文档库

最新最全的文档下载
当前位置:文档库 > 行为识别国内外现状

行为识别国内外现状

1.原始视频的特征提取

(1)光流场

光流场是空间运动物体在观测成像面上像素运动的瞬时速度。它利用图像序列中的像素强度数据的时域变化和相关性来研究图像的灰度在时间上的变化与场景巾物体结构及其运动的关系。光流法通常假设相邻帧的图像差异非常小,从而获取对真实运动场的近似估计【31。它不用预知任何先验知识,即能提供有关运动速度及图像中运动区域的简洁描述,适用于摄像机运动的情形。但光流法易受噪声及光照变化的影响,且计算较为复杂,很难用于实时的视频监控系统。

(2)点轨迹

目标的运动轨迹也可以作为特征,从而大致推断出目标运动所属的行为类别。但图像平面上的轨迹对平移、旋转和缩放等变换比较敏感,因此在大多情形下,此特征显得不够可靠。常用的替代特征表达有轨迹速度、时空曲率等【4,51。运动轨迹的获取比较依赖于精确的跟踪算法。从原始视频中提取点轨迹特征同样容易受到噪声、遮挡及混乱背景等的影响。

(3)人体形状表达

在摄像机固定的情形下,假设背景已知,通过背景剪除法可以很容易得到运动人体形状。基于全局、边界及骨架等的描绘子都可以用来表达人体形状。全局方法16,71如剪影、矩等是在整体形状区域内计算描绘子,而边界方法仅考虑形状轮廓【8l,骨架i方法则是用一组lD骨架曲线代表一个复杂的人体形状,比如中轴变换[91等。

(4)滤波器响应

空时滤波器响应是一个广义上的分类。Zhang等【lo】存时间轴上计算高斯导数,将滤波器响应较高的区域作为运动区域。LaptevI¨1利用一组空时高斯导数滤波器将Harris角点检测扩展应用于三维的视频数据从而检测出空时兴趣点。这类方法大都基于简单的卷积操作,运算快速而简便。当视频分辨率较低的情形下,提取光流或剪影特征较为困难,利用滤波器响应特性可以从视频数据中提取有效的底层特征。

2.低层特征的描述与识别

我们将低层特征的描述与识别方法分为三类①:非参数方法、空时体方法和参数时序法,分别对现有方法进行归类,并作一个简短的综述。

2.1非参数方法

(1)模板匹配法

免费下载Word文档免费下载: 行为识别国内外现状

(共5页)