实施,运用偏差分析法对项目的实施过程中产生偏差的原因进行分析,并制定相应纠正偏差措施,以此提高项目成本和进度管理水平。同时提出偏差分析方法在使用方面的见解和思考,探寻管理的最佳效果。关键词:项目管理;进度控制;成本控制;偏差分析中图分类号:U655.1;TU723.3文献标志码:B 文章编号:2095-7874(2016)08-0072-04 doi :10.7640/zggwjs201608017 收稿日期:2016-03-03 修回日期:2016-04-19 作者简介:张振新(1983—),男,四川成都市人,硕士,工程师,工 程管理专业。E-mail :21809307@https://www.wendangku.net/doc/757526778.html, 项目管理偏差分析法的应用 张振新 (中国港湾工程有限责任公司,北京 100027) Vol.36 No.8 Aug.2016 中国港湾建设 1工程概况 斯里兰卡汉班托塔港项目一期工程建设任务包括:2个10万吨级集装箱码头(泊位总长度为600 m )、1个10万吨级油码头(泊位长度为310m )、1 个工作船泊位(泊位长度为105m )、总长1200m 进港航道(底标高-17m ,底宽为210耀326m )、西防 波堤长988m 、东防波堤长312m 、进港护岸长2078m ,道路和堆场42万m 2以及其他附属港口设施。 工程于2007年11月10日开工,2011年2月10日竣工。在项目建设过程中,承包单位不断 推进工程创新及新技术应用,不断提升项目工程管理水平,项目质量优良,被评为2014年中国建设工程鲁班奖(境外工程);项目进度控制得力,建设工程按计划如期完工;工程造价管理到位,经济效益非常显著。2偏差分析方法 偏差分析法被认为是一种系统管理规范,在工程实施阶段,承建方首先需要按工程计划确定项目成本和进度计划值,在项目实施过程中,以项目成本和进度的实际发生值与计划值进行动态比较,获取偏差,进而分析查找产生偏差的原因,探寻减少偏差的有效控制措施,最终,有针对性地采取必要的措施,以达到对进度、质量、成本控制的目的[1-6]。

第六章 测量误差的基本知识

工 程 测 量 理论教案 授课教师:谢艳 使用班级:13-1、13-2、 13-3、13-4、13-5

教师授课教案 课程名称:公路工程测量2013年至2014年第二学期第次课 班级:13-1、13-2、13-3、13-4、13-5 编制日期:20 14 年月日 教学单元(章节) 第六章测量误差的基本知识 目的要求 1、了解测量误差的概念。 2、掌握测量误差产生的原因 3、了解测量误差的分类及其相应的处理方式。 4、掌握评定观测精度的标准及其相应的计算方式。 知识要点 1、测量误差概念 2、测量误差产生的原因 3、测量误差的分类 4、评定观测精度的标准 技能要点 分析问题能力 教学步骤 介绍测量误差的概念,了解测量误差的产生的原因、测量误差的分类。介绍评定观测精度的标准。练习中误差、容许误差、相对误差的计算方法。 教具及教学手段 多媒体课件教学。 作业布置情况 3题 教学反思 授课教师:谢艳授课日期:2014年月日

教学内容 第六章测量误差的基本知识 一、情境导入 用PPT播放工程实例图片及其测量误差产生的原因,让学生对测量误差有一个微观上的了解。 讲解测量误差的来源:每一个物理量都是客观存在,在一定的条件下具有不以人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值是不可能测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差 二、新课教学 第一节概述 1、测量误差概念:真值与观测值之差 测量误差(△)=真值-观测值 如:测量工作中的大量实践表明,当对某一客官存在的量进行多次贯彻时,不论测量仪器多么的精密,贯彻进行的多么的细致,所得到的各观测值质检总是存在差异。同一量各观测值质检,以及观测值与其真实值(简称为真值)质检的差异,称为建筑测量误差。 2、误差产生的原因: 仪器设备、观测者、外界环境 测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。 具体来说,测量误差主要来自以下四个方面: (1) 外界条件主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化,导致测量结果中带有误差。 (2) 仪器条件仪器在加工和装配等工艺过程中,不能保证仪器的结构能满足各种几何关系,这样的仪器必然会给测量带来误差。 (3) 方法理论公式的近似限制或测量方法的不完善。 (4) 观测者的自身条件由于观测者感官鉴别能力所限以及技术熟练程度不同,也会在仪器对中、整平和瞄准等方面产生误差。 3、测量误差分类 系统误差 在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差。系统误差一般具有累积性。 系统误差产生的主要原因之一,是由于仪器设备制造不完善。例如,用一把名义长度为50m的钢尺去量距,经检定钢尺的实际长度为50.005 m,则每量尺,就带有+0.005 m的误差(“+”表示在所量距离值中应加上),丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。 再如,在水准测量时,当视准轴与水准管轴不平行而产生夹角时,对水准尺的读数所产生的误差为l*i″/ρ″(ρ″=206265″,是一弧度对应的秒值),它与水准仪至水准尺之间的距离l成正比,所以这种误差按某种规律变化。 系统误差具有明显的规律性和累积性,对测量结果的影响很大。但是由于系统误差的大小和符号有一定的规律,所以可以采取措施加以消除或减少其影响。

误差分析

二、误差分析 1.研究误差的目的 物理化学以测量物理量为基本内容,并对所测得数据加以合理的处理,得出某些重要的规律,从而研究体系的物理化学性质与化学反应间的关系。 然而在物理量的实际测量中,无论是直接测量的量,还是间接测量的量(由直接测量的量通过公式计算而得出的量),由于测量仪器、方法以及外界条件的影响等因素的限制,使得测量值与真值(或实验平均值)之间存在着一个差值,这称之为测量误差。 研究误差的目的,不是要消除它,因为这是不可能的;也不是使它小到不能再小,这不一定必要,因为这要花费大量的人力和物力。研究误差的目的是:在一定的条件下得到更接进于真实值的最佳测量结果;确定结果的不确定程度;据预先所需结果,选择合理的实验仪器、实验条件和方法,以降低成本和缩短实验时间。因此我们除了认真仔细地作实验外,还要有正确表达实验结果的能力。这二者是等同重要的。仅报告结果,而不同时指出结果的不确定程度的实验是无价值的,所以我们要有正确的误差概念。 2.误差的种类 根据误差的性质和来源,可将测量误差分为系统误差、偶然误差和过失误差。 系统误差在相同条件下,对某一物理量进行多次测量时,测量误差的绝对值和符号保持恒定(即恒偏大或恒偏小),这种测量误差称为系统误差。产生系统误差的原因有: (1)实验方法的理论根据有缺点,或实验条件控制不严格,或测量方法本身受到限制。如据理想气体状态方程测量某种物质蒸气的分子质量时,由于实际气体对理想气体的偏差,若不用外推法,测量结果总较实际的分子质量大。

(2)仪器不准或不灵敏,仪器装置精度有限,试剂纯度不符和要求等。例如滴度管刻度不准。 (3)个人习惯误差,如读滴度管读数常偏高(或常偏低),计时常常太早(或太迟)等等。 系统误差决定了测量结果的准确度。通过校正仪器刻度、改进实验方法、提高药品纯度、修正计算公式等方法可减少或消除系统误差。但有时很难确定系统误差的存在,往往是用几种不同的实验方法或改变实验条件,或者不同的实验者进行测量,以确定系统误差的存在,并设法减少或消除之。 偶然误差在相同实验条件下,多次测量某一物理量时,每次测量的结果都会不同,它们围绕着某一数值无规则的变动,误差绝对值时大时小,符号时正时负。这种测量误差称为偶然误差。产生偶然误差的原因可能有: (1)实验者对仪器最小分度值以下的估读,每次很难相同。 (2)测量仪器的某些活动部件所指测量结果,每次很难相同,尤其是质量较差的电学仪器最为明显。 (3)影响测量结果的某些实验条件如温度值,不可能在每次实验中控制得绝对不变。 偶然误差在测量时不可能消除,也无法估计,但是它服从统计规律,即它的大小和符号一般服从正态分布。若以横坐标表示偶然误差,纵坐标表示实验次数(即偶然误差出现的次数),可得到图Ⅰ-1。其中σ为标准误差(见第4节). 由图中曲线可见:(1)σ愈小,分布曲线愈尖锐,即是说偶然误差小的, 出现的概率大。(2)分布曲线关于纵坐标呈轴对称,也就是说误差分布具有对称性,说明误差出现的绝对值相等,且正负误差出现的概率相等。当测量次数n 无限多时,偶然误差的算术平均值趋于 零:

误差-基本概念.

误差的基本概念 测量值与真值之差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。 基本概述 【英文】: an error; inaccuracy deviation 【中文拼音】: wù chā 【基本解释】: 一个量的观测值或计算值与其真值之差;特指统计误差,即一个量在测量、计算或观察过程中由于某些错误或通常由于某些不可控制的因素的影响而造成的变化偏离标准值或规定值的数量 释义 误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。 设被测量的真值(真正的大小)为a,测得值为x,误差为ε,则:x-a=ε 误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。从实验的原理,实验所用的仪器及仪器的调整,到对物理量的每次测量,都不可避免地存在误差,并贯穿于整个实验始终。 测量值与真值之差异称为误差。 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下:

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称

为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的 权数一般凭经验确定。 (4)几何平均值 (5)对数平均值 以上介绍的各种平均值,目的是要从一组测定值中找 出最接近真值的那个值。平均值的选择主要决定于一组观 测值的分布类型,在化工原理实验研究中,数据分布较多 属于正态分布,故通常采用算术平均值。 (三)中位数(xM )

(完整版)算法的概念及误差分析方法(精)

3.2算法 3.2.1算法的概念 3.2.1.1 什么叫算法 算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。算法和程序之间存在密切的关系。 算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。 对算法的学习包括五个方面的内容:①设计算法。算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;②表示算法。描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点; ③确认算法。算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④分析算法。算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤验证算法。用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。 3.2.1.2算法的特性 算法的特性包括:①确定性。算法的每一种运算必须有确定的意义,该种运算应执行何种动作应无二义性,目的明确;②能行性。要求算法中有待实现的运算都是基本的,每种运算至少在原理上能由人用纸和笔在有限的时间内完成;③输入。一个算法有0个或多个输入,在算法运算开始之前给出算法所需数据的初值,这些输入取自特定的对象集合;④输出。作为算法运算的结果,一个算法产生一个或多个输出,输出是同输入有某种特定关系的量;⑤有穷性。一个算法总是在执行了有穷步的运算后终止,即该算法是可达的。 满足前四个特性的一组规则不能称为算法,只能称为计算过程,操作系统是计算过程

第1章数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

偏差分析

偏差分析 数据挖掘中,偏差分析是探测数据现状、历史记录或标准之间的显著变化和偏离,偏差包括很大一类潜在的有趣知识。如观测结果与期 望的偏离、分类中的反常实例、模式的例外等。 在项目管理中偏差分析指实际完成工作与计划完成工作之间的差异。具体分为: 进度偏差(SV)=已完工作的预算费用(BCWP)-计划完成工作的预算费用(BCWS) 成本偏差(CV)=已完工作的预算费用(BCWP)-已完成工作的实际费用(ACWP) 什么是偏差分析? 又称为赢得值法或偏差分析法.挣得值分析法是在工程项目实施中使用较多的一种方法,是对项目进度和费用进行综合控制的一种有效方法。 1967年美国国防部(d0d)开发了挣值法并成功地将其应用于国防工程中。并逐步获得广泛应用。 挣值法的核心是将项目在任一时间的计划指标,完成状况和资源耗费综合度量。将进度转化为货币,或人工时,工程量如:钢材吨数,水泥立方米,管道米数或文件页数。 挣值法的价值在于将项目的进度和费用综合度量,从而能准确描述项目的进展状态。挣值法的另一个重要优点是可以预测项目可能发生的工期滞后量和费用超支量,从而及时采取纠正措施,为项目管理和控制提供了有效手段。 挣得值方法的基本参数? 计划工作量的预算费用(BCWS),即(Budgeted Cost for Work Scheduled)。 BCWS是指项目实施过程中某阶段计划要求完成的工作量所需的预算费用。 计算公式为:BCWS=计划工作量×预算定额。BCWS主要是反映进度计划应当完成的工作量(用费用表示)。? 已完成工作量的实际费用(ACWP),即(Actual Cost for Work Performed)。ACWP是指项目实施过程中某阶段实际完成的工作量所消耗的费用。ACWP主要是反映项目执行的实际消耗指标。 BCWS是与时间相联系的,当考虑资金累计曲线时,是在项目预算s曲线上的某一点的值。当考虑某一项作业或某一时间段时,例如某一月份,bcws是该 作业或该月份包含作业的预算费用。

精度检测基本概念

精度检测基本概念 内容概要:主要论述几何量精度检测的基本理论,包括测量的基本概念、计量单位、测量器具、测量方法、测量误差和测量数据处理等。 教学要求:在掌握机械精度设计的基础上,对其检测技术方面的基础知识有一个最基本的了解,并能运用误差理论方面的知识对测量数据进行处理后,正确地表达测量结果。 学习重点:测量误差和测量数据的处理。 学习难点:测量误差的分析。 习题 一、判断题(正确的打√,错误的打×) 1、直接测量必为绝对测量。( ) 2、为减少测量误差,一般不采用间接测量。( ) 3、为提高测量的准确性,应尽量选用高等级量块作为基准进行测量。( ) 4、使用的量块数越多,组合出的尺寸越准确。( ) 5、0~25mm千分尺的示值范围和测量范围是一样的。( ) 6、用多次测量的算术平均值表示测量结果,可以减少示值误差数值。( ) 7、某仪器单项测量的标准偏差为σ=0.006mm,若以9次重复测量的平均值作为测量结果,其测量误差不应超过0.002mm。( ) 8、测量过程中产生随机误差的原因可以一一找出,而系统误差是测量过程中所不能避免的。( ) 9、选择较大的测量力,有利于提高测量的精确度和灵敏度。( ) 10、对一被测值进行大量重复测量时其产生的随机误差完全服从正态分布规律。( ) 二、选择题(将下面题目中所有正确的论述选择出来) 1、下列测量中属于间接测量的有_____________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。 D、用游标卡尺测量两孔中心距。 E、用高度尺及内径百分表测量孔的中心高度。 2、下列测量中属于相对测量的有__________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。

偏差分析心得体会

偏差分析心得体会 篇一:误差分析及实验心得 误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1)、培养了严谨求实的精神和顽强的毅力。通过此

次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作

精度检测基本概念

第五章精度检测基本概念 内容概要:主要论述几何量精度检测的基本理论,包括测量的基本概念、计量单位、测量器具、测量方法、测量误差和测量数据处理等。 教学要求:在掌握机械精度设计的基础上,对其检测技术方面的基础知识有一个最基本的了解,并能运用误差理论方面的知识对测量数据进行处理后,正确地表达测量结果。 学习重点:测量误差和测量数据的处理。 学习难点:测量误差的分析。 习题 一、判断题(正确的打√,错误的打×) 1、直接测量必为绝对测量。( ) 2、为减少测量误差,一般不采用间接测量。( ) 3、为提高测量的准确性,应尽量选用高等级量块作为基准进行测量。( ) 4、使用的量块数越多,组合出的尺寸越准确。( ) 5、0~25mm千分尺的示值范围和测量范围是一样的。( ) 6、用多次测量的算术平均值表示测量结果,可以减少示值误差数值。( ) 7、某仪器单项测量的标准偏差为σ=0.006mm,若以9次重复测量的平均值作为测量结果,其测量误差不应超过0.002mm。( ) 8、测量过程中产生随机误差的原因可以一一找出,而系统误差是测量过程中所不能避免的。( ) 9、选择较大的测量力,有利于提高测量的精确度和灵敏度。( ) 10、对一被测值进行大量重复测量时其产生的随机误差完全服从正态分布规律。( ) 二、选择题(将下面题目中所有正确的论述选择出来) 1、下列测量中属于间接测量的有_____________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。 D、用游标卡尺测量两孔中心距。 E、用高度尺及内径百分表测量孔的中心高度。 2、下列测量中属于相对测量的有__________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。

相关文档