文档库 最新最全的文档下载
当前位置:文档库 › 双容水箱液位控制系统仿真

双容水箱液位控制系统仿真

双容水箱液位控制系统仿真
双容水箱液位控制系统仿真

双容水箱液位控制系统仿真

————————————————————————————————作者:————————————————————————————————日期:

内蒙古科技大学

控制系统仿真课程设计说明书

题目:双容

水箱

液位

控制

系统

仿真

学生姓名:任志江

学号:1067112104

专业:测控技术与仪器

班级:测控 10-1班

指导教师:梁丽

课程名称

控制系统仿真 设计题目

双容水箱液位控制系统仿真 指导教师 梁丽 时间 2012.10.29~2012.11.02

一、教学要求

1、学会收集和查阅资料,学会针对指定控制系统建立数学模型的方法;

2、学会使用Matlab/Simulink 建模和仿真的方法;

3、掌握控制器的设计方法,以及控制器参数整定和优化的方法。

二、设计资料及参数

1、双容水箱逻辑结构上图所示。 水流入量Qi 由调节阀u (FV101)控制,流出量Qo 则由用户通过负载阀R 来改变,被调量为下水箱水位h ,分析水位在调节阀开度扰动下的动态特性。

2、对某种型号的水箱,在某一平衡点附近,建立其线性化模型,其中各参数分别为:T1=80s ,T2=80s ,K1=KuR1=1,K2=R2/R1=1,s s 22,81==ττ 。

三、设计要求及成果

1、分析系统,根据物料平衡原理(即液位平衡状态下,流出量必然等于流入量)和给出的参数推导系统的数学模型;

2、将数学模型转变为仿真模型,并用Matlab/Simulink 实现求其动态响应;

3、设计合理的控制器(控制算法)控制下水箱液位,使其尽量满足稳、准、快的要求;

4、针对大滞后系统,可以用Simulink 搭建带有Smith 预估器的PID 控制器,将该模块嵌入到控制系统中直接控制。并与第三步设计的控制器的控制效果进行比较;

定值 Q i LT 104 记Q o h

双容水箱结构图

FV101

5、完成5000字左右的课程设计报告(包括设计原理、设计过程及结果分析几部分),要求给出设计的模型图和仿真曲线图。

四、进度安排

1、根据给定的参数或工程具体要求,收集和查阅资料(一天)

2、Matlab/Simulink建模(一天)

3、控制系统设计与优化(两天)

4、编写课程设计说明书(一天)

五、评分标准

1)工作态度(占10%);

2)基本技能的掌握程度(占20%);

3)方案的设计是否可行和优化(40%);

4)课程设计技术设计书编写水平(占30%)。

分为优、良、中、合格、不合格五个等级。

六、建议参考资料

1、李国勇,控制系统数字仿真与CAD[M],北京:电子工业出版社,2003,9

2、王丹力,MATLAB控制系统设计仿真应用[M],北京:中国电力出版社,2007,9

2、薛定宇,控制系统仿真与计算机辅助设计[M],北京:机械工业出版社,2005,1

3、金以慧,过程控制[M],北京:清华大学出版社,2003,6

摘要

随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。

关键词:MATLAB;PID控制;液位系统仿真

目录

第一章控制系统仿真概述 (2)

1.1 控制系统计算机仿真 (2)

1.2 控制系统的MATLAB计算与仿真 (2)

第二章 PID控制简介及其整定方法 (6)

2.1 PID控制简介 (6)

2.1.1 PID控制原理 (6)

2.1.2 PID控制算法 (7)

2.2 PID 调节的各个环节及其调节过程 (8)

2.2.1 比例控制与其调节过程 (8)

2.2.2 比例积分调节 (9)

2.2.3 比例积分微分调节 (10)

2.3 PID控制的特点 (10)

2.4 PID参数整定方法 (11)

第三章双容水箱液位控制系统设计 (13)

3.1双容水箱结构 (13)

3.2系统分析 (13)

3.3双容水箱液位控制系统设计 (16)

3.3.1双容水箱液位控制系统的simulink仿真图 (16)

3.3.2双容水箱液位控制系统的simulink仿真波形 (17)

第四章课程设计总结 (18)

第一章控制系统仿真概述

1.1 控制系统计算机仿真

控制系统的计算机仿真是一门涉及控制理论、计算数学与计算机技术的综合性学科,它的产生及发展差不多是与计算机的发明和发展同步进行的。控制系统的计算机仿真就是以控制系统的模型为基础,采用教学模型代替实际的控制系统,以计算机为工具,对控制系统进行试验和研究的一种方法。控制系统计算机仿真的过程包含如下步骤:

(1)建立控制系统的数学模型

系统的数学模型是指描述系统的输入、输出变量以及内部变量之间关系的数学表达式。系统数学模型的建立可采用解析法和试验法,常见的数学模型有微分方程、传递函数、结构图、状态空间表达式。

(2)建立控制系统的仿真模型

根据控制系统的数学模型转换成能够对系统进行仿真的模型。

(3)编制控制系统的仿真软件

采用各种各样的计算机语言(Basic、FORTRAN、C语言等)编制控制系统的仿真程序,或直接利用一些仿真语言。

(4)进行系统仿真试验并输出仿真结果

通过对仿真模型对实验参数的修改,进行系统仿真实验,输出仿真结果。如果应用MATLB的Toolbox及Simulink集成环境作为仿真工具,则构成了MATLAB仿真。

1.2 控制系统的MATLAB计算与仿真

MATLAB是矩阵实验室(Matrix laboratory)之意。MATLAB其有以下主要特点:

(1)功能强大,实用范围广

MATLAB除了具备卓越的数值计算能力外,它还提供了专业水平的符号计

算。差不多所有科学研究与工程技术应用所需要的计算,PID均可完成。

(2)语言简洁紧凑,使用方便灵活

MATLAB提供的库函数及其丰富,既有常用的基本库函数,又有种类齐全、功能丰富多样的专用库函数。MATLAB程序书写形式利用丰富的库函数避开了复杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由各领域的专家编写,用户不必担心函数的可靠性。

(3)有好的图形界面,用户使用方便

MATLAB具有好的用户界面与方便的帮助系统。MATLAB的函数命令众多,各函数的功能及使用又可由MATLAB图形界面下的菜单来查询,为用户提供了学习它的便捷之路。

MATLAB是演算纸式的科学过程计算语言,使用MATLAB编程运算与人的科学思路和表达方式相吻合,犹如在演算纸上运算并求运算结果,使用十分方便。

(4)图形功能强大

MATLAB里提供了多种图形函数,可以绘制出丰富多彩的图形。MATLAB数据的可视化非常简单,MATLAB还具有较强的编辑图形界面的能力。

(5)功能强大的工具箱

MATLAB包含两个部分:核心部分和各种可选的工具箱。

当前流行的MATLAB7.0/Simulink5.0包括拥有数自一个内部函数主包和三十多种工具包(Toolbox)。工具包又可以分为功能性工具包和学科性工具包:功能性工具包用来扩充MATLAB的符号计算、可视化建模仿真、文字处理及实时控制等功能;学科性工具包是专业性比较强的工具包,控制工具包、信号处理工具包、通信工具包等都属于此类。

针对过程控制系统的非线性、快时变、复杂多变量和环境扰动等特点及MATLAB的可实现动态建模、仿真与分析等优点,采用MATLAB的Toolbox与Simulink仿真工具,为过程控制系统设计与参数整定的计算和仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单

直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

(1)Simulink的功能:

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的二个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与MATLAB紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

(2)Simulink的特点:

a.丰富的可扩充的预定义模块库。

b.交互式的图形编辑器来组合和管理直观的模块图

c.以设计功能的层次性来分割模型,实现对复杂设计的管理。

d.通过Model Explorer导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码。

e.提供API用于与其他仿真程序的连接或与手写代码集成。

f.使用Embedded MATLAB模块在Simulink和嵌入式系统执行中调用

MATLAB算法。

g.使用定步长或变步长运行仿真,根据仿真模式来决定以解释性的方式运行或以编译C代码的形式来运行模型。

h.图形化的调试器和剖析来检查仿真结果,诊断设计的性能和异常行为

第二章 PID控制简介及其整定方法

2.1 PID控制简介

2.1.1 PID控制原理

当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和调节控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。

在过去的十几年里,PID控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID结构,而且许多高级控制都是以PID控制为基础的。

常规PID控制系统原理如图3.1所示。这是一个典型的单位负反馈控制系统,它由PID控制器和被控对象组成。

图3.1 PID控制系统原理图

PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值e(t)构成

偏差 e(t)=r(t)-c(t)

2.1.2 PID 控制算法

典型的PID 模拟控制系统如图3.2所示。图中sp(t)是给定值,pv(t)为反馈量,c(t)为系统输出量,PID 控制器的输入输出关系式为: 01()t c D I de M t K e edt T Minitial T dt ??=+++ ???

? (3.1) 即输出=比例项+积分项+微分项+输出初始值,Kc 是PID 回路的增益,T I 和T D 分别是积分时间和微分时间常数。

式中等号右边前3项分别是比例、积分、微分部分,他们分别与误差、误差的积分和微分呈正比。如果取其中的一项或这两项,可以组成P 、PD 、或PI 控制器。需要较好的动态品质和较高的稳态精度时,可以选用PI 控制方式控制对象的惯性滞后较大时,应选择PID 控制方式。图3.2所示分别为当设定值由0突变到1时,在比例(P )作用、比例积分(PI )作用和比例积分微分(PID )作用下,被调量T(s)变化的过度过程。可以看出比例积分微分作用效果为最佳,能迅速的使T(s)达到设定值1。比例积分作用则需要稍长时间。比例作用最终达不到设定值,而有余差。

图3.2 模拟量闭环控制系统

PID 调节器 执行机构 被控对象

sp(t) 测量元件

pv(t)

c(t

e(t) M(t)

图3.3 P 、PI 、PID 调节的阶跃响应曲线

为了方便计算机实现PID 控制算式,必须把微分方程式(3.1)改写成差分,作如下近似,即

00()n

t j edt Te j =≈∑? (3.2) ()(1)de e n e n dt T

--≈ (3.3) 其中T 为控制周期,n 为控制周期序号(n =0,1,2···),e(n-1)和e(n)分别为第(n-1)和第n 控制周期所得的偏差。将式(3.2)和(3.3)代入式(3.1)中可得差分方程

[]0()()()()(1)n D I j T T M n Kc e n e j e n e n Minitial T T =??=++--+????

∑ (3.4)

其中M(n)为第n 时刻的控制量。如果控制周期T 与被控对象时间常数T D 比较是相对小的,那么这种近似合理的,并与连续控制十分接近。

2.2 PID 调节的各个环节及其调节过程

水箱液位控制系统的目前主要采用PID(比例积分微分)控制方式,这种方式,对不同的控制对象要用不同的PID 参数。

2.2.1 比例控制与其调节过程

比例作用实际上是一种线性放大(缩小)功能。比例调节的显著特点是有差调节,如果采用比例调节,则在负荷的扰动下调节过程结束后,被调量不可能与设

定值准确相等,它们之间一定有残差。采样偏差一旦产生,控制器立即产生正比于偏差大小的控制作用,使被调量朝误差减小方向变化,其作用大小通过比例增益度量,比例增益大时响应速度快,稳态误差小,但会产生较大的超调或产生不稳定,而Kc过小会使响应速度缓慢。调节时间加长,调节精度降低。

在比例调节中调节器的输出信号u(n)与偏差信号e成比例,比例系数为Kc,称为比例增益。在过程控制中习惯用增益的倒数表示调节器的输入与输出之间的比例关系,即

1

M=e

(3.8)

δ称为比例带。δ具有重要的物理意义。如果M直接代表调节阀开度的变化量, 那么δ就代表使调节阀开度改变100%即从全关到全开时所需要的被调量的变化范围。根据P调节器的的输入输出测试数据,很容易确定它的比例带的大小。

比例调节的残差随比例带的加大而加大,从这方而考虑,人们希望尽量减小比例带。然而,减小比例带就等于加大调节系统的开环增益,其后果是导致系统激烈振荡甚至不稳定。稳定性是任何闭环控制的首要要求,比例带的设置必需保证系统具有一定的稳定裕度。δ很大意味着调节阀的动作幅度很小,因此被调量的变化比较平稳,甚至没有超调,但残差很大,调节时间也很长;减小δ就加大了调节阀的动作幅度,引起被调量来回波动,但系统仍可能是稳定的,残差相应减小。δ有一个临界值,此时系统处于稳定边界的情况,进一步减小δ系统就不稳定了。δ的临界值可以根据实验测定。

2.2.2 比例积分调节

积分作用则是一种记忆,对误差进行累积,有利于消除静差。但积分作用如果太强,会引起较大超调或振荡,且在实际当中会经常碰到积分饱和现象在I

调节中,调节器的输出与偏差信号的积分成正比。I调节的特点是无差调节,与P调节的有差调节成鲜明对比。只有当偏差e为零时,I调节器的输出才会保持不变。然而与此同时,调节器的输出却可以停在任何值上。这意味着被控对象在负荷扰动下的调节过程后,被调量没有残差,而调节阀可以停在新的负荷所要求

的开度上。

PI调节就是综合P、I两种调节的优点,利用P调节快速抵消干扰,同时利用I调节消除余差。PI调节引入积分动作带来消除系统残差的同时,却降低了原有系统的稳定性。为保持控制系统原来的衰减率,PI调节器的比例带必须适当加大。所以PI调节是在稍微牺牲控制系统的动态品质以换取较好的稳态性能。在比例带不变的情况下,减小积分时间,将使系统稳定性降低、振荡加剧,调节过程加快、振荡频率升高。

2.2.3 比例积分微分调节

微分作用上要是用于产生提前的控制作用,改善动态特性,减小调整时间,使系统易于稳定。以上的比例调节和积分调节都是根据当时的偏差方向和大小进行调节的。不管被控对象中流入流出量之间有多大的不平衡。而这个不平衡决定着此后被调量将如何变化的趋势。

由于被调量的变化速度(包括大小和方向)可以反映当时或稍前一些时间流入、流出量间的不平衡情况,因此,如果调节器能够根据被调量的变化速度来移动调节阀,而不要等被调量已经出现较大的偏差后才开始动作,那么调节的效果将会更好,等于赋予调节器以某种预见性,这种调节动作称为微分调节。单纯微分的调节器是不能工作的,这是因为实际的调节器都有一定的失灵区,如果被控对象的流入、流出量只相差很少以致被调量只以调节器不能察觉的速度缓慢变化时,调节器并不会动作。当时间经过相当长的时间后,被调量偏移却可以积累到相当大的数字而得不到校正。这种情况是不被容许的。因此微分调节只能起辅助的调节作用,它可以与其它调节动作结合成PD和PI调节动作。

2.3 PID控制的特点

事实表明,对于PID这样简单的控制器,能够适用于广泛的工业与民用

对象,并仍以很高的性价比在市场中占据着重要地位,充分地反映了PID控

制器的良好品质。概括地讲,PID控制的优点主要体现在以下两个方面:

(1)原理简单、结构简明、实现方便,是一种能够满足大多实际需要的

基本控制器。

(2)控制器适用于多种不同的对象,算法在结构上具有较强鲁棒性。确

切地说,在很多情况下其控制品质对被控对象的结构或参数振动不敏感。

但从另一方面来讲,控制算法的普适性也反映了PID控制器在控制品质

上的局限性。具体分析,其局限性主要来自以下几个方面:

(1)算法结构的简单性决定了PID控制比较适用于SISO最小相位系统,

在处理大时滞、开环不稳定过程等难控对象时,需要通过多个PID控制器或

与其他控制器的组合,才能得到较好的控制效果。

(2)算法结构的简单性同时决定了PID控制只能确定闭环系统的少数主

要极点;闭环特性从根本上只是基于动态特性的低阶近似假定的。

(3)出于同样的原因,决定了单一PID控制器无法同时满足对假定设定值控制和伺服/跟踪控制的不同性能要求。

2.4 PID参数整定方法

(1)Ziegler-Nichols经验公式(Z-N公式法)。该方法先求取系统的开环阶

跃响应曲线,根据对象的纯迟延时间、时间常数和放大系数,按Ziegler-Nichols经验公式计算PID参数。

(2)稳定边界法(临界比例度法)。该方法需要做稳定边界实验,在闭环系

统中控制器只用比例作用,给定值作阶跃扰动,从较大的比例带开始,逐渐

减小,直至被控对象现临界振荡为止,记下临界振荡周期和临界比例带。(3)衰减曲线法。该方法与临界比例度法类似,在闭环系统中控制器只用

比例作用,给定值作阶跃扰动,从较大的比例带开始,逐渐减小,直至被控

量出现4:1的衰减过程为止,记下此时比例带以及相邻波峰之间的时间。然

后按照经验公式确定PID参数。

第三章 双容水箱液位控制系统设计

3.1双容水箱结构

Q 1

水流入量Qi 由调节阀u (FV101)控制,流出量Q 2由用户通过负载阀R 来改

变,被调量为下水箱水位h ,分析水位在调节阀开度扰动下的动态特性。

参数:对某种型号的水箱,在某一平衡点附近,建立其线性化模型,其中各参数分别为:T1=80s ,T2=80s ,K1=KuR1=1,K2=R2/R1=1,s s 22,81==ττ。

3.2系统分析

两容器的流出阀均为手动阀门,流量1Q 只与容器1的液位1h 有关,与容器2的液位2h 无关。容器2的液位也不会影响容器1的液位,两容器无相互影响。

由于两容器的流出阀均为手动阀门,故有非线性方程:

111Q a h =

定值

Q i LT 104 记Q 2 h 图3.1 双容水箱结构图

FV101

222Q a h =

过程的原始数据模型为:

1112212i dV Q Q dt dV Q Q dt ρρ?=-????=-??

令容器1、容器2相应的线性水阻分别为1R 和2R :

10

112h R a =

2022

2h R a = 其中10h 为容器1的初始液位,20h 为容器2的初始液位。

则有过程传递函数:

221222()()1

h s R Q s A R s ρ=+ 11111()()1

i h s R Q s A R s ρ=+ 而由式可以推出:

111

()1()Q s h s R = 因此有:

1111111()()()1()()()1

i i Q s Q s h s Q s h s Q s A R s ρ==+ 令时间常数1111T A R ρ=和2222T A R ρ=,最终可得该过程的传递函数为:

()()()2212221121212()()()()()()111

i i h s h s Q s R R Q s Q s Q s T s T s TT s T T s ===+++++ 可见,虽然容器1的液位会影响容器2的液位,但容器2的液位不会影响容器1,二者不存在相互影响;过程的传递函数相当于两个容器分别独立时的传递函数相乘,但过程增益为两个独立传递函数相乘的1/R 1倍。令Q i =ku ,对液位h

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

DCS课程设计 水箱液位串级控制解析

目录 1 题目背景与意义 (1) 1.1 题目背景 (1) 1.2 课题意义 (1) 2 设计题目介绍 (1) 2.1设计内容和要求 (1) 2.2 集散控制系统基本组成 (2) 2.3 设计原理及分析 (3) 3 系统设计方案 (6) 3.1双容水箱控制 (7) 3.2串级控制 (7) 4 系统硬件设计 (8) 4.1数据采集模块 (8) 4.1.1 模拟量输入模块 (8) 4.1.2 模拟量输出模块 (9) 4.2仪表和执行机构选型 (11) 4.3系统连线 (11) 4.3.1 模拟量输入模块FM148A接线 (11) 4.3.2模拟量输出模块FM151A接线 (12) 5 系统软件设计 (12) 5.1组态画面的设计 (13) 5.2通讯设置 (13) 6 系统仿真调试 (14) 7 结论 (16) 参考文献.......................................... 错误!未定义书签。7

1 题目背景与意义 1.1 题目背景 集散控制系统(Distributed control system),是以多个微处理机为基础利用现代网络技术、现代控制技术、图形显示技术和冗余技术等实现对分散控制对象的调节、监视管理的控制技术。其特点是以分散的控制适应分散的控制对象,以集中的监视和操作达到掌握全局的目的。系统具有较高的稳定性、可靠性和可扩展性。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。 DCS系统在现代化生产过程控制中起着重要的作用。随着工业自动化水平的不断提高,计算机的广泛运用,人们对工业自动化的要求也越来越高。而DCS 又有延续性和可扩充性,易学易用性和通用性,使得DCS得到长足的发展。DCS,分散控制系统,采用控制功能分散,显示操作集中,兼顾分散而自治的集散控制系统。并随着科学技术发展迅猛,在工控自动化领域发展中也得到很快的提高。 1.2 课题意义 集散控制系统是当前先进工业控制系统主要的结构形式,在高校,集散控制系统是最接近实际生产过程的一门专业课。通过此方向的课程设计,能够联系学生几年来学习的网络知识,计算机知识,仪表传感器知识,控制系统知识,培养学生的控制工程设计能力。主要要求锻炼学生以下两种能力: 1.通过工业数据通信与控制网络课程设计的学习,了解工业数据通信与控制网络的技术貌。 2.从介绍的基础知识入手,较深入的了解多种现场总线各自的技术特点、规范、通信控制芯片、接口电路以及控制网络的设计与应用,熟悉工控组态软件下的组态设计,并能进行较复杂的工业控制系统设计分析。 2 设计题目介绍 2.1设计内容和要求 根据所提供的双容水箱工艺对象,通过分析其对象动态特性,设计和实施完整的控制方案,具体完成: ①根据提供的工艺对象,实验室的和利时公司集散控制系统,完成系统的网络

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

三容水箱液位控制

三容水箱液位过程控制设计 专业:自动化 班级:2011级4班 组员:孙健 组员:姜悦2 组员:黄潇20115041 指导老师:陈刚 重庆大学自动化学院 2015年1月

目录 一、现代工业背景 (1) 二、问题的提出 (2) 三、模型的建立 (3) 3.1 单容水箱的数学模型 (3) 3.2 双容水箱的数学模型 (5) 3.3 三容水箱模型 (6) 四、算法的描述 (8) 4.1对原始模型的仿真 (8) 4.2添加P控制并对其仿真 (9) 4.3添加单回路控制并对其仿真 (10) 4.4添加PID控制和单回路控制并对其仿真 (11) 五、结果及分析 (14) 六、总结与体会 (15) 6.1 组长孙健的总结 (15) 6.2 组员姜悦的总结 (15) 6.3 组员黄潇的总结 (15) 七、参考文献 (17) 八、附录 (18)

一、现代工业背景 世界上任何国家的经济发展,都伴随着人民生活水平的改善和城市化进程的不断加快。但是相应的淡水资源的需求和消耗也在不断增多。水,作为一种必不可少的资源,长期以来一直被认为是取之不尽、用之不竭的。在这种观点的驱使下,水环境的质量越来越恶劣、水资源短缺也越来越严重,这一切都加重了城市的负荷,带来一系列危及城市生存与发展的生态环境问题。污水也是造成环境污染的来源之一。这个污染源的出现引起了世界各国政府的关注,治理水污染环境的课题被列入世界环保组织的工作日程。 建设污水处理厂,消除水污染也是为人民造福的一项事业,政府一时又拿不出巨大的资金投入到治理项目的建设中去。为了使污染快速得到控制,向公民投放建设专项债券,给公民一定的高于银行存款利息的待遇,使公民的资金投入到基础设施建设,发挥这部分资金的作用,也能为政府解除一些资金筹措的忧虑,又体现了全民的环保意识。 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。 经济发展与水环境污染是成正比的,也就是说经济发展的速度越快,相应带来的水环境污染就越严重。人民生活离不开水,工农业生产发展更离不开水,排出来的无论是生活污水还是工业废水都会带来不同程度的污染。经济的发展是需要资金投入的,保护环境不受污染,同样也需要钱,当资金有限的时候,就需要将经济发展和保护环境这两项硬指标进行有机的协调,不能造成顾此失彼或厚此薄彼的局面。若顾经济发展失环境保护,就会产生环境严重受到污染,再投入相当的资金也不会治理到原来的清洁环境。国外的反面教训警示了我们,日本的伊势湾受到沿海石化生产废水的污染,使伊势湾的水产品受到严重的损失,产生了不能食用的后果,虽经多年的治理也难以恢复污染前的环境状况。这也充分证明了经济发展与环境保护的密切关系。

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

双容水箱液位串级控制系统设计(精)教学总结

双容水箱液位流量串级控制系统设计 ◆设计题目 双容水箱液位流量串级控制系统设计 ◆设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱1 水箱2 图1 系统示意图◆设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1,针对该水箱工作过程设计单回路PID 调节器,要求画出控制系统方框图及实施方案图,并给出PID 参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1,针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID 控制与串级控制进行仿真试验结果比较,并说明原因。 ◆设计任务分析

一、系统建模 系统建模基本方法有机理法建模和测试法建模两种建模方法。 机理法建模就是根据生产过程中实际发生的变化机理,写出各种有关的平衡方程,从中获得所需的数学模型 测试法一般只用于建立输入—输出模型。它是根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模型。它的特点是把研究的工业过程视为一个黑匣子,完全从外特性上测试和描述它的动态性质。 对于本设计而言,由于双容水箱的各个环节的数学模型已知,故采用机理法建模。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:水箱2液位; 主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 控制对象特性: Gm1(S )=1/(0.1S+1)(水箱1传递函数); Gm2(S )=1/(0.1S+1)(水箱2传递函数)。 控制器:PID ; 执行器:流量控制阀门;

水箱自动控制系统设计原理图及程序

课程:创新与综合课程设计 电子与电气工程学院实践教学环节说明书 题目名称水箱水位自动控制装置 学院电子与电气工程学院 专业电子信息工程 班级 学号 学生姓名 起止日期13周周一~14周周五

水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。 本次课程设计思路是以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本维持不变。 一、设计题及即要求 1、设计并制作一个水箱水位自动控制装置,原理示意图如下: 2、基本要求:设计并制作一个水箱水位自动控制装置。 (1)水箱1 的长×宽×高为50 ×40 ×40 cm;水箱2 的长

×宽×高为40×30 × 40 cm(相同容积亦可);水箱1 的放在地面,水箱2 放置高度距地0.8-1.2m。 (2)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤1cm。 (3)水箱 2 中要求的水位高度及上下限可以通过键盘任意设置; (4)实时显示水箱2 中水位的实际高度和水泵、阀门的工作状态。 3、发挥部分: (1)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤0.3 cm。 (2)由无线远程控制器实现基本要求,无线通讯距离不小于10 米。远程控 制器上能够同步实现超限报警显示。 (3)其他创新。 二、设计思路: 以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

基于组态王6.5的串级PID液位控制系统设计(双容水箱)

本科毕业论文(设计) 题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院 专业:自动化 姓名: ### 指导教师: ### 2011年 6 月 5 日

Cascade level PID control system based on Kingview 6.5

摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。 就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 Abstract It is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such as

过程控制―上水箱液位与进水流量串级控制系统.

目录 1 过程控制系统简介 (2) 1.1 系统组成 (2) 1.2 电源控制台 (3) 1.3 总线控制柜 (3) 2 实验原理 (4) 2.1 单容水箱设备工作原理 (4) 2.2 双容水箱设备工作原理 (7) 2.3 系统工作原理 (9) 2.4 控制系统流程图 (9) 3实验结果分析 (11) 3.1 实验过程 (11) 3.2实验分析 (12) 3.2.1单容水箱实验结果分析 . (12) 3.2.2双容水箱实验结果分析 . (14) 3.2.3单容双容水箱比较 . (16) 3.3实验结论 (17) 总结 . (18) 参考文献 (19)

1 过程控制系统简介 1.1 系统组成 本实验装置由被控对象和上位控制系统两部分组成。系统动力支路分两路:一路由三相(380V 交流)磁力驱动泵、电动调节阀、直流电磁阀、PA 电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V 变频)、涡轮流量计及手动调节阀组成。 1、被控对象 水箱:包括上水箱、中水箱、下水箱和储水箱。储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。 管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。 2、检测装置 压力传感器、变送器:采用SIEMENS 带PROFIBUS-PA 通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS 带PROFIBUS-PA 通讯接口的检测和变送一体的电磁式流量计。 3、执行机构 调节阀:采用SIEMENS 带PROFIBUS-PA 通讯协议的电动调节阀,用来进行控制回路流量的调节。它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。

双容水箱液位控制系统

双容水箱液位控制系统 郭晨雨

目录 摘要 --------------------------------------------------------------------------- 错误!未定义书签。 一.PID控制原理、优越性,对系统性能的改善----------------- 错误!未定义书签。二.被控对象的分析与建模--------------------------------------------- 错误!未定义书签。 三.PID参数整定方法概述---------------------------------------------- 错误!未定义书签。 PID控制器中比例、积分和微分项对系统性能影响分析错误!未定义书签。 比例作用 --------------------------------------------------------- 错误!未定义书签。 积分作用 --------------------------------------------------------- 错误!未定义书签。 微分作用 --------------------------------------------------------- 错误!未定义书签。 PID参数的整定方法 ------------------------------------------------ 错误!未定义书签。 临界比例度法 ------------------------------------------------------- 错误!未定义书签。 PID参数的确定 ----------------------------------------------------- 错误!未定义书签。 四.控制结构 ---------------------------------------------------------------- 错误!未定义书签。 利用根轨迹校正系统 ----------------------------------------------- 错误!未定义书签。 利用伯德图校正系统 ----------------------------------------------- 错误!未定义书签。 调整系统控制量的模糊PID控制方法------------------------- 错误!未定义书签。 模糊控制部分----------------------------------------------------- 错误!未定义书签。 PID控制部分 ---------------------------------------------------- 错误!未定义书签。五.控制器的设计---------------------------------------------------------- 错误!未定义书签。 六.仿真结果与分析--------------------------------------------------------- 错误!未定义书签。 七.结束语---------------------------------------------------------------------- 错误!未定义书签。参考文献 ---------------------------------------------------------------------- 错误!未定义书签。

双容水箱液位流量串级控制系统设计

题目:双容水箱液位流量串级控制系统设计1.设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱2 图1 系统示意图 2.设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1), 副被控对象(流量)传递函数W2=1/(10s+1)。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1),针对该水箱工作过程设计单回路PID调节器,要求画出控制系统方框图及实施方案图,并给出PID参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1),针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID控制与串级控制进行仿真试验结果比较,并说明原因。 3. 设计任务分析 (1)液位控制系统是以改变进水大小作为控制手段,目的是控制下水箱液位处于一个稳定值。 (2)单回路控制系统:对于此系统,若采用单回路控制系统控制液位,以液 位主控制信号反馈到控制器PID,直接去控制进水阀门开度,在无扰动情况下可以采用,但对于有扰动情况,由于控制过程的延迟,会导致控制不及时,造成超调量变大,稳定性下降,控制系统很难获得满意效果

(3)串级控制系统采用两套回路,其中内回路起粗调作用,外回路用来完成细调作用。对液位控制系统,内回路以流量作为前导信号控制进水阀开度,在有扰动情况下可以提早反应消除扰动引起的波动,从而使主控对象不受干扰,另外内回路的给定值受外回路控制器的影响,根据改变更改给定值,从而保证负荷扰动时,仍能使系统满足要求 1 ()T s G 2()T s G --主副控制器的传递函数 ()u s G --控制阀的传递函数 ()z s G --执行器的传递函数 1 2()()m m s s G G --主副变送器传递函数 01 ()s G 02()s G --主副对象的传递函数 4.单回路PID 控制的设计 (1)无干扰下的单回路PID 仿真方框图

单片机水箱水位控制系统设计

单位代码0 2 学号 分类号TH6 密级 课程设计说明书 水箱水位控制系统设计 院(系)名称机械工程学院 专业名称机械设计制造及其自动化学生姓名 指导教师 2015年10 月27 日

黄河科技学院课程设计任务书 机械工程学院机械系机械设计制造及其自动化专业12 级1 班学号1200000000 姓名指导教师 题目: 水箱水位控制系统设计 课程:单片机应用技术 课程设计时间2015 年10 月13 日至10 月27 日共 2 周课程设计工作内容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1. 设计要求 在高塔的内部我们设计一个简易的水位探测传感器用来探测三个水位,即低水位,正常水位,高水位。低水位时送给单片机一个高电平,驱动水泵加水,红灯亮;正常范围的水位时,水泵加水,绿灯亮;高水位时,水泵不加水,黄灯亮。 2. 设计任务与要求(完成后需提交的文件和图表等) 1〉系统硬件电路设计 根据该系统设计的功能要求选择所用元器件,设计硬件电路。要求用Proteus 绘制整个系统电路原理图。 2〉软件设计 根据该系统设计的功能要求进行软件设计,要求用VISIO软件绘制整个系统及各部分的软件流程图。并根据流程图编写程序并汇编调试通过。列出软件清单,软件清单要加以注释。 3〉Proteus仿真 用Proteus对系统软硬件进行仿真调试通过。 4〉软硬件实际调试 5〉编写设计说明书一份,内容包括任务书、设计方案分析、硬件设计部分要绘制整个系统电路原理图,对各部分电路设计原理做出说明。软件设计部分要绘制整个系统及各部分的软件流程图,并列出软件清单,软件清单要求加注释,并在各功能块前加程序功能注释。调试结果整理分析及设计调试的心得体会。3.工作计划(进程安排) 第1周基本完成软、硬件的设计(分散在教学过程中完成)。第二周2天绘

水箱液位串级控制系统

水箱液位串级控制系统 一、实验目的 1.通过实验了解水箱液位串级控制系统组成原理。 2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。 3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。 4.掌握液位串级控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、实验原理 本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。副调节器的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。本实验系统结构图和方框图如图5-2所示。 图5-2 水箱液位串级控制系统 (a)结构图(b)方框图 四、实验内容与步骤 本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。 具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。 (一)、智能仪表控制 1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。

双容水箱液位定值控制系统实验报告

XXXX大学 电子信息工程学院 专业硕士学位研究生综合实验报告 实验名称:双容水箱液位定值控制系统专业:控制工程 姓名: XXX 学号:XXXXXX 指导教师: XXX 完成时间:XXXXX

实验名称:双容水箱液位定值控制系统 实验目的: 1.通过实验进一步了解双容水箱液位的特性。 2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。 3.研究调节器相关参数的改变对系统动态性能的影响。 4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。 5.掌握双容液位定值控制系统采用不同控制方案的实现过程。 实验仪器设备: 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI通讯电缆一根。 实验原理: 本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。调节器的参数整定可采用本章第一节所述任意一种整定方法。本实验系统结构图和方框图如图所示。

自动控制课程设计--双容水箱液位串级控制

自动控制课程设计 课程名称:双容水箱液位串级控制 学院:机电与汽车工程学院 专业:电气工程与自动化 学号: 631224060430 姓名:颜馨 指导老师:李斌、张霞 2014/12/30

0摘要 (2) 1引言 (2) 2对象分析和液位控制系统的建立 (2) 2.1水箱模型分析 (2) 2.2阶跃响应曲线法建立模型 (3) 2.3控制系统选择 (3) 2.3.1控制系统性能指标【2】 (3) 2.3.2方案设计 (4) 2.4串级控制系统设计 (4) 2.4.1被控参数的选择 (4) 2.4.2控制参数的选择 (5) 2.4.3主副回路设计 (5) 2.4.4控制器的选择 (5) 3 PID控制算法 (6) 3.1 PID算法 (6) 3.2 PID控制器各校正环节的作用 (6) 4 系统仿真 (7) 4.1.1系统结构图及阶跃响应曲线 (7) 4.2.1 PID初步调整 (10) 4.2.2 PID不同参数响应曲线 (12) 4.3.1 系统阶跃响应输出曲线 (17) 5加有干扰信号的系统参数调整 (20) 6心得体会 (22) 7参考文献 (22)

液位控制是工业生产乃至日常生活中常见的控制,比如锅炉液位,水箱液位等。针对水箱液位控制系统,建立水箱模型并设计PID控制规律,利用Matlab 仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制。 关键词:串级液位控制;PID算法;Matlab;Simulink 1引言 面液位控制可用于生产生活的各方面。如锅炉液位的控制,如果液位过低,可能造成干烧,容易发生事故;炼油过程中精馏塔液位的控制,关系到产品的质量,是保障生产效果和安全的重要问题。因而,液位的控制具有重要的现实意义和广泛的应用前景。本文针对双容水箱,以下水箱液位为主控制对象,上水箱为副控制对象。选择进水阀门为执行机构,基于Matlab建模仿真,采用PID控制算法,整定PID参数,得出合理控制参数。 2对象分析和液位控制系统的建立 2.1水箱模型分析 现以下水箱液位为主调节参数,上水箱液位为副调节参数,构成传统液位串级控制系统,其结构原理图如图1所示。 图1 双容水箱液位控制示意图

(完整版)水位控制系统设计

课题名称:水箱水位控制系统设计专业:电气工程及其自动化学号: 姓名:

水箱水位控制系统设计 摘要 本设计主要基于单片机的硬件电路设计,实现一种能够实现水位自动控制、具有自动保护、自动声光报警功能的控制系统。本控制系统由A/D转换部分、单片机控制部分、数码显示部分、电机驱动部分、电机控制部分等构成。同时对各个部分进行了详细的论述。在设计中对水塔水位控制原理进行分析,选用AT89C51单片机作为控制水塔水位的处理芯片,由AT89C51的P1口直接来控制.设计方案采用模块化程序设计方法,结合程序流程图,编写程序代码,最后利用KEIL公司的u Vision3软件及伟福仿真软件进行仿真实验,达到单片机自动控制水塔水位变化的目的. 关键词:单片机,水塔水位控制原理,AT89C51,伟福仿真软件

目录 前言 (1) 第1章设计内容 (2) 1.1 设计要求 (2) 1.2 方案设计 (2) 第2章硬件电路设计 (3) 2.1 系统框图设计 (3) 2.2 系统原理 (4) 第3章水塔水位控制系统的硬件电路设计 (5) 3.1 水位检测电路 (5) 3.2 水位显示电路 (5) 3.3电机控制电路 (6) 3.4振荡电路和复位电路 (7) 3.5声光报警电路 (7) 第4章软件程序设计 (8) 4.1 系统主程序流程图 (8) 4.2编写C程序 (9) 第5章硬件制作与调试 (10) 结论 (11) 附录 (12) 仿真总图 (12) 源代码 (13)

前言 水塔是在日常生活和工业应用中经常见到的蓄水装置,在我们的生活中起到了重要的作用,而水基于单片机的水塔水位控制系统使水塔水位自动保持在一定的位置,通过对其水位的控制对外供水,以满足需要。塔里面的水位控制是一个水塔发挥作用的关键。该系统使用水位传感器对水塔水位进行检测并将检测到的信号传给单片机来进行处理,通过调整定时器的定时时间来增大或者缩小占空比,并编写程序加以控制,从而实现电机的调速。最后,使用液晶屏显示当前水位状态以及电动机的转速。该系统通过了报警模块来实现了过低水位蜂鸣器鸣笛报警、过低警戒水位自动处理、正常水位蜂鸣器鸣笛报警以及正常水位处理。本系统适应在不同的用水场合下的用水速度需要,节省工作时间,提高了整体工作的效率,实现水塔水位的自动控制。 液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

相关文档
相关文档 最新文档