文档库 最新最全的文档下载
当前位置:文档库 › 变频器制动单元的,作用及选型

变频器制动单元的,作用及选型

变频器制动单元的,作用及选型
变频器制动单元的,作用及选型

变频器制动单元的作用及制动电阻的选择

变频器在电机调速和自动化控制领域已经应用非常的普遍,在我实际的工作调试中发现一些电工对变频器的制动单元的作用和制动电阻的选择不是非常的清楚,有时候到故障设备现场观察,往往变频器模块炸掉以及储能电容炸掉与制动电阻的选择的错误有着千丝万缕的联系,现在我就结合自身的维修经验跟大家分享变频器制动单元的作用及制动电阻的选择。

郑州执锐智能变频器维修,伺服电机维修

第一点制动单元的作用

制动单元的作用是吸收电机的再生能量,利用电阻的发热特性,将电能转化成热能消耗掉

第二点:制动单元是如何工作的

1、当电动机在外力作用下减速或者反转时,电动机以发电状态运行,产生再生能量。电动

机处于发电状态,其产生的三相交流电被逆变部分六个续流二极管组成的全桥进行整流,使变频器内直流中间环节的直流电压升高。

2、直流电压达到使制动单元开0N的状态后,再生制动单元的功率开关管导通,电流流过

制动电阻

3、制动电阻放出热量,吸收了再生能量,电动机的转速降低,直流侧的电压降低。

4、直流侧的电压降低到使制动单元关断(OFF)的值是,再生制动单元的功率开关管关断,

这时没有电流流过制动电阻。

当再生能量大时,再生制动单元的开关(ON/OFF)频率增高,使制动转矩增大,单位时间内电能转换为热能的数量增大。

第三点:变频器制动单元和制动电阻的选择

制动电阻是将再生电能消耗在功率电阻上来实现制动。小功率制动单元一般在变频器内部,外部只接制动电阻。大功率的制动单元由外接的制动单元接到变频器的母线上。当电动机制动时,电动机的电能反馈回母线,使母线电压升高,升高到一定的值时,开通制动单元的开关管,用制动电阻消耗母线上一部分电能,维持母线电压不继续往上升高,使电动机能量消耗在制动电阻上,从而获得制动动力柜。制动单元的导线长度一般不大于5M,接到变频器的母线(P+、N端),要使用双绞线或密着平行线,其目的是减少电感,导线的截面应不小于电动机输电线的1/2~1/4。

1、制动电阻的选择

制动电阻的阻值不是随便选用的,它有一定的范围。太大,制动不迅速,太小制动用开关元件很容易烧毁。一般当负载惯量不太大时,认为电动机制动时最大有70%能量消耗于制动电阻,30%的能量消耗于电动机本身及负载的各种损耗上,此时制动电阻的计算公式为:

式中P---电动机功率,KW

Uc—制动时母线上的电压,V。

一般对于三相380V电源,UC约等于700V,单相220V时,Uc约等于390V,代入上式可得三相380 V时制动电阻阻值为:R=700/p

单相220V时制动电阻阻值为:R=217/p

低频度制动的制动电阻的耗散功率一般为电动机功率的1/4~1/5,在频繁制动时,耗散功率要加大。

有的小变频器内部装有制动电阻,但在高频度或重力负载制动时,内部制动电阻的散热量不足,容易烧毁,此时要改用大功率的外接制动电阻。各种制动电阻都应选用低电感构的电阻器,连接线要短,并使用双绞线或密着平行线,采用如此地点刚措施的原因是为了防止和减

少电感能量加到制动管上,造成制动管损坏,制动电阻值不能过分小,如果回路的电感大、电阻小、将对制动管不利,会造成损坏。

为了保证制动单元内功率管不被损坏,制动电阻不得小于上计算公式的计算值,但太大制动效果不好,所以要适当。

第4点:制动单元的选择

在进行制动单元的选择时,制动单元工作的最大电流是选择的唯一标准,其计算公式如下:

式中Izd-----制动电流瞬时值

Ud-----变频器直流母线电压

变频器选型如何正确选择中小型断路器

变频器选型如何正确选择中小型断路器 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

如何正确选择中小型断路器 配电(线路)、电动机和家用电器等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,选用的断路器的保护特性不同。 配电用断路器的选择 配电用断路器是指在低压电网中专门用于分配电能的断路器,包括电源总断路器和负载支路断路器。在选用这一类断路器时,需特别注意下列选用原则: (1)断路器的长延时动作电流整定值≤导线容许载流量。对于采用电线电缆的情况,可取电线电缆容许载流量的80%。 (2)3倍长延时动作电流整定值的可返回时间≥线路中最大起动电流的电动机的起动时间。 (3)短延时动作电流整定值I1为: I1=(Ijx+ 式中:Ijx———线路计算负载电流(A); k———电动机的起动电流倍数; Ied———电动机额定电流(A)。 (4)瞬时电流整定值I2为: I2=(Ijx+klkIedm) 式中:kl———电动机起动电流的冲击系数,一般取kl=~2; Iedm———最大的一台电动机的额定电流。 (5)短延时的时间阶段,按配电系统的分段而定。一般时间阶段为2~3级。每级之间的短延时时差为~,视断路器短延时机构的动作精度而定,其可返回时间应保证各级的选择性动作。选定短延时阶梯后,最好按被保护对象的热稳定性能加以校核。 电动机保护型断路器的选择 微型断路器(MCB)不能用于对电动机的保护,只可作为替代熔断器对配电线路(如电线电缆)进行保护。电动机在起动瞬间有一个5~7倍Ied,持续时间为 10s的起动电流,即使C特性在电磁脱扣电流设定为5~10倍Ied,可以保证在电动机起动时避过浪涌电流。 但对热保护来讲,其过载保护的动作值整定于,也就是说电动机要承受45% 以上的过载电流时MCB才能脱扣,这对于只能承受<20%过载的电机定子绕组来讲,

变 频 器 的 作 用

变频器的作用 变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能。下面例举使用变频调速的10个理由,来说明变频器应用日趋普及的基本认识: (1) 控制电机的启动电流。当电机通过工频直接启动时,它将会产生7到8倍的电机额定电流。这个电流值将大大增加电机绕组的电应力并产生热量,从而降低电机的寿命。而变频调速则可以在零速零电压启动(也可适当加转矩提升)。一旦频率和电压的关系建立,变频器就可以按照V/F或矢量控制方式带动负载进行工作。使用变频调速能充分降低启动电流,提高绕组承受力,用户最直接的好处就是电机的维护成本将进一步降低、电机的寿命则相应增加。 (2) 降低电力线路电压波动。在电机工频启动时,电流剧增的同时,电压也会大幅度波动,电压下降的幅度将取决于启动电机的功率大小和配电网的容量。电压下降将会导致同一供电网络中的电压敏感设备故障跳闸或工作异常,如PC机、传感器、接近开关和接触器等均会动作出错。而采用变频调速后,由于能在零频零压时逐步启动,则能最大程度上消除电压下降 (3) 启动时需要的功率更低。电机功率与电流和电压的乘积成正比, 那么通过工频直接启动的电机消耗的功率将大大高于变频启动所需要的功率。在一些工况下其配电系统已经达到了最高极限,其直接工频启动电机所产生的电涌就会对同网上的其他用户产生严重的影响, 从而将受到电网运行商的警告, 甚至罚款。如果采用变频器进行电机起停, 就不会产生类似的问题。(4) 可控的加速功能。变频调速能在零速启动并按照用户的需要进行均匀地加速,而且其加速曲线也可以选择(直线加速、S形加速或者自动加速)。而通过工频启动时对电机或相连的机械部分轴或齿轮都会产生剧烈的振动。这种振动将进一步加剧机械磨损和损耗,降低机械部件和电机的寿命。另外,变频启动还能应用在类似灌装线上,以防止瓶子倒翻或损坏。 (5) 可调的运行速度。运用变频调速能优化工艺过程,并能根据工艺过程迅速改变,还能通过远控PLC或其他控制器来实现速度变化。 (6) 可调的转矩极限。通过变频调速后,能够设置相应的转矩极限来保护机械不致损坏,从而保证工艺过程的连续性和产品的可靠性。目前的变频技术使得不仅转矩极限可调,甚至转矩的控制精度都能达到3%~5%左右。在工频状态下,电机只能通过检测电流值或热保护来进行控制,而无法像在变频控制一样设置精确的转矩值来动作。 (7) 受控的停止方式。如同可控的加速一样, 在变频调速中, 停止方式可以受控,并且有不同的停止方式可以选择(减速停车、自由停车、减速停车+直流制动),同样它能减少对机械部件和电机的冲击,从而使整个系统更加可靠,寿命也会相应增加。 (8) 节能离心风机或水泵采用变频器后都能大幅度地降低能耗,这在十几年的工程经验中已经得到体现。由于最终的能耗是与电机的转速成立方比,所以采用变频后投资回报就更快。

水泵选型的原则与步骤

水泵选型的原则与步骤 第一节选用原则 泵是一种面大量广的通用型机械设备,它广泛地应用于石油、化工、电力冶金、矿山、选船、轻工、农业、民用和国防各部门,在国民经济中占有重要的地位。据79 年统计,我国泵产量达125.6万台。泵的电能消耗占全国电能消耗的21%以上。因此大力降低泵有能源消耗,对节约能源具用十分重大的意义。 目前在国民经济各个领域中,由于选型不合理,许多的泵处于不合理运行状况,运行效率低,浪费了大量能源。有的泵由于选型不合理,根本不能使用,或者使用维修成本增加,经济效益低。由此可见,合理选泵对节约能源同样具有重要意义。 所谓合理选泵,就是要综合考虑泵机组和泵站的投资和运行费用等综合性的技术经济指标,使之符合经济、安全、适用的原则。具体来说,有以下几个方面: ●必须满足使用流量和扬程的要求,即要求泵的运行工况点(装置特性曲线与泵的性能曲线的交点)经常保持在高效区间运行,这样既省动力又不易损坏机件。 ●所选择的水泵既要体积小、重量轻、造价便宜,又要具有良好的特性和较高的效率。 ●具有良好的抗汽蚀性能,这样既能减小泵房的开挖深度,又不使水泵发生汽蚀,运行平稳、寿命长。 ●按所选水泵建泵站,工程投资少,运行费用低。 第二节选型步骤 一、列出基本数据: 1、介质的特性:介质名称、比重、粘度、腐蚀性、毒性等。 2、介质中所含固体的颗粒直径、含量多少。 3、介质温度:(℃) 4、所需要的流量 一般工业用泵在工艺流程中可以忽略管道系统中的泄漏量,但必须考虑工艺变化时对流量的影响。农业用泵如果是采用明渠输水,还必须考虑渗漏及蒸发量。 5、压力:吸水池压力,排水池压力,管道系统中的压力降(扬程损失)。 6、管道系统数据(管径、长度、管道附件种类及数目,吸水池至压水池的几何标高等)。 如果需要的话还应作出装置特性曲线。 在设计布置管道时,应注意如下事项: A、合理选择管道直径,管道直径大,在相同流量下、液流速度小,阻力损失小,但价格高,管道直径小,会导致阻力损失急剧增大,使所选泵的扬程增加,配带功率增加,成本和运行费用都增加。因此应从技术和经济的角度综合考虑。 B、排出管及其管接头应考虑所能承受的最大压力。 C、管道布置应尽可能布置成直管,尽量减小管道中的附件和尽量缩小管道长度,必须转弯的时候,弯头的弯曲半径应该是管道直径的3~5倍,角度尽可能大于90℃。 D、泵的排出侧必须装设阀门(球阀或截止阀等)和逆止阀。阀门用来调节泵的工况点,逆止阀在液体倒流时可防止泵反转,并使泵避免水锤的打击。(当液体倒流时,会产生巨大的反向压力,使泵损坏) 二、确定流量扬程 流量的确定 a、如果生产工艺中已给出最小、正常、最大流量,应按最大流量考虑。 b、如果生产工艺中只给出正常流量,应考虑留有一定的余量。 对于ns>100的大流量低扬程泵,流量余量取5%,对ns<50的小流量高扬程泵,流量余量取10%,50≤ns≤100的泵,流量余量也取5%,对质量低劣和运行条件恶劣的泵,流量余量应取10%。 c、如果基本数据只给重量流量,应换算成体积流量。

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

变频器选型设计规范

一、变频器一拖一常规选型原则如下: (1)DANFOSS按VLT6000系列进行选择,西门子按MM420,MM430进行选型,ABB按ACS510选型 (2)不管何种品牌的变频器,选型时必需结合电机的功率、额定电流和变频器所处的环境温度、海拔高度等参数进行,在变频器满足所允许的温度和海拔条件下,优先考虑电流参数,功率参数仅作为选型时的参考参数; (3)常规按变频器安装于室内且环境温度低于40度,海拔高度低于1000米来选型; (4)各种品牌的变频器无需考虑降容时所需满足的环境条件如下表: (5)变频器按输入电压为三相380V选型; (6)常规用变频器的选型按无滤波器选型,如合同或项目要求使用滤波器,则需参考另外的选型资料; (7)常规用变频器均需按带基本操作面板去选型;操作面板安装于变频器上,如合同或项目要求操作 面板外拉或对操作面板的功能要求超过基本操作面板的情况,需参考其它的资料选型; (8)常规用变频器按IP20防护等级选型; (9)常规用变频器按变频器开关频率为4KHZ选型 (10)常规用变频器按不配相关通讯选件选型 (11)常规用变频器均按变频器变转矩运转模式选型 (12)若环境温度超过40℃,海拔高度超过1000米、有通讯选件要求或输入电压超过460V的使用情况,需考虑其它的降容措施和选型方案,具体详见本选型规范的第四条;

类型设计规范(√) 工艺规范( ) 其它( ) 以下选型以东莞电机厂的4极电机为例,列出了不同功率的4极电机在满足上述条件下所对应的变频器型号;4极电机以外或其它品牌的电机视电机的实际额定电流,所选变频器型号及相关保护可能会有不同,必需遵守电机额定电流不大于变频器输出电流来选型变频器; 3

泵选型原则

泵选型原则 设计院在设计装置设备时,要确定泵的用途和性能并选择泵型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么? 一、泵选型原则  1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵。 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料。 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 金属耐磨材质硬镍1#对粗颗粒有较好的抗磨蚀性;硬镍4#抗磨蚀性与硬镍接近,但对大颗粒,高应力的冲击性渣浆有较好的抗磨蚀性,价格较硬镍1#高;铬27耐磨铸铁抗磨蚀性类似硬镍1#,就碱性混合液而言,具有较好的耐腐蚀性,价格高于硬镍1#,Cr15Mo3是目前世界上公认的优良抗磨蚀材质,宏观硬度高达布氏650~750,对粗颗粒强磨蚀浆体有较好的抗磨蚀性能,但价格较高,而且较脆。天然橡胶适合输送弱酸,弱碱性浆体,大磨粒粒度及其速度一定的范围内,天然橡胶要比其他金属或橡胶弹性材料耐用。氯丁橡胶不如天然橡胶好,但温度低于200摄氏度时,在油类浆体中具有极好的抗磨蚀性。 3、机械方面可靠性高、噪声低、振动小。  4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。  5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。因此除以下情况外,应尽可能选用离心泵:有计量要求时,选用计量泵。扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵。扬程很低,流量很大时,可选用轴流泵和混流泵。介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵) 介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、泵的选型依据

五分钟让你学会高压变频器选型

五分钟让你学会高压变频器选型 产品选型一直是大家感到棘手的一个问题,请大家花费5分钟吸收,教会你选择准确、经济、实用的高压变频器产品型号。 1.选择过高电压等级的弊端 选择过高的电压等级造成投资过高,回收期长。电压等级的提高,电机的绝缘必须提高,使电机价格增加。电压等级的提高,使变频器中电力半导体器件的串联数量加大,成本上升。 可见,对于200~2000kW的电机系统采用6kV、10kV电压等级是极不经济、很不合理的。 2.变频器容量与整流装置相数关系 变频器装置投入6kV电网必须符合国家有关谐波抑制的规定。这和电网容量和装置的额定功率有关。 短路容量在1000MVA以内,1000kW装置12相(变压器副边双绕组)即可,如果24相功率就可达2000kW,12相基本上消除了幅值较大的5次和7次谐波。 整流相数超过36相后,谐波电流幅值降低不显著,而制造成本过高。如果电网短路容量2000MVA,则装置容许容量更大。 3.把最高电压降到3kV以下可节约大量投资 从电力电子器件特性及安全系数考虑电压等级的必要性,受电力电子器件电压及电机允许的dv/dt限制,6kV变频器必须采用多电平或多器件串联,造成线路复杂,价格昂贵,可靠性差。对于6kV变频器若是用1700VIGBT,以美国罗宾康的PERFECTHARMONY系列6kV高压变频器为例,每相由5个额定电压为690V的功率单元串联,三相共60只器件。若是用3300V器件,也需3串共30只器件,数量巨大。另一方面

装置电流小,器件的电流能力得不到充分利用,以560kW为例,6kV电机电流仅60A左右,而1700V的IGBT电流已达2400A,3300V器件电流达1600A,有大器件不能用,偏要用大量小器件串联,极不合理。即使电机功率达2000kW,电流也只有140A左右,仍很小。 国外的中压变频器有多个电压等级:1.1kV,2.3kV,3kV,4.2kV,6kV,它们主要由电力电子器件的电压等级所确定。 输出同样功率的变频器,使用较高电压或较多单元串联所花的代价大于用较低电压,较少数量而电流较大单元的代价,也就是说在器件电流允许条件下应尽可能选用低的电压等级。 4.隔离变压器问题 为了隔离、改善输入电流及减小谐波,现在所有的中压“直接变频”器都不是真正的直接变频,其输入侧都装有输入变压器,这种配置短时间内不会改变。既然输入侧有变压器,变频器和电机的电压就没有必要和电网一样,非用10kV和6kV不可,功率2500kW以下电压可以不超过3kV,因此就有了变频器和电机的合理电压等级问题。 200kW~800kW以下的变频调速宜选用380V或660V电压等级。它线路简单,技术成熟,可靠性高,dv/dt小,价格便宜。仍以560kW电机为例,630kW660V的低压变频器约35万,而同容量6000V中压变频器约90万。实现的方法有低-低,低-高,高-低和高-低-高等几种形式。由于电机,变压器的价格远低于变频器,即使更换电机、变压器也合理。 5.原有6kV高压电机如何与3.5kV变频器电压配套 自建国以来传统的6kV高压电机是已投产的主要产品,为了推广3.5kV变频器不可能再花钱更换电机,作者提出一个简便方案,以供参考。 制造厂原有6kV电机一般均为星形接线,其相绕组承受实际电压为3468V,故只要将绕组改接成三角形其它不变。配3.5kV变频器就把变频器电压从6kV下降到3.5kV,可见4.5kV器件不串联就可承受3kV耐压。如果用1.7kV器件3串即可。制造成本将下降30%。而我国目前30MW 机组最大电机2500kW采用3.5kV电压完全合理。

易驱变频器基本功能

易驱变频器基本功能 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

易驱变频器基本功能1.面板启停,面板电位器调速 =0 面板电位器调速 =0 面板按键运行停止 2.面板启停,外部电位器调速(0--10V) =4 外部电位器AI1 =0 面板启停 3.面板启停,外部电位器调速(0--20毫安) =5 外部电位器AI2 =0 面板启停主板JP1短接片在上端4.两线制端子启停,面板电位器调速 =0 面板电位器调速 =1端子启停 5.两线制端子启停,外部电位器调速(0--10V) =4 0-10V AI1电位器调速 =1端子启停 6.两线制端子启停,外部电位器调速(4--20毫安) =5 外部电位器AI2 =1 面板启停主板JP1短接片在上端7.三线制端子运行,停止按钮以DI1为例 =1 端子控制 =15三线制运转控制 =2三线制模式1 8.端子UP/DOWN 跳接频率 =2 数字给定2 =12频率递增 =13频率递减 9.恒压供水参数 下限频率加速时间减速时间 =01 PID功能开启 压力反馈通道压力设定比例积分 D-09 PID设定值 D-10 PID反馈值 10.外部电位器调速,0--10V对应0---60HZ

=4 =60最大频率 =60 10V对应的最大频率 11.外部电位器调速,0--5V 对应0---50HZ =4 =5V 12.直流刹车功能 必须为减速停机停机直流制动频率停机直流制动电流 停机直流制动时间(为零直流制动不起作用) 13.增强启动扭矩 1)提高转矩提升值=1 =0 =根据现场逐渐增大 2)更改VF曲线 =1 =3 调整的值 3)使用开环矢量,设定电机相关参数,静态自学习 =0 ,, ,电机铭牌 =1 (必须设定面板启停控制) 按运行键,自学完成归零14.变频器外接频率表、转速表、电流表(0-10v)或(4--20毫安)或(0--20毫安) 主板JP2短接片上面短接AO1输出电压下面短接AO1输出电流信号 设定AO1输出功能设定AO1输出0--10v或者4--20毫安或0--20毫安

变频器容量的选择

1、变频器容量的选择 变频器容量的选择是一个重要且复杂的问题,要考虑变频器容量与电动机容量的匹配,轻易偏小会影响电动机有效力矩的输出,影响系统的正常运行,甚至损坏装置,而容量偏大则电流的谐波分量会增大,也增加了设备投资。 1。1变频器容量选择的步骤: 变频器容量选择可分三步: (1)了解负载性质和变化规律,计算出负载电流的大小或作出负载电流图I=f (t)。 (2)预选变频器容量及其他 (3)校验预选变频器。必要时进行过载能力和起动能力的校验。若都通过,则预选的变频器容量便选定了;否则从(2)开始重新进行,直到通过为止。 在满足生产机械要求的前提下,变频器容量越小越经济。 1。2基于不用电动机负载电流下变频器容量的选择 一般地说,变频器的容量有三种表示方法:①额定电流;②适配电动机的额定功率。③额定视在功率。不管是哪一种表示方法,归根到底还是对变频器额定电流的选择,应结合实际情况根据电动机有可能向变频器吸收的电流来决定。通常变频器的过载能力有两种:①1。2倍的额定电流,可持续1分钟;②1。5倍的额定电流,可持续1分钟;而且变频器的答应电流与过程时间呈反时限的关系。如1。2(1。5)倍的额定电流可持续1min;而1。8(2。0)倍的额定电流,可持续0。5min。这就意味着:①不论任何时候向电动机提供在1min(或0。5min)以上的电流都必须在某些范围内。②过载能力这个指标,对电动机来说,只有在起动(加速)过程中才有意义,在运行过程中,实际上等同于不答应过载。 下面讨论如何根据电动机负载电流的情况来选择变频器的容量。 1。2。1一台变频器只供一台电动使用,即一拖一。 在计算出负载电流后,还应考虑三个方面的因素:①用变频器供电时,电动机电流的脉动相对工频供电时要大些;②电动机的起动要求。即是由低频低压起动,还是额定电压、额定频率直接起动。③变频器使用说明书中的相关数据是用该公司的标准电机测试出来的。要注重按常规设计生产的电机在性能上可能有一定差异,故计算变频器的容量时要留适当余量。 (1)恒定负载连续运行时变频器容量的计算。

泵的分类及选型原则

泵的分类及选型原则、用途 第1节泵的分类 泵的种类繁多,结构各异,分类的方法也很多,常见的分类方法有: (1)按泵工作原理分类 1)、叶片泵:叶片泵是将泵中叶轮高速旋转的机械能转化为液体的动能和压能。由于叶轮中有弯曲且扭曲的叶片,故称叶片泵。根据叶轮结构对液体作用力的不同,叶片泵可分为: 1、离心泵:靠叶轮旋转形成的惯性离心力而抽送液体的泵。 2、轴流泵:靠叶轮旋转产生的轴向推力而抽送液体的泵。属于低扬程、大流量泵型,一般的 性能范围:扬程1~12m;流量0.3~65m3/s,比转数500~1600。 3、混流泵:叶轮旋转既产生惯性离心力又产生轴向推力而抽送液体的泵。 2)、容积泵:利用工作室容积周期性的变化来输送液体。有活塞泵、柱塞泵、隔膜泵、齿轮泵、螺杆泵等。 3)、其他类型泵:有射流泵、水锤泵、电磁泵等。 (2)离心泵分类离心泵按结构形式分类: 1、按主轴方位分类:a.卧式泵:主轴水平放置;b.斜式泵:主轴与水平面呈一定角度放置;c.立 式泵:主轴垂直于水平面放置。 2、安叶轮的吸入方式分类: A、单吸泵:液体从一侧流入叶轮,存在轴向力,单吸叶轮; B、双吸泵:液体从两侧流入叶轮,双吸叶轮。不存在轴向力,泵的流量几乎比单吸泵增加 一倍 3、按叶轮级数分类:a.单级泵:泵轴只装一个叶轮;b.多级泵:同一泵轴上装有两个或两个以上 叶轮,液体依次流过每级叶轮。液体依次流过每级叶轮,级数越多,扬程越高 4、按泵壳体剖分方式分类: A、分段式泵:壳体按与主轴垂直的平面剖分; B、节段式泵:在分段式多级泵中,每一段泵体都是分开的; C、中开式泵:壳体从通过泵轴轴心线的平面上分开,按剖分平面的方位又分为: 水平中开式泵:剖分面是水平面,为卧式泵; 垂直中开式泵:剖分面与水平面垂直,为立式泵; 斜中开式泵:剖分面与水平面成一定夹角,为斜式泵。 5、按泵体的形式分类: a.蜗壳泵; b.双蜗壳泵。 6、特殊结构形式的泵: A、潜水电泵:泵和电动机制成一体,能潜入水中工作,泵体一般为单级或多级立式离心泵和 轴流泵。 B、液下泵:属单级或多级立式离心泵,电动机、泵座位于液面上部,泵体淹没在液体中,电 动机通过长传动轴带动叶轮旋转。主要用于食品等行业。

变频器的功能和作用

变频器的功能和作用 变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。 电动机使用变频器的作用就是为了调速,并降低启动电流。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。 变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯.变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是: 、大功率并且为风机/泵类负载; 第二、装置本身具有节电功能(软件支持); 这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。如果不加前提条件的说变频器工频运行节能,就是夸大或是商业炒作。知道了原委,你会巧妙的利用他为你服务。一定要注意使用场合和使用条件才好正确应用,否则就是盲从、轻信而“受骗上当”。 功率因数补偿节能

变频器选型原则与方法

变频器选型原则与方法 关于通用变频器的选型,是一个很多人关心的话题,也有一些初学者对选型原则不清楚。在这里,我想先把通用变频器的选型方法跟大家分享一下。 1.最关键的选型因素:工作电流。 根据工作电流来选变频器,在整个选型流程当中,是最后一步了。之所以把它提到最前面来讲,是要强调一下。选型时,要根据电机的实际工作电流(不是铭牌电流),来选型变频器,而不是铭牌功率。 原则上要求,在长时工作时:变频器输出电流 > 电机实际工作电流 在这里,希望大家首先对电机和变频器的铭牌数据有一个深刻的理解。这里不多讲。 一般情况下,项目是先选电机,后选变频器。即变频器的选型都是针对即有电机进行的。电机的实际工作电流与实际工况有关。只有熟悉工况,估算出电机的工作电流随时间变化的关系,才能确定相应的变频器的型号。 (1)一般情况下,拖动恒转矩负载的电机,可以以额定电流为依据,选择变频器。比如10KW电机,20A额定电流。变频器样本上10KW的变频器,21A输出电流。可以选这个变频器。 (2)一般情况下,拖动风机泵类负载的电机,也可以以额定电流为依据,选择变频器。 (3)经常短时过载运行的电机,需要计算过载周期。要求变频器最大输出电流Imax 大于电机峰值电流,且变频器的I2t在自身允许范围内。很可能会放大一档或几档来选变频器。比如10KW电机,20A额定电流。间歇工作制,1秒内过载运行2倍(即电流为40A),之后停止运行29秒。这就需要根据变频器过载曲线来选型。可以画一下电机电流随时间变化的曲线出来,要求变频器的输出电流曲线能覆盖(超过)电机电流曲线即可。对于重载变频器的选型,往往有一些经验数据可以参考。比如同类项目。 这方面,西门子变频器做得比较好,过载能力强,一般允许1.6倍短时过载(详细数据,请参考样本)。 (4)电机大,而工作负载轻时,可以根据实际情况选小变频器。 2.变频器选型的其他因素 海拔。 环境温度。运输和存储温度。保护等级。 进线电压等级。进线电源频率。变频器输出频率范围。 变频器本身的效率。过载能力。冷却方式。 尺寸。结构。安装方法。 其他选件。 (1)海拔 海拔超过1000米以后,会造成电子器件性能下降,比如电容耐压能力下降,电流承受能力也会下降。所以在海拔超过1000米的地方使用变频器,注意它的降容系数。西门子变频器样本上,会给出一个降容曲线,随海拔升高,过压和过流能力都有所下降。 (2)环境温度 在运输过程中,变频器允许的温度范围大一些。比如MM4系列变频器允许的存储温

变频器在电梯中起着什么作用2008

变频器在电梯中起着什么作用2008-07-13 23:31 变频器的主要作用是通过改变交流电的频率,节能和调速,并实现自动控制和高精度控制。变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。可分为交——交变频器,交——直——交变频器。交——交变频器可直接把交流电变成频率和电压都可变的交流电;交——直——交变频器则是先把交流电经整流器先整流成直流电,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。PAM是英文Pulse Amplitude Modulation(脉冲幅度调制)缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。非同步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那麽磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用於风机、泵类节能型变频器。 频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。 采用变频器运转,随著电机的加速相应提高频率和电压,起动电流被限制在150%额定电流 以下(根据机种不同,为125%-200%)。用工频电源直接起动时,起动电流为6-7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额

泵的选型原则、依据和具体操作方式

泵的选型原则、依据和具体操作方式 设计院在设计装置设备时,要确定泵的用途和性能并选择崩型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么? 一、了解泵选型原则 1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 3、机械方面可靠性高、噪声低、振动小。 4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。 5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: a、有计量要求时,选用计量泵 b、扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵. c、扬程很低,流量很大时,可选用轴流泵和混流泵。 d、介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、.螺杆泵) e、介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 f、对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、知道泵选型的基本依据 泵选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等 1、流量是选泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。如设计院工艺设计中能算出泵正常、最小、最大三种流量。选择泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1.1倍作为最大流量。 2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%—10%余量后扬程来选型。 3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c密度d,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,有效气蚀余量计算和合适泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。 4、装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧最低液面,排出侧最高液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。 5、操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS(绝对)、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、泵的位置是固定的还是可移的。 三、选泵的具体操作

高压变频器的IGBT模块选择及计算分析

高压变频器的IGBT模块选择及计算分析 目前变频器应用中常用的几种模块,如IGCT、IEGT、GTO、IGBT。通过计算分析比较,得出IGBT是目前性价比较好的器件。 1、概述 由于我国元器件工业落后,还不能生产高压IGBT,西方国家仍对中国实行技术封锁。比如6500V IGBT仍不向中国出口,且不论其价格不菲。在直接串联技术选用什么样的功率开关器件对决定变频器的性价比至关重要。 目前可选的器件有好几种,如IGCT、IEGT、GTO、IGBT,而IGBT则又分为1700V,3300V,6500V。而各器件厂家都宣称自己的器件最好。到底选哪一种器件,其性价比较好,让我们进行一些具体比较,比较的依据为各厂家产品样本所列的技术参数。 2、几种常用的功率器件 变频器向前发展,一直是随着电力电子器件的发展而发展。只要电力电子器件有了新的飞跃,变频器就一定有个新飞跃,必定有新的变频器出现。在20世纪50年代出现了硅晶闸管(SCR);60年代出现可关断晶闸管(GTO晶闸管);70年代出现了高功率晶体管(GTR)和功率场效应管(MOSFET);80年代相继出现了绝缘栅双极功率晶体管(IGBT)以及门控晶闸管(IGCT)和电力加强注入型绝缘栅极晶体管(IEGT),90年代出现智能功率模块(IPM)。由于这些元器件的出现,相应出现了以这些逆变器件为主的变频器,反过来,变频器要求逆变器件有个理想的静态特性:在阻断状态时,能承受高电压;在导通状态时,能大电流通过和低的导通压降,损耗小,发热量小;在开关状态转换时,具有短的开、关时间,即开关频率高,而且能承受高的du/dt;全控功能,寿命长、结构紧凑、体积小等特点,当然还要求成本低。上述这些电力电子器件有些是满足部分要求,有些是逐步向这个方向发展,达到完善的要求,特别是中(高)压变频器更需要耐压高的元器件。 3、模块选择分析 3.1 相关定义及公式 我们以设计一台中压变频器为例,直流工作电压为3600V,。设电机功率因数为0.8,载波频率为3kHz,输出频率为50Hz,采用下列公式分别用不同功率开关器件构成变频器的一个开关组件的指标进行估算。以400A的峰值电流Icp计算,采用下列估算公式: 1、稳定功耗 2、开关功耗 3、总功耗

一台变频器拖动多台电机的事项你注意了吗精选文档

一台变频器拖动多台电机的事项你注意了吗精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

一台变频器拖动多台电机的事项你注意了吗?【工控老鬼分享】 变频器可以实现一拖二甚至一拖多,但需要遵循一些原则,本文作下简要分析: 1、设备选型 A. 变频器选型 在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。 如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。 如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变

频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。 B. 交流接触器选型 对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。 C. 热继电器或电动机保护器选型 对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以 内。

泵选型条件基础知识

1、泵选型条件 1.输送介质的物理化学性能 输送介质的物理化学性能直接影响泵的性能、材料和结构,是选型时需要考虑的重要因素。{介质名称、介质特性(腐蚀性、磨蚀性、毒性等)、固体颗粒含量及颗粒大小、密度、黏度、汽化压力、气体含量、是否结晶等} 2.工艺参数(选型重要依据) (1)流量Q:工艺装置生产中,要求泵输送的介质量,工艺人员一般应给出正常、最小和最大流量。 泵数据表是上往往只给出泵的正常和额定流量。选泵时,要求额定流量不小于装置的最大流量或取正常流量的1.1~1.15倍。 (2)扬程H:工艺装置所需的扬程值,也称计算扬程。一般要求泵的额定扬程为装置所需扬程的1.05 ~1.1倍。 (3)进口压力Ps和出口压力Pd:进、指泵进出接管法兰处的压力,进出口压力的大小影响到壳体的耐压和轴封的要求。 (4)温度T:泵进口介质温度,一般应给出工艺过程中泵进口介质的正常、最低和最高温度。 (5)装置汽蚀余量NPSHa:有效汽蚀余量

(6)操作状态:操作状态分连续操作和间歇操作两种。 2、泵的台数和功率 —般水泵大中型泵站台数以4~8台为宜。中小型泵站以3~6台为宜,小型泵站以2~3台为宜, 对正常运转的泵,一般只用一台,因为一台大泵与并联工作的两台小泵相当,(指扬程、流量相同),大泵效率高于小泵,故从节能角度讲宁可选一台大泵,而不用两台小泵,但遇有下列情况时,可考虑两台泵并联工作: *流量很大,一台泵达不到此流量。 *对于需要有50%的备用率大型泵,可改两台较小的泵工作,两台备用(共三台)*对某些大型泵,可选用70%流量要求的泵并联操作,不用备用泵,在一台泵检修时,另一抬泵仍然承担生产上70%的输送。 *对需24小时连续不停运转的泵,应备用三台泵,运转,一台备用,一台维修。

高压变频器的工作原理及功能

是指输入电压在3KV以上的大功率,主要电压等级有3000V、3300V、6000V、6600V、10000V等电压等级的高压大功率变频器,高压变频器主要以进口为主,我国已有高压变频器生产企业,以后我们就可以用国产的高压变频器了。对大企业的高压节能也就方便多了。高压变频器由高-低-高;低-高;高-高之分。高-低-高方式高压变频器是把高压用降压后,用变频器进行控制,再用升压变压器把电压升到我们使用的电压,供给高压电机使用。一般高低高方式都用在小功率的高压电机做变频节能用。 低-高方式高压变频器是用低压变频器控制后,直接用升压变压器把电压升到电机使用电压。低高方式也是用在小功率高压电机做变频节能用。高-高方式高压变频器是直接用变频器多个模块串联后,直接使用高压电源,直接输出高压,供高压电机使用。高高方式主要用在大功率高压电机做变频节能用。高压变频器主要有日本富士高压变频器、日本三菱高压变频器、日本东芝高压变频器、瑞典ABB高压变频器、德国西门子高压变频器、美国罗宾康高压变频器、合亿高压变频器、利德华福高压变频器等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/766656705.html,/

[全]变频器的基本用途及功能

变频器的基本用途及功能 变频器是将工频交流电源变换为频率和电压可调的交流电源,实现交流电动机调速的电气装置,已广泛应用于工农业生产的各个领域。因此,变频器的应用知识已是机电工程技术人员必备的技能之一。 变频器,采用高性能的U/f控制和矢量控制技术,提供低速高转矩输出,具有良好的动态特性、超强的过载能力,创新的内部互联功能更具有无可比拟的灵活性。变频器可工作于缺省的工厂设置状态下,是为数量众多的简单电动机变速驱动系统供电的理想变频驱动装置。用户可以根据需要设置相关参数,充分利用变频器所具有的全面、完善的控制功能,为需要多种功能的复杂电动机控制系统服务。 1.1 、变频器的概念 变频器是将工频交流电源变换为频率和电压可调的三相交流电源的电气装置,用以驱动交流异步电动机实现变频调速,如图1所示。

图1 根据交流异步电动机的转速表达式: 图2 1.2、电动机变频传动 (1)利用变频器可实现交流电动机调速。由于变频器可以看作一个频率可调的交流电源,对于现有恒速运转的电动机,只要在电源和电动机之间接入变频器和相应设备,就可对电动机实现调速控制,而无需对电动机和系统进行设备改造。 (2)具有较宽的调速范围和较高的调速精度。通用变频器的调速范围可以达到1:10以上,而高性能的矢量型变频器的调速范围可达1:1000。而且采用矢量控制方式的变频器对异步电动机进行调速控制时,还可控制电动机的输出转矩。

(3)可减小电动机的启动电流。电动机工频电源直接启动时,启动电流是额定电流的4到7倍,这个电流将大大增加电动机绕组的电应力并产生热量,从而降低电动机的使用寿命。而变频器调速时则可从零转速零电压启动,按斜坡函数的规律进行加速,从而限制了电动机的启动电流。 (4)可实现高转速、高电压、大电流控制。目前高频变频器的输出频率可以达到3000KHz,当利用这种高速变频器对2极异步电动机进行驱动时,可以得到180000转/分的高转速。随着变频技术的不断发展,高频变频器的输出频率也在不断提高,高速驱动也是变频器调速控制的一个重要优势。 1.3、节能 风机、泵类负载采用变频调速后,节电率可达到10%--30%,最高高达60%。这是因为风机、泵类负载的实际消耗功率近似与转速的3次方成比例。以节能为目的的变频器的应用,在最近几十年来发展非常迅速,据有关方面统计,我国已经进行变频改造的风机、泵类负裁的容量只占总容量的5%左右,还有很大的改造空间。由于风机、泵类负裁在采用变频调速后可以节省大量的电能,所需的投资在较短的时间内就可以收回,因此在这一领域的应用最广泛。目前,应用较成功的有恒压供水、各类风机、中央空调和液压泵的变频调速。 1.4、精度控制

相关文档
相关文档 最新文档