文档库 最新最全的文档下载
当前位置:文档库 › 紫外吸收光谱的基本原理

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理
紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点

紫外吸收光谱的基本原理

吸收光谱的产生

许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱.

紫外光谱的表示方法

通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。

吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度;

透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T)

根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。

在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱.

通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。

吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度;

透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T)

根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。

在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、λmax和εmax与吸光分子的结构有密切的关系。各种有机化合形状、λmax 和εmax与吸光分子的结构有密切的关系。各种有机化合物的λmax和εmax都有定值,同类化合物的εmax比较接近,处于一个范围。

紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

振动和转动能级上;而且电子跃迁后的分子也不全处于激发态的最低振动和转动能级,而是可达到较高的振动和转动能级,因此电子能级跃迁所产生的吸收线由于附加上振动能级和转动能级的跃迁而变成宽的吸收带。此外,进行紫外光谱测定时,大多数采用液体或溶液试样。液体中较强的分子间作用力,或溶液中的溶剂化作用都导致振动、转动精细结构的消失。但是在一定的条件下,如非极性溶剂的稀溶液或气体状态,仍可观察到紫外吸收光谱的振动及转动精细结构。

分子轨道基本原理

根据分子轨道理论,当2个原子形成化学键时,原子轨道将进行线性组合形成分子轨道。分子轨道具有分子的整体性,它将2个原子作为整体联系在一起,形成的分子轨道数等于所组合的原子轨道数。例如两个外层只有1个S电子的原子结合成分子时,两个原子轨道可以线性组合形成两个分子轨道,其中一个分子轨道的能量比相应的原子轨道能量低,称为成键分子轨道;另一个分子轨道的能量比相应的原子轨道能量高,称为反键分子轨道(反键轨道常用*标出)。

分子轨道中最常见的有σ轨道和π轨道两类。σ轨道是原子外层的S轨道与S轨道、或Px轨道与Px轨道(沿χ轴靠近时)线性组合形成的分子轨道。成键σ分子轨道的电子云分呈圆柱型对称,电子云密集于两原子核之间;而反键σ分子轨道的电子云在原子核之间的分布比较稀疏,处于成键σ轨道上的电子称为成键σ电子,处于反键σ轨道上的电子称为反键σ电子。π轨道是原子最外层Py轨道或Pz轨道(沿χ轴靠近时)线性组合形成的分子轨道。成键π分子轨道的电子云分不呈圆柱型对称,但有一对对称,在此平面上电子云密度等于零,而对称面的上下部空间则是电子云分布的主要区域。反键π分子轨道的电子云也有一对称面,但2个原子的电子云互相分离,处于成键π轨道的电子称为成键π电子,处于反键π轨道的电子称为反键π电子。

含有氧、氮、硫等原子的有机化合物分子中,还存在未参与成键的电子对,常称为孤对电子。孤对电子是非键电子,也称为n电子。例如甲醇分子中的氧原子,其外层有6个电子,其中2个电子分别与碳原子和氢原子形成2个σ键其余4个电子并未参与成键,仍处于原子轨道上,称为n电子。而n电子的原子轨道称为n轨道。

紫外吸收光谱的应用

1.定性分析

紫外吸收光谱在化合物定性鉴定方面的应用主要有以下几方面。

(1) 把样品光谱图与被测物质的标准光谱图进行比较,判别是否为同一化合物。

(2) 确定混合物中某一特定的组分是否存在或鉴定一个纯样品中是否含有其他杂质。

(3) 推断化合物的骨架结构。

(4) 判别顺反异构体、互变异构体.。

2.定量分析

与定性鉴定相比,紫外光谱法在定量分析领域有着更为重要和广泛的用途,其定量分析的依据是朗伯-比尔定律。含芳环的化合物以及带有共轭双键的化合物在紫外可见区有较强吸收,并且吸光度与化合物的浓度成正比,因而可用来进行定量分析。对于在紫外或可见区本身无吸收的化合物,可采用适当的化学反应,使其转化为在紫外或可见区有吸收的化合物进行测定。紫外光谱分析对纯样品或含有其他不影响被测物分析的成分都有效,常用的分析测定方

法有工作曲线法、标准对照法等。

紫外吸收光谱的特点

1.灵敏度高

紫外一可见吸收光谱法是测量物质微量组分(1%~O.001%)的常用方法。其测定下限可达10-6mol/L的痕量组分。

2.准确度高

可见吸收光谱法的相对误差一般为2%~5%,采用精密的分光光度计测量,其相对误差可低于l%。用于常量组分的分析,紫外一可见吸收光谱法的准确性不及重量法和滴定分析法,但对于微量组分的分析,则完全可以满足要求。

3.适用范围

几乎所有的无机离子和许多有机物都可以直接或间接地采用紫外一可见吸收光谱法进行分析测定。

4.操作简便,快捷【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱 紫外光谱的表示方法 通常以波长入为横轴、吸光度 A (百分透光率T% )为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(l0/I1), 10 入射光强度, 11透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0 透光率T与吸光度A 的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A= b e &为摩尔吸光系数,它是浓度为 1mol/L的溶液在1em的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;e为物质的浓度,单位为mol/L ; b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长加ax和该波长下的摩尔吸收系数 max来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具 有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的 分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱?通常以波长入为横轴、吸光度 A (百分透光率T% )为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0 入射光强度, I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0 透光率T与吸光度A 的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度e成正比A= b e &为摩尔吸光系数,它是浓度为 1mol/L的溶液在1em的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;e为物质的浓度,单位为mol/L ;b为液层厚度,单位为em。 在紫外吸收光谱中常以吸收带最大吸收处波长加ax和该波长下的摩尔吸收系数 max来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、?max和max与吸光分子的结构有密切的关系。各种有机化合形状、?max 和max与吸光分子的结构有密切的关系。各种有机化合物的?max和max都有定值, 同类化合物的e max比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子 中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

GPS测量基本原理

1> 概述 测量学中有测距交会确定点位的方法。与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。 就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。 近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。如此,可以确定三可以上卫星的空间位置。如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。 将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。这便是GPS卫星定位的基本原理。 GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点(接收机天线中心)P至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间位置坐标,据此利用距离交会法解算出测站P的位置坐标,如下图所示,设在时刻t i在在测站P用GPS接收机同时测出P点至三颗GPS卫星的距离ρ1,ρ2,ρ3,通过GPS电文解释出该时刻三颗GPS卫星的三维坐标分别为(Xi,Yi,Zi),j=1,2,3。用距离交会的方法求解出P点的三维坐标(X,Y,Z)的观测方程为

玻璃基础理论

第一篇玻璃基础理论 第1章 玻璃结构与组成 玻璃的物理化学性质不仅决定于其化学组成,而且与其结构有着密切的关系。只有认识玻璃的结构,掌握玻璃组成、结构、性能三者之间的内在联系,才有可能通过改变化学组成、热历史,或利用某些物理的、化学的处理方法,制取符合预定物理化学性能的玻璃材料或制品。 1.1 玻璃的定义与通性 1.1.1 玻璃的定义 玻璃是非晶态固体的一个分支,按照《辞海》的定义,玻璃由熔体过冷所得,并因粘度逐渐增大而具有固体机械性质的无定形物体。习惯上常称之为“过冷的液体”。按照《硅酸盐词典》的定义,玻璃是由熔融物而得的非晶态固体。因此,玻璃的定义也可理解为:玻璃是熔融、冷却、固化的非结晶(在特定条件下也可能成为晶态)的无机物,是过冷的液体。 随着科学技术的进步以及人们认识水平的提高,人们对玻璃(态)物质的结构、性质认识有了更进一步的理解。形成玻璃(态)物质的范围扩大,玻璃的定义也进行了扩充,分为广义玻璃和狭义玻璃。广义的玻璃包括单质玻璃、有机玻璃和无机玻璃。狭义的玻璃仅指无机玻璃。现较公认的广义玻璃的定义为: 结构上完全表现为长程无序的、性能上具有玻璃转变特性的非晶态固体。也可理解为:无论是有机、无机、金属,还是何种制备技术,只要具备上述特性的都可成为玻璃。 1.1.2 玻璃的通性 在自然界中固体物质存在着晶态和非晶态两种状态。所谓非晶态是以不同方法获得的以结构无序为主要特征的固体物质状态。玻璃态是非晶态固体的一种,玻璃中的原子不像晶体那样在空间作远程有序排列,而近似于液体,具有近程有序排列。玻璃像固体一样能保持一定的外形,而不像液体那样在自重作用下流动。玻璃态物质具有下列主要特征: (1)各向同性 玻璃态物质的质点排列是无规则的,是统计均匀的,所以,玻璃中不存在内应力时,其物理化学性质(如硬度、弹性模量、热膨胀系数、热传导系数、折射率、导电率等)在各方向上都是相同的。但当玻璃中存在应力时,结构均匀性就遭到破坏,玻璃就会显示各向异性,如出现明显的光程差等。 (2)介稳性(亚稳性) 所谓玻璃处于介稳状态,是因为玻璃是由熔体急剧冷却而得。由于在冷却过程中粘度急剧增大,质点来不及作形成晶体的有规则排列,系统的内能不是处于最低值,而是处于介稳状态(热力学因素);尽管玻璃处于较高能态,由于常温下粘度很大,转变成晶体的的速率极小,因而实际上不能自发地转化为晶体( 动力学因素)。只有在一定的外界条件下,即必须克服物质由玻璃态转化为晶态的势垒,才能使玻璃析晶。因此,从热力学的观点看,玻璃态是不稳定的,但从动力学的观点看,它又是稳定的。因为它虽具有自发放热转化为内能较低的晶体的倾向,但在常温下,转变为晶态的几率很小,所以说玻璃处于介稳状态。

紫外玻璃和紫外线玻璃的区别与判断.

紫外玻璃、透紫外玻璃加工、紫外线玻璃生产 1、紫外玻璃基本认识 长波UV-A,波长介于320nm-400nm之间,具有较强的穿透能力,能穿透玻璃,这一波段的紫外线能量与多数化学键能相当,容易引光化学反应,通常用于光固化的即是UV-A。 中波UV-B,波长介于280nm-320nm之间,穿透力较弱,玻璃对它有强烈的吸收。太阳光中含有丰富的UV-A和UV-B。 短波UV-C,波长介于200nm-280nm,臭氧层对它有强烈的吸收,所以太阳光中UV-C在到地面之前就被臭氧层吸收了,UV-C对生物体就很强的破坏作用,可杀死细菌、病毒,因此常用于消毒。 紫外玻璃、透紫外玻璃、透紫外线玻璃主要标的见以下表格:紫外玻璃、透紫外玻璃、透紫外线玻璃 产品名称紫外玻璃、透紫外玻璃、紫外线玻璃、透紫外线玻璃、UV玻璃 产品颜色无色透明玻璃、黑色非透明玻璃 常规厚度2毫米,3毫米,4毫米,5毫米 加工工艺钢化热处理、非钢化热处理、半钢化热处理 应用领域透紫外玻璃,主要用于地质勘测、无损探伤、紫外杀菌、紫外杀毒、紫外烘干等领域,以及电力、化工、冶金、五金机械制造等领域。 2、紫外玻璃分类 透紫外玻璃分为透紫外黑色玻璃和透紫外透明玻璃两种。

① 透紫外线黑色玻璃:具有良好的透紫外线,产品分为长波透紫外线玻璃、短波透紫外线玻璃,透射波长分别是:254nm\310nm\365nm,该类玻璃能同时滤掉可见光。 ② 透紫外线透明玻璃:是一种无色截止型玻璃,波长范围220NM-380NM透过率大于或等于89.5%,同时推出一款远紫外玻璃,在紫外和可见光谱范围内透明,在185-260nm波段范围内无吸收带,在2600-2800nm 波段范围内有强吸收带,非发光,光辐射稳定。 (185nm-260nm紫外玻璃,365nm\310nm\254nm紫外玻璃)

紫外吸收光谱的应用

紫外吸收光谱的应用

第九章紫外吸收光谱分析ultraviolet spectro-photometry, UV 第三节紫外吸收光谱的应用applications of UV 一、定性、定量分析qualitative and quantitative analysis 1. 定性分析 εmax:化合物特性参数,可作为定性依据; 有机化合物紫外吸收光谱:反映结构中生色团和助色团的特性,不完全反映分子特性; 计算吸收峰波长,确定共扼体系等 甲苯与乙苯:谱图基本相同; 结构确定的辅助工具; εmax ,λmax都相同,可能是一个化合物; 标准谱图库:46000种化合物紫外光谱的标准谱图 ?The sadtler standard spectra ,Ultraviolet?2. 定量分析 依据:朗伯-比耳定律 吸光度:A= ε b c 透光度:-lg T = ε b c 灵敏度高:

εmax:104~105 L· mol-1 · cm -1;(比红外大) 测量误差与吸光度读数有关: A=0.434,读数相对误差最小; 二、有机化合物结构辅助解析structure determination of organic compounds 1. 可获得的结构信息 (1)200-400nm 无吸收峰。饱和化合物,单烯。(2)270-350 nm有吸收峰(ε=10-100)醛酮n →π* 跃迁产生的R带。 (3)250-300 nm 有中等强度的吸收峰(ε=200-2000),芳环的特征吸收(具有精细解构的B带)。 (4)200-250 nm有强吸收峰(ε≥104),表明含有一个共轭体系(K)带。共轭二烯:K带(~230 nm);?β,α不饱和醛酮:K带~230 nm ,R带~310-330 nm 260nm,300 nm,330 nm有强吸收峰,3,4,5个双键的共轭体系。 2.光谱解析注意事项 (1) 确认λmax,并算出㏒ε,初步估计属于何种吸收带;

附红外吸收光谱(IR)的基本原理及应用

附红外吸收光谱(IR)的基本原理及应用 一、红外吸收光谱的历史 太阳光透过三棱镜时,能够分解成红、橙、黄、绿、蓝、紫的光谱带;1800年,发现在红光的外面,温度会升高。这样就发现了具有热效应的红外线。红外线和可见光一样,具有反射、色散、衍射、干涉、偏振等性质;它的传播速度和可见光一样,只是波长不同,是电磁波总谱中的一部分。(图一)、波长范围在0.7微米到大约1000微米左右。红外区又可以进一步划分为近红外区<0.7到2微米,基频红外区(也称指纹区,2至25微米)和远红外区(25微米至1000微米)三个部分。 1881年以后,人们发现了物质对不同波长的红外线具有不同程度的吸收,二十世纪初,测量了各种无机物和有机物对红外辐射的吸收情况,并提出了物质吸收的辐射波长与化学结构的关系,逐渐积累了大量的资料;与此同时,分子的振动――转动光谱的研究逐步深入,确立了物质分子对红外光吸收的基本理论,为红外光谱学奠定了基础。1940年以后,红外光谱成为化学和物理研究的重要工具。今年来,干涉仪、计算机和激光光源和红外光谱相结合,诞生了计算机-红外分光光度计、傅立叶红外光谱仪和激光红外光谱仪,开创了崭新的红外光谱领域,促进了红外理论的发展和红外光谱的应用。 二、红外吸收的本质 物质处于不停的运动状态之中,分子经光照射后,就吸收了光能,运动状态从基态跃迁到高能态的激发态。分子的运动能量是量子化的,它不能占有任意的能量,被分子吸收的光子,其能量等于分子动能的两种能量级之差,否则不能被吸收。 分子所吸收的能量可由下式表示: E=hυ=hc/λ 式中,E为光子的能量,h为普朗克常数,υ为光子的频率,c为光速,λ为波长。由此可见,光子的能量与频率成正比,与波长成反比。 分子吸收光子以后,依光子能量的大小,可以引起转动、振动和电子能阶的跃迁,红外光谱就是由于分子的振动和转动引起的,又称振-转光谱。

pH测量的基本原理

pH测量的基本原理: 用于确定化学反应过程的最熟悉最古老的零电流测量方法恐怕就是PH测量。 什么是pH,对于PH测量应该知道些什么? 一般来讲,pH测量就是用来确定某种溶液的酸碱度。 在水中加入酸,水的酸度便会提高,而PH值降低。在水中加入碱,水的碱度便会提高,而PH值是用来表示酸碱度的单位。 当我们讲牛奶是“凉”的或酸是“弱”的时,并不是确定表示事物的状况,这是因为我们没有说出测量单位和测量值。而当我们讲牛奶的温度是10℃,则是一个确切的概念。同样的当我们讲弱酸的pH值为5.2,这也是一个确切的概念。 世界上有各种各样具有不同酸碱强度的酸和碱。例如:盐酸就是一种很强的酸,而硼酸则很弱(可以用来冲洗眼睛和伤口)。 决定酸的强弱程度,主要看氢离子在溶液中离解的多少。强酸中氢离子离解的很广泛,弱酸中则离解的很少。盐酸之所以成为强酸,是因为氯使氢离子几乎完全离解了出来。硼酸之所以是弱酸,是因为只有很少氢离子离解出来。即使化学纯水也有微量被离解:严格地讲,只有在与水分子水合作以前,氢核不是以自由态存在。 H2O+H2O=H3O-+OH- 由于水合氢离子(H3O)的浓度可与氢离子(H)浓度等同看待,上式可以简化成下述常用的形式: H2O=H++OH- 此处正的氢离子人们在化学中表示为“H+离子”或“氢核”。水合氢核表示为“水合氢离子”。负的氢氧根离子称为“氢氧化物离子”。利用质量作用定律,对于纯水的离解可以找到一平衡常数加以表示: K= H3O+·OH- H2O 由于水只有极少量被离解,因此水的克分子浓度实际上为一常数,并且有平衡常数K可求出水的离子积KW。 KW=K×H2O KW = H3O+·OH-=10-7·10-7=10mol/l(25℃) 也就是说,对于一升纯水在25℃时存在10-7摩尔H3O-离子和10-7摩尔OH-离子。为了免于用此克分子浓度负冥指数进行运算,生物学家泽伦森(Soernsen)在1909年建议将此不便使用的数值用对数代替,并定义为“ pH值”。数学上定义pH值为氢离子浓度的常用对数的负值。即: pH=-logH+ 严格地讲,此公式忽略了氢离子(H+)和氢氧根离子(OH-)的交互作用,因为在离子

玻璃的基本原理

玻璃的基本知识

玻璃结构理论: 晶子学说(1930年Randell) 近程有序(微晶尺寸1.0‐1.5nm) 晶子学说的价值在于它第一次指 出玻璃中存在微不均匀物,及玻 璃中存在一定的有序区域,这对 于玻璃分相、晶化等本质的理解 有重要价值。一、玻璃的结构 [SiO 4 ]石英晶体结构以及石英玻璃、钠硅 酸盐玻璃晶子结构示意图 2 玻璃结构是指玻璃中质点在空间的几何位置、有序程度以及他们之间的结合状态。

1932年W.H.Zachariasen借助V.M. Goldschmidt的离子晶界化学原则,利用晶体结构来阐述玻璃结构,即查氏把离子结晶化学原则和晶体结构知识推演到玻璃结构,描述了离子-共价键的化合物,如熔融石英、硅酸盐玻璃、硼酸盐玻璃。氧化物形成玻璃的四个条件: ?一个氧离子不能和两个以上的阳离子结合——氧的配位数不大于2; ?阳离子周围的阳离子熟不应多过3或4——阳离子的配位数为3或4; ?网络中氧配位多面体之间只能共顶角,不能共棱、共面。 ?如果网络是三维的,则网络中每一个氧配位多面体必须至少有三个氧离子与相邻多面体相连,以形成三维空间发展的无规则网络结构。 根据上述条件,B2O3、SiO2、P2O5是很好的玻璃形成体。不符合上述条件的氧化物则属于网络改良体,如碱金属、碱土金属氧化物。一些氧化物可以部分参与网络结构,称为网络中间体,如BeO、Al2O3、ZrO2 3

无规则网络学说强调了玻璃中多面体之间互相排列的连续性、均匀性和无序性,而晶子学说则强调了不连续性、有序性和微不均匀性。 因此,玻璃的结构是连续性、不连续性,均匀性、微不均匀性,无序性、有序性几对矛盾的对立统一体, 条件变化,矛盾双方可能相互转化。Figure 1. (a) Crystalline material (regular) and (b) glassy material (irregular).无规则网络学说 的玻璃结构模型

吸收光谱测量基本原理

吸收光谱简介 纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。吸收光谱 处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。 吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。这个光谱背景是明亮的连续光谱。而在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结出一条规律,即每一种元素的吸收光谱里暗线的位置跟他们明线光谱的位置是互相重合的。也就是每种元素所发射的光的频率跟它所吸收的光频率是相同的。 太阳光谱是一种吸收光谱,是因为太阳发出的光穿过温度比太阳本身低得多的太阳大气层,而在这大气层里存在着从太阳里蒸发出来的许多元素的气体,太阳光穿过它们的时候跟这些元素的标识谱线相同的光都被这些气体吸收掉了。因此我们看到的太阳光谱是在连续光谱的背景上分布着许多条暗线。这些暗线是德国物理学家夫琅和费首先发现的称为夫琅和费线。 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少 光谱分析 光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分

GPS测量基本原理

G P S测量基本原理 Prepared on 24 November 2020

1> 概述 测量学中有测距交会确定点位的方法。与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。 就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。 近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。如此,可以确定三可以上卫星的空间位置。如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。 将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。这便是GPS卫星定位的基本原理。 GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点

紫外线杀菌原理

一紫外线杀菌原理 紫外线是一种肉眼看不见的光波,存在于光谱紫射线端的外侧,故称紫外线。紫外线系来自太阳辐射电磁波之一,通常按照波长把紫外线分为四类如下是物质运行的一种特殊形式,是一粒粒不连接的粒子流。每一粒波长253.7nm的紫外线光子具有4.9eV的能量。当紫外线照射到微生物时,便发生能量的传递和积累,积累结果造成微生物的灭活,从而达到消毒的目的。当细菌、病毒吸收超过3600~65000uW/c㎡剂量时,对细菌、病毒的去氧核醣核酸(DNA)及核醣核酸(RNA)具有强大破坏力,能使细菌、病毒丧失生存力及繁殖力进而消灭细菌、病毒,达到消毒灭菌成效。紫外线一方面可使核酸突变、阻碍其复制、转录封锁及蛋白质的合成;另一方面,产生自由基可引起光电离,从而导致细胞的死亡。 紫外线杀菌器杀菌原理是利用紫外线灯管辐照强度,即紫外线杀菌灯所发出之辐照强度,与被照消毒物的距离成反比。当辐照强度一定时,被照消毒物停留时间愈久,离杀菌灯管愈近,其杀菌效果愈好,反之愈差。 编辑本段二紫外线杀菌器分类 根据灯管不同有热阴级低压汞蒸汽放电灯,阴极低压汞蒸汽放电灯。 热阴级低压汞蒸汽放电灯从外型可分为直型,H型,U型管等。 为了不同需要,又可分为低(无臭氧),臭氧,高臭氧等。 编辑本段三杀菌效率 紫外消毒技术具有其它技术无可比拟的杀菌效率。杀菌效率可达99%-99.9%。下表列出紫外技术对常见几种细菌病毒的杀菌时间一般只需1秒以内。 而传统氯气、臭氧等化学消毒方法要达到紫外C的杀菌效果一般需要20分钟至1小时的时间。 表1 紫外C技术对常见细菌病毒的杀菌效率(紫外辐射强度: 30,000μW/cm2)

角度测量的原理及其方法

角度测量的原理及其方法 角度测量原理 一、水平角测量原理 地面上两条直线之间的夹角在水平面上的投影称为水平角。如图 3-1所示,A、B、O为地面上的任意点,通OA和OB直线各作一垂 直面,并把OA和OB分别投影到水平投影面上,其投影线Oa和Ob 的夹角∠aOb,就是∠AOB的水平角β。 如果在角顶O上安置一个带有水平刻度盘的测角仪器,其度盘 中心O′在通过测站O点的铅垂线上,设OA和OB两条方向线在水 平刻度盘上的投影读数为a1和b1,则水平角β为: β= b1 - a1(3-1) 二、竖直角测量原理 在同一竖直面内视线和水平线之间的夹角称为竖直角或称垂直 角。如图3-2所示,视线在水平线之上称为仰角,符号为正;视线在 水平线之下称为俯角,符号为负。

图3-1 水平角测量原理图图3-2 竖直角测 量原理图 如果在测站点O上安置一个带有竖直刻度盘的测角仪器,其竖盘中心通过水平视线,设照准目标点A时视线的读数为n,水平视线的读数为m,则竖直角α为: α= n - m (3-2) 光学经纬仪 一、DJ6级光学经纬仪的构造 它主要由照准部(包括望远镜、竖直度盘、水准器、读数设备)、水平度盘、基座三部分组成。现将各组成部分分别介绍如下:1.望远镜 望远镜的构造和水准仪望远镜构造基本相同,是用来照准远方目标。它和横轴固连在一起放在支架上,并要求望远镜视准轴垂直于横轴,当横轴水平时,望远镜绕横轴旋转的视准面是一个铅垂面。为了控制望远镜的俯仰程度,在照准部外壳上还设置有一套望远镜制动和

微动螺旋。在照准部外壳上还设置有一套水平制动和微动螺旋,以控制水平方向的转动。当拧紧望远镜或照准部的制动螺旋后,转动微动螺旋,望远镜或照准部才能作微小的转动。 2.水平度盘 水平度盘是用光学玻璃制成圆盘,在盘上按顺时针方向从0°到360°刻有等角度的分划线。相邻两刻划线的格值有1°或30′两种。度盘固定在轴套上,轴套套在轴座上。水平度盘和照准部两者之间的转动关系,由离合器扳手或度盘变换手轮控制。 3.读数设备 我国制造的DJ6型光学经纬仪采用分微尺读数设备,它把度盘和分微尺的影像,通过一系列透镜的放大和棱镜的折射,反映到读数显微镜内进行读数。在读数显微镜内就能看到水平度盘和分微尺影像,如图3-4所示。度盘上两分划线所对的圆心角,称为度盘分划值。 在读数显微镜内所见到的长刻划线和大号数字是度盘分划线及其注记,短刻划线和小号数字是分微尺的分划线及其注记。分微尺的长度等于度盘1°的分划长度,分微尺分成6大格,每大格又分成10,每小格格值为1′,可估读到0.1′。分微尺的0°分划线是其指标线,它所指度盘上的位置与度盘分划线所截的分微尺长度就是分微尺读数值。为了直接读出小数值,使分微尺注数增大方向与度盘注数方向相反。读数时,以在分微尺上的度盘分划线为准读取度数,而后读取该度盘分划线与分微尺指标线之间的分微尺读数的分数,并估读

透紫外石英玻璃

紫外线(简称UV)是属于电磁波辐射的一段,电磁波谱包括无线电波、红处线、可见光、紫外线、X射线、γ射线,波长范围从10-14米至106米,如图3所示。紫外线只其中很窄的一段,波长范围为10~400nm(nm:纳米,1nm=10-9m)可划分为长波紫外线(UVA)、中波紫外(UVB)、短波紫外线(UVC)、超短波紫外线。波长越短,能量越强,穿透能力越弱。 长波UVA,波长介于320~400nm,具有较强的穿透能力,能穿透玻璃,这一波段的紫外线能量与多数化学键能相当,容易引光化学反应,通常用于光固化的即是UVA。 中波UVB,波长介于280~320,穿透力较弱,玻璃对它有强烈的吸收。太阳光中含有丰富的UVA 和UVB。 短波UVC,波长介于200~280nm,臭氧层对它有强烈的吸收,所以太阳光中UVC在到地面之前就被臭氧层吸收了,UVC对生物体就很强的破坏作用,可杀死细菌、病毒,因此常用于消毒 滤紫外:这种渗入铈的及其它微量元素石英玻璃管能有效地阻止UV-B和UV-C 紫外线的全部 辐射以及UV-A紫外线的大部份辐射, 是一种具有最大能见透射度的理想材料,可适用于石英卤素灯、气体放电灯和其他UV光源,从而可以有效地防止常常受到紫外线辐射对人体以及物体造成的危害,并且可以维持可见光达到最大的传播效率。 滤紫外线石英玻璃管,表面无色或轻微蓝色,断面呈淡蓝色。该产品在具有普通石英玻璃管优良的理化性能等基本特性的同时,可有效地滤除紫外线光谱中190-320nm波长的紫外线,壁免其对人体的辐射,可用于生产多种类型的环保型电光源产品。 无臭氧石英玻璃管,表面无色,断面呈轻微紫色。该产品可将光谱中220nm前的紫外线基本截止,而253.7nm处的紫外线透过率为85%以上,该波长的紫外线具有较强的杀菌力。可用于生产各种杀菌灯。

IC测试基本原理

本系列一共四章,下面是第一部分,主要讨论芯片开发和生产过程中的IC测试基本原理,内容覆盖了基本的测试原理,影响测试决策的基本因素以及IC测试中的常用术语。 器件测试的主要目的是保证器件在恶劣的环境条件下能完全实现设计规格书所规定的功能及性能指标。用来完成这一功能的自动测试设备是由计算机控制的。因此,测试工程师必须对计算机科学编程和操作系统有详细的认识。测试工程师必须清楚了解测试设备与器件之间的接口,懂得怎样模拟器件将来的电操作环境,这样器件被测试的条件类似于将来应用的环境。 首先有一点必须明确的是,测试成本是一个很重要的因素,关键目的之一就是帮助降低器件的生产成本。甚至在优化的条件下,测试成本有时能占到器件总体成本的40%左右。良品率和测试时间必须达到一个平衡,以取得最好的成本效率。 第一节不同测试目标的考虑 依照器件开发和制造阶段的不同,采用的工艺技术的不同,测试项目种类的不同以及待测器件的不同,测试技术可以分为很多种类。 器件开发阶段的测试包括: ·特征分析:保证设计的正确性,决定器件的性能参数; ·产品测试:确保器件的规格和功能正确的前提下减少测试时间提高成本效率 ·可靠性测试:保证器件能在规定的年限之内能正确工作; ·来料检查:保证在系统生产过程中所有使用的器件都能满足它本身规格书要求,并能正确工作。 制造阶段的测试包括: ·圆片测试:在圆片测试中,要让测试仪管脚与器件尽可能地靠近,保证电缆,测试仪和器件之间的阻抗匹配,以便于时序调整和矫正。因而探针卡的阻抗匹配和延时问题必须加以考虑。 ·封装测试:器件插座和测试头之间的电线引起的电感是芯片载体及封装测试的一个首要的考虑因素。·特征分析测试,包括门临界电压、多域临界电压、旁路电容、金属场临界电压、多层间电阻、金属多点接触电阻、扩散层电阻、接触电阻以及FET寄生漏电等参数测试。 通常的工艺种类包括: · TTL · ECL · CMOS · NMOS · Others 通常的测试项目种类: ·功能测试:真值表,算法向量生成。 ·直流参数测试:开路/短路测试,输出驱动电流测试,漏电电源测试,电源电流测试,转换电平测试等。·交流参数测试:传输延迟测试,建立保持时间测试,功能速度测试,存取时间测试,刷新/等待时间测试,上升/下降时间测试。 第二节直流参数测试 直流测试是基于欧姆定律的用来确定器件电参数的稳态测试方法。比如,漏电流测试就是在输入管脚施加电压,这使输入管脚与电源或地之间的电阻上有电流通过,然后测量其该管脚电流的测试。输出驱动电流测试就是在输出管脚上施加一定电流,然后测量该管脚与地或电源之间的电压差。

紫外可见分光光度法基本原理

紫外可见分光光度法基本原理 紫外可见分光光度法基本原理透射比和吸光度当一束平行光通过均匀的溶液介质时光的一部分被吸收一部分被器皿反射。设入射光强度为I0吸收光强度为Ia 透射光强度为It反射光强度为Ir则在进行吸收光谱分析中被测溶液和参比溶液是分别放在同样材料及厚度的两个吸收池中让强度同为I0的单色光分别通过两个吸收池用参比池调节仪器的零吸收点再测量被测量溶液的透射光强度所以反射光的影响可以从参比溶液中消除则上式可简写为透射光强度It与入射光强度I0之比称为透射比亦称透射率用T表示则有: 溶液的T越大表明它对光的吸收越弱反之T 越小表明它对光的吸收越强。为了更明确地表明溶液的吸光强弱与表达物理量的相应关系常用吸光度A表示物质对光的吸收程度其定义为: 则A值越大表明物质对光吸收越强。T及A都是表示物质对光吸收程度的一种量度透射比常以百分率表示称为百分透射比T吸光度A为一个无因次的量两者可通过上式互相换算。朗伯-比耳定律朗伯-比耳定律Lambert-Beer是光吸收的基本定律俗称光吸收定律是分光光度法定量分析的依据和基础。当入射光波长一定时溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l吸收光程的函数。朗伯和比耳分别于1760年和1852年研究了这三者的定量关系。朗伯的结论是当用适当波长的单色光照射一固定浓度的均匀溶液时A与l成正比其数学式为: A kl 此即称为朗伯定律k为比例系数而比耳的结论是当用适当波长的单色光照射一固定液层厚度的均匀溶液时A与C成正比其数学表达式为: 此即称为比耳定律k称为比例系数合并上述k的数值取决于吸光物质的特性外其单位及数值还与C和l所采用的单位有关。l通常采用cm为单位并用b表示。所以k的单位取决C采用的单位。当C采用重量单位g/L时吸收定律表达为: a称为吸光系数单位为当C采用摩尔浓度mol/L时吸收定律表达为: ε称摩尔吸光系数单位为有时在化合物的组成不明的情况下物质的摩尔质量不知道

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,就是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性与谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光与可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)就是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都就是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就就是原子吸收光谱法进行定量分析的理论基础 由于原子能级就是量子化的,因此,在所有的情况下,原子对辐射的吸收都就是有选择性的。由于各元素的原子结构与外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。

紫外吸收光谱分析基本原理

第九章紫外吸收光谱分析ultraviolet spectrometry,UV 第一节紫外吸收光谱分析基本原理principles of UV 一、紫外吸收光谱的产生formation of UV 1.概述 紫外吸收光谱:分子价电子能级跃迁。 波长范围:100-800 nm (1) 远紫外光区:100-200nm (2) 近紫外光区:200-400nm (3)可见光区:400-800nm 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转动能级的跃迁;带状光谱。 2.物质对光的选择性吸收及吸收曲线 ?E = E2 - E1 = hν 量子化;选择性吸收 吸收曲线与最大吸收波长λ max 用不同波长的单色光照射,测吸光度 吸收曲线的讨论: ①同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲线形状相似λmax不变。而对于不同物质,它们的吸收曲线形状和λmax则不同。 ③吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。 ④不同浓度的同一种物质,在某一定波长下吸光度A 有差异,在λmax处吸光度A 的差异最大。此特性可作作为物质定量分析的依据。 ⑤在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。 3.电子跃迁与分子吸收光谱 物质分子内部三种运动形式: (1)电子相对于原子核的运动; (2)原子核在其平衡位置附近的相对振动; (3)分子本身绕其重心的转动。 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量。 分子的内能:电子能量E e 、振动能量E v 、转动能量E r 即:E=E e+E v+E r ΔΕe>ΔΕv>ΔΕr 能级跃迁 电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 讨论: (1)转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; (2)振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产生的吸收光谱位于红外区,红外光谱或分子振动光谱;

紫外分光光度法原理

紫外分光光度法原理,使用范围,仪器的校正,测定方法和注意事项 紫外分光光度法 一、原理 可见光、紫外线照射某些物质,主要是由于物质分子中价电子能级跃迁对辐射的吸收,而产生化合物的可见紫外吸收光谱。基于物质对光的选择性吸收的特性而建立分光光度法或称吸收光谱法的分析方法。它是以朗伯──比耳定律为基础。 1 朗伯—比耳定律 A = lg—- = ECL T 式中 A为吸收度; T为透光率; E为吸收系数,采用的表示方法是(E1%1cm),其物理意义为当溶液浓度为1%(g/ml),液层厚度为1cm时的吸收度数值; C为100ml溶液中所含被测物质的重量(按干燥品或无水物计算),g; L为液层厚度,cm。 二、使用范围 凡具有芳香环或共轭双键结构的有机化合物,根据在特定吸收波长处所测得的吸收度,可用于药品的鉴别、纯度检查及含量测定。 三、仪器 可见-紫外分光光度计。其应用波长范围为200~400nm的紫外光区、400~850nm的可见光区。主要由辐射源(光源)、色散系统、检测系统、吸收池、数据处理机、自动记录器及显示器等部件组成。 本仪器是根据相对测量的原理工作的,即先选定某一溶剂(或空气、试样)作为标准(空白或称参比)溶液,并认为它的透光率为100%(或吸收度为0),而被测的试样透光率(或吸收度)是相对于标准溶液而言,实际上就是由出射狭缝射出的单色光,分别通过被测试样和标准溶液,这两个光能量之比值,就是在一定波长下对于被测试样的透光率(或吸收度)。 本仪器可精密测定具有芳香环或共轭双键结构的有机化合物、有色物质或在适当条件下能与某些试剂作用生成有色物的物质。 使用前应校正测定波长并按仪器说明书进行操作。 四、仪器的校正 1.波长的准确度试验 以仪器显示的波长数值与单色光的实际波长值之间误差表示,应在±1.0nm 范围内。 可用仪器中氘灯的486.02nm与656.10nm谱线进行校正。 2.吸收度的准确度试验

玻璃的成分

各种“玻璃”的成分 (1)普通玻璃(Na2SiO3、CaSiO3、SiO2或Na2O?CaO?6SiO2) (2)石英玻璃(以纯净的石英为主要原料制成的玻璃,成分仅为SiO2) (3)钢化玻璃(与普通玻璃成分相同) (4)钾玻璃(K2O、CaO、SiO2) (5)硼酸盐玻璃(SiO2、B2O3) (6)有色玻璃在(普通玻璃制造过程中加入一些金属氧化物。Cu2O——红色;CuO——蓝绿色;CdO——浅黄色;CO2O3——蓝色;Ni2O3——墨绿色;MnO2——紫色;胶体A u——红色;胶体Ag——黄色) (7)变色玻璃(用稀土元素的氧化物作为着色剂的高级有色玻璃) (8)光学玻璃(在普通的硼硅酸盐玻璃原料中加入少量对光敏感的物质,如AgCl、AgBr 等,再加入极少量的敏化剂,如CuO等,使玻璃对光线变得更加敏感) (9)彩虹玻璃(在普通玻璃原料中加入大量氟化物、少量的敏化剂和溴化物制成) (10)防护玻璃(在普通玻璃制造过程加入适当辅助料,使其具有防止强光、强热或辐射线透过而保护人身安全的功能。如灰色——重铬酸盐,氧化铁吸收紫外线和部分可见光;蓝绿色——氧化镍、氧化亚铁吸收红外线和部分可见光;铅玻璃——氧化铅吸收X射线和r 射线;暗蓝色——重铬酸盐、氧化亚铁、氧化铁吸收紫外线、红外线和大部分可见光;加入氧化镉和氧化硼吸收中子流。 (11)微晶玻璃(又叫结晶玻璃或玻璃陶瓷,是在普通玻璃中加入金、银、铜等晶核制成,代替不锈钢和宝石,作雷达罩和导弹头等)。 (12)玻璃纤维(由熔融玻璃拉成或吹成的直径为几微米至几千微米的纤维,成分与玻璃相同) (13)玻璃丝(即长玻璃纤维) (14)玻璃钢(由环氧树脂与玻璃纤维复合而得到的强度类似钢材的增强塑料。) (15)玻璃纸(用粘胶溶液制成的透明的纤维素薄膜) (16)水玻璃(Na2SiO3)的水溶液,因与普通玻璃中部分成分相同而得名) (17)金属玻璃(玻璃态金属,一般由熔融的金属迅速冷却而制得) (18)萤石(氟石)(无色透明的CaF2,用作光学仪器中的棱镜和透光镜) (19)有机玻璃(聚甲基丙烯酸甲酯) 注:(14)——(19)为类玻璃。 制造玻璃原理----主要反应是: Na2CO3+SiO2=Na2SiO3+CO2↑ CaCO3+SiO2=CaSiO3+CO2↑ 玻璃,中国古代亦称琉璃,是一种透明、强度及硬度颇高,不透气的物料。玻璃在日常环境中呈化学惰性,亦不会与生物起作用,故此用途非常广泛。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氢氧化铯。玻璃是一种非晶形过冷液体。融解的玻璃迅速冷却,各分子因为没有足够时间形成晶体而形成玻璃。

紫外可见漫反射光谱基本原理

紫外可见漫反射光谱基本原理 前言: 1.紫外可见光谱利用的哪个波段的光? 紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。而对于紫外可见光谱仪而言,人们一般利用近紫外光和可见光,一般测试范围为200-800 nm. 2. 紫外可见漫反射光谱可以做什么? 紫外可见漫反射(UV-Vis DRS)可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性等。 备注:这里不作详细展开,我们后面会结合实例进行分析。 3. 漫反射是什么? 当光束入射至粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射(specular reflection);另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光(diffuse reflection)。 4. 紫外可见光谱的基本原理 对于紫外可见光谱而言,不论是紫外可见吸收还是紫外可见漫反射,其产生的根本原因多为电子跃迁. 有机物的电子跃迁包括n-π,π-π跃迁等将放在紫外可见分光分度法中来介绍。

对于无机物而言: a. 在过渡金属离子-配位体体系中,一方是电子给予体,另一方为电子接受体。在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。其中,电荷从金属(Metal)向配体(Ligand)进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT. b. 当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。 c. 贵金属的表面等离子体共振: 贵金属可看作自由电子体系,由导带电子决定其光学和电学性质。在金属等离子体理论中,若等离子体内部受到某种电磁扰动而使其一些区域电荷密度不为零,就会产生静电回复力,使其电荷分布发生振荡,当电磁波的频率和等离子体振荡频率相同时,就会产生共振。这种共振,在宏观上就表现为金属纳米粒子对光的吸收。金属的表面等离子体共振是决定金属纳米颗粒光学性质的重要因素。由于金属粒子内部等离子体共振激发或由于带间吸收,它们在紫外可见光区域具有吸收谱带。 5. 紫外可见漫反射光谱的测试方法——积分球法 积分球又称为光通球,是一个中空的完整球壳, 其典型功能就是收集光。积分球内壁涂白色漫反射层(一般为MgO或者BaSO4),且球内壁各点漫反射均匀。光源S在球壁上任意一点B上产生的光照度是由多次反射光产生的光照度叠加而成的。

相关文档
相关文档 最新文档