文档库 最新最全的文档下载
当前位置:文档库 › 光纤通信optisystem实验

光纤通信optisystem实验

光纤通信optisystem实验
光纤通信optisystem实验

光纤通信Zemax、optisystem实验

程佑梁

实验一Zemax仿真设计

实验目的

1.熟悉Zemax实验环境,练习使用元件库中的常用元件组建光学系统。

2.利用Zeamx的优化功能设计光学系统并使其系统的各项性能参数达到最优。

实验原理

启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化,即分为以下两个部分。

1、lens data editor

首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。

然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。

再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。

回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。

而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ 为0,STO为1,而IMA为3。

再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。

现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate作图。其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane或sagittal。

Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves 是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而描述chief ray angle solves的parameter即为angle,而补足pick up solves的parameters为surface,scale factor两项,所以parameters本身不是solves,要调整的变量才是solves的对象。

2、数据优化

在surface 2栏中的thickness项上点两下,把solve type从fixed变成Marginal Ray height,然后OK。这项调整会把在透镜边缘的光在光轴上的height为0,即paraxial focus。再次update ray fan,你可发现defocus已经不见了。但这是最佳化设计吗?再次调整surface 1的radius 项从fixed变成variable,依次把surface 2的radius,及放弃原先的surface 2中thickness的Marginal Ray height也变成variable。再来我们定义一个Merit function,什么是Merit function 呢?Merit function就是把你理想的光学要求规格定为一个标准(如此例中focal length为100mm),然后Zemax会连续调整你输入solves中的各种variable, 把计算得的值与你订的标准相减就是Merit function值,所以Merit function值愈小愈好,挑出最小值时即完成variable 设定,理想的Merit function值为0。

现在谈谈如何设Merit function,Zemax 已经default 一个内建的merit function,它的功能是把RMS wavefront error 减至最低,所以先在editors中选Merit function,进入其中的

Tools,再按Default Merit Function 键,再按ok,即我们选用default Merit function ,这还不够,我们还要规定给merit function 一个focal length 为100的限制,因为若不给此限制则Zemax会发现focal length为时,wavefront aberration的效果会最好,当然就违反我们的设计要求。所以在Merit function editor第1列中往后插入一列,即显示出第2列,代表surface 2,在此列中的type项上键入EFFL(effective focal length),同列中的target项键入100,weight 项中定为1。跳出Merit function editor,在Tools中选optimization项,按Automatic键,完毕后跳出来,此时你已完成设计最佳化。重新检验ray fan,这时maximum aberration已降至200 microns。

其它检验optical performance还可以用Spot Diagrams及OPD等。从Analysis中选spot diagram中的standard,则该spot大约为400 microns上下左右交错,与Airy diffraction disk 比较而言,后者大约为6 microns交错。

而OPD为optical path difference(跟chief ray作比较),亦从Analysis中挑选,从Fans中的Optical Path,发现其中的aberration大约为20 waves,大都focus,并且spherical,sphero chromatism及axial color。Zemax 另外提供一个决定first order chromatic abberation 的工具,即the chromatic focal shift plot,这是把各种光波的back focal length跟在paraxial上用primary wavelength 计算出first order的focal length之间的差异对输出光波的wavelength 作图,图中可指出各光波在paraxial focus上的variation。从Analysis中Miscellaneous项的Chromatic Focal Shift即可叫出。

实验内容

1、显微物镜系统设计

在图1 显示一个10X 显微物镜。其包含二组远距的胶合双重透镜(Lister型式)。NA:0.25;EFL=0.591。表1 提供了这个设计的数据。第一镜面到像距为0.999。第一镜面到物距为6.076。最后一面供作保护面之用。畸变=0.26﹪。

图1 10倍显微物镜系统

表1 10倍显微物镜参数

要求:(1)运用zemax软件仿真实现该系统,并进行像质评价和分析,给出多个波长和多个视场的像质评价和分析。

(2)改变某一Lens Data,观察像质评价和分析,然后设置该Lens Data为变量并进行优化,再观察像质评价和分析,最后比较优化前后结果,在此基础上多选几个变量进行优化看能否得到更好的像质。

(3)在原有系统基础上再加一个单透镜或双透镜,选取一定的参数进行优化,看能否得到更好像质的系统。

(4)改变系统波长,观察像质评价和分析,重复完成(3),比较优化前后像质情况。

望远镜头系统设计

在图2 是一个望远镜头具有20°视场以及EFL=5 。这个镜组的资料给定在表2。

图2 望远镜头系统

表2 望远镜头系统参数

要求:(1)运用zemax软件仿真实现该系统,并进行像质评价和分析,给出多个波长和多个视场的像质评价和分析。

(2)改变某一Lens Data,观察像质评价和分析,然后设置该Lens Data为变量并进行优化,再观察像质评价和分析,最后比较优化前后结果,在此基础上多选几个变量进行优化看能否得到更好的像质。

(3)在原有系统基础上再加一个单透镜或双透镜,选取一定的参数进行优化,看能否得到更好像质的系统。

(4)改变系统波长,观察像质评价和分析,重复完成(3),比较优化前后像质情况。

实验二WDM的Optisystem仿真设计

实验目的

1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。

2.利用Optisystem的优化功能仿真计算光纤通信系统的各项性能参数,并进行分析。

实验原理

OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。

OptiSystem允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它的广泛应用包括:物理层的器件级到系统级的光通讯系统设计;CA TV或者TDM∕WDM网络设计;SONET∕SDH的环形设计;传输器、信道、放大器和接收器的设计;色散图设计;不同接受模式下误码率(BER)和系统代价(penalty)的评估;放大的系统BER和连接预算计算。

Optisystem环境是一种为利用元件库组建光纤通信系统,利用优化功能仿真计算系统的各项性能参数,通过数据分析和图形显示来获得最佳的光纤通信系统。Optisystem通过3部分来实现光纤通信系统仿真,即:器件库、光学方案图编辑器、图形演示。

1、器件库

(1) 发射器

发射器件库包括了所有与光信号产生和编码相关的器件,例如半导体激光器、调制器、编码器和比特序列发生器等。半导体激光器由于它在发射器中的重要角色而成为了最重要的发射器部件。使用OptiSystem,用户可以输入测量过的数据来评估速率方程所需的那些参数。当使用外调制的CW激光器时,对于啁啾和衰减来说,MQW马赫-曾德尔调制器和电吸收调制器的模型是基于测量的,并且能使用户优化偏置和调制电压,从而得到接收器灵敏度的最小退化。对于随即数字发生器,编码器和比特序列产生器允许用户在不同的调制模式和算法之间进行选择

(2) 光纤

光纤是主要的传输通道。对于任意的WDM信号,OptiSystem采用一种非线性色散传播的单模光纤模型,用以说明信号的振幅和相位受影响的现象和效果。在很大的条件范围内,这个模型都可以真实的预测波形的失真、眼图的退化和信号的其它要素。

(3) 接收器

用户可以依据光探测器输入端的混合信号来选择不同的模型。如果噪声用概率密度函数(PSD)来描述,PIN或者APD将采用基于高斯近似的准分析模型来计算噪声的作用。如果噪声是与信号混合在一起,那么使用适当的PFD来描述光电子统计时,这个模型可以增加数字化噪声。电滤波器件的内部库包括实际的、频率相关的参数。在这个库中,用户可以考虑不同滤波器形式来设计接收器。

(4) 网络器件

复用器∕解复用器,上路∕下路,阵列波导光栅,静态和动态开关,循环∕环形元件,交叉连接,·波长转换。

(5) 无源器件

·滤波器,调制器,耦合器,分波器,合波器,环形器,隔离器,偏振器件,光纤光栅。

(6) 光放大器

EDFA和拉曼放大器已经成为光纤网络所需的器件,从WDM网络转发器到CA TV接线放大器,都有着广泛的应用。OptiSystem能使用户选择不同的模型,例如自定义增益和噪声系数的理想放大器,或者是基于测量或者速率方程静态或者动态的解的黑匣子模型。通过利用半导体激光器的多功能特性,可以完成放大和波长转换。

(6) 观察仪

客户可以在任何器件使用观察仪来打开端口数据监视器,并且存取结果。数据监视器可以保存处理过的信号信息,而没有必要预先确定观察仪的类型。因此,一个OSA或WDM 分析仪可以加在相同的监视器上,一旦一个计算完成,就不需要再次运算。

库中可以利用的观察仪包括:·光∕射频频谱分析仪,示波器∕光时域分析仪,眼图分析仪,误码率分析仪,WDM分析仪,功率计。

2、光学方案图编辑器

这个界面可以让用户快速而有效的创建和修改自己的设计。每个OptiSystem方案文件可以包含足够多的设计版本。这些设计版本可以相互独立的被计算和修改,但是来自于不同版本的计算结果可以合并起来进行比较。

3、图形演示

OSA频谱、示波器和眼图,探针和可视化工具列出信号功率、增益、噪声系数和OSNR,图形生成工具可以对任何参数扫描的任意结果进行比较,直观的图形管理器使用户可以画出设计中使用的几乎所用的参数的曲线,·生成的图形组尺寸可变、视角可变换,并将这些视图转变成可以保存和重新使用的结果方案图,将复合图合并成3D图。

实验内容

OptiSystem用于WDM设计

根据下图,运用OptiSystem练习设计WDM通信系统,并得出WDM分析结果,在此基础上练习使用该软件的优化功能,如何实现系统优化。

掺铒光纤

WDM 分析结果

实验三、OptiSystem 用于EDFA 设计

根据下图,运用OptiSystem 练习设计EDFA 通信系统,并得出EDFA 产生的增益,如采用双泵浦,其增益又如何,在此基础上练习使用该软件的优化功能,如何实现系统优化。

实验四、通信系统综合设计

1.选择一个你认为合适的方案

供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择你认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。

答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下:

选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。

选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。

选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。

选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。

实验过程:

本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。

1).根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。整个光纤通信系统的架构如下图示:

完整的光纤通信系统

2)设置相关参数。整体参数:User Defined Bit Sequence Generator “1001011010010110”,系统10G,入纤功率10dBm。APD管与PIN管的响应度设定为1A/W。

整体参数设置:系统传输速率10G. ,如下图

发送序列设置:1001011010010110 ,如下图

入纤功率设置:10dBm,如下图

APD管的响应度设置:1A/W,如下图

光纤长度设置:50Km,如下图

在OptiSystem软件中进行仿真,运行的结果如下:(1)实际入纤光功率为5.471E-3 W,7.381dBm,如下图

图1

(2)调制前信号时域波形,如下图

图2 (3)调制后光信号时域波形,如下图

图3 (4)调制后光信号频谱,如下图

图4

(5)信号眼图,如下图

图5

(6)误码率,如下图

图6

2.观察入纤光功率,并对比调制前后的光信号频谱与时域波形,以及做相应的分析

答:由图1可知实际入纤光功率;根据图2、3、,通过对比调制前后的光信号时域波形;根据图4知调制后光信号频谱,调制后的光信号具有紧凑的频谱特性。

3.解调后的信号信号波形,信号眼图,及误码率等分析

答:调解后的信号信号波形为像眼图的波形(如图5),

眼图分析,如下图:

眼图的张开宽度决定了接收信号的抽样间隔,在此间隔内抽样能抵挡码间串扰不发生误码;接收波形的最佳抽样时间在眼睛张开的最大处。由于数据信号的失真,眼睛张开的高度会降低,眼睛张开的顶端与信号电平的最大值之间的垂直距离表示了最大失真,眼睛越小,鉴别信号1和0就越难。在抽样时间上,眼睛张开的高度表示噪声容限或抗噪声能力。眼图斜边的斜率决定系统对定时误差的敏感程度,当斜率较小时,定时误差的可能性增加。在光纤系统中由于接收机噪声和光纤的脉冲畸变,会产生时间抖动。如果取样时间正好在信号与判断门限值相交的时刻的中点,判断门限值电平失真量T1,定时抖动=T1/Tb×100%,Tb为1bit 的时间间隔。

误码率分析:实验误码率分析如图6;定时抖动越大,说明码间干扰所引起的误码率越大。上升、下降时间越长,说明色散严重,脉冲展宽明显,也更容易导致出现码间干扰。

4.测量你所选用系统的距离带宽积(BL),并解释滤波器作用

答:距离带宽积(BL):实验中光通信系统的距离为50Km,带宽为10G,因此距离带宽积=距离*带宽=50Km*10G=500Km.G。

系统接收端的low pass gauss filter(高斯低通滤波器)的作用是:滤除带外噪声,进一步提高信噪比,改善光通信系统的性能。低通高斯响应滤波器采用时域法测量有效带宽,具有直

观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

光纤通信课程设计

湖南工业大学 课程设计 资料袋 计算机与通信学院(系、部)2013 ~ 2014 学年第 2 学期课程名称数字光纤通信指导教师刘丰年职称副教授学生姓名专业班级学号 题目图像、声音的光纤传输系统 成绩起止日期2014 年05月16 日~2014年05月22 日 目录清单

湖南工业大学 课程设计任务书 2013—2014学年第2学期 计算机与通信学院通信工程专业班级课程名称:数字光纤通信 设计题目:图像、声音的光纤传输系统 完成期限:自 2014 年 5 月 16日至 2014 年5月22 日共 1 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

数字光纤通信 设计说明书 声音、图像光纤传输系统 起止日期: 2014年 05 月 16 日至 2014年 05 月 22 日 学生姓名 班级 学号 成绩 指导教师(签字) 计算机与通信学院 2014年 05 月 22 日

指导教师(签字):年月日系(教研室)主任(签字):年月日

图像、声音光纤传输系统 一、设计原理 1、GT-RC-II 型光纤通信实验系统简介: (1)、电源模块:提供实验箱各模块电源。 (2)、1310nm光发送模块:实现模拟信号、数字信号在1310nm光发送机中的光传输及自动光功率控制功能(采用电路来实现)。 (3) 1550nm光发送模块:实现模拟信号、数字信号在1550nm光发送机中的光传输及自动光功率控制功能(采用专用芯片来实现)。 (4) 1310nm光接收模块:实现1310nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 (5)1550nm光接收模块:实现1550nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 实验系统主要由光发模块、光收模块、光无源器件和辅助通信模块等组成。光发端机完成将电信号直接调制至光载波上去,采用强度调制(IM);光接收机完成光信号的解调,采用直接检测(DD),属于非相干解调。光载波由半导体光源产生,由半导体光检测器将光信号转换成电信号从而达到传输信号的目的。 2、模拟光纤通信系统的结构 模拟基带直接光强调制(DIM)光纤传输系统由光发射机(光源通常为发光二极管)、光纤线路和光接收机(光检测器)组成,这种系统的方框图如图1所示。 图1 模拟光纤通信系统由以下五个部分组成: (1)光发送机:光发送机是实现电/光转换的光端机。它由光源、驱动器和调

光纤通信-实验报告

PHTN 4661 Lab Report In this lab, we use C++ to simulate a square core waveguide. We explore the properties and the fundamental mode of it. We are provided some header files and a main function under C++ language. And also two PDF files to indicate the things we should do and the principles of the lab. Now I am going to answer the questions one by one and explain the steps of the lab. Preamble Firstly we are provided a library of functions called the …Light Numerical Recipes?(LNR) and a file called …square.dat? which contains the parameters of a waveguide. We do not need to change the file. In preamble, we just run the https://www.wendangku.net/doc/786951689.html, file and type in …square.dat? to read the parameters of the waveguide. And then the program shows the Effective index of it.Just like the following figure. To keep the display of the result, we add “cin >> filename;” at the bottom. Problem1 With the given formula, we can calculate the V value easily by calculator. Here n co=1.450, n c1=1.447, ρ=5. When λ=1.55,V=1.89 and the waveguide is single-moded.When λ=1.3,V=2.25 and the waveguide is not single-moded. This result means a waveguide can be both single or multi-moded when the wavelength are different. Problem2 In this step, we only change the middle part of the main_https://www.wendangku.net/doc/786951689.html, file as follows We use a loop to calculate the some thing as we did in preamble. The only difference is that we calculate a series of wavelength and write the results in a file called …results.txt?. And we get results as follow

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤通信实验报告汇总(参考)

实验一用户电话接口实验 一、实验目的 1、掌握用户电话接口电路的主要功能 2、了解实现用户接口电路功能芯片Am79R70的主要性能和特点 二、实验内容 1、掌握用户线接口电路的主要功能 2、了解Am79R70的结构和工作原理 3、了解电话接续的原理及其各种语音控制信号的波形 三、实验仪器 1、ZY1804I型光纤通信原理实验系统 1台 2、20MHz 双踪数字示波器 1台 3、电话机 2部 4、连接导线 20根 四、实验原理 1、用户线接口电路功能及其作用 在现代通信设备与程控交换中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些功能放到“用户电路”来实现。 在程控交换机中,用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。根据用户电话机的不同,用户接口电路可分为模拟用户电话接口电路和数字用户电话接口电路。模拟用户电话接口电路与模拟电话相连,数字用户电话接口电路和数字终端相连(如ISDN),而在此实验箱中采用模拟用户电话接口电路。 模拟用户线接口电路在实现时最大的压力应是能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器、继电器等分立元件构成,但随着微电子技术的发展,各种集成的SLIC相继出现,他们大都采用半导体工艺或是薄膜、厚膜会合工艺,性能稳定,价格低廉,已实现了通用化。 在程控交换机中模拟用户接口电路一般要具有B(馈电),R(振铃),S(监视),C(编译码),H(混合),

T(测试),O(过压保护)七项功能。具体含义是: 1、馈电(B-Battery feeding):向用户话机馈送直流电流。通常要求馈电电压为-48V,环路电流不小于18mA。 2、过压保护(O-Overvoltage protection):防止过压过流冲击损坏电路和设备。 3、振铃控制(R-Ringing Control):向用户话机馈送铃流,通常为25Hz/75Vrms正弦波。 4、监视(S-Supervision):监视用户线的状态,检测话机摘机、挂机与拨号脉冲灯信号已送往控制网络和交换网络。 5、编解码与滤波(C-CODEC/Filter):在数字交换中,它完成模拟话音与数字码间的转换。编译码通常采用PCM码的方式,其编码器(Coder)和译码器(Decoder)统称为CODEC。相应的防混叠与平滑低通滤波器的带宽范围为:300Hz~3400Hz,编码速率为64Kb/s。 6、混合(H-Hybird):完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送和接收数字四线信号之间的分离。 7、测试(T-Test):对用户电路进行测试。 模拟用户接口电路的结构如图所示: 图1-1 模拟用户接口电路框图 2、用户线接口电路 在本实验箱中,用户线接口电路芯片选用Legerity公司生产的模拟用户线接口芯片Am79R70。Am79R70是一种功能较强的用户线接口芯片,它除了拥有用户接口电路常用的7种功能中的6种外,还拥有电流限制、挂机传输、极性反转、tip开路和环路检测等功能。其内部电路结构原理框图如下:

毕业设计100光纤通信+课程设计报告

课程设计报告 课程名称光纤通信 课题名称通信系统综合实验 一、设计内容与设计要求 1、设计内容 1)多路数据+多路电话光纤综合传输系统的实现 2)多路数据+多计算机+单路图像/语音全双工光纤综合传输系统的实现3)*多路计算机+双路图像/语音全双工光纤综合传输系统的实现 2、设计目的 掌握变速率时分复用的原理、实现方法; 学习并掌握计算机RS232通信技术; 掌握时分复用技术和波分复用技术的灵活搭配使用; 实现数字和语音同时通信。 3、实验仪器与设备 1.光纤通信实验系统2台。 2.示波器1台。 3.波分复用器2个。 4.电话2部。 I

5.FC/FC光纤跳线2根。 6.计算机若干台串口通信电缆若干根。 7.1310nm/1550nm波长波分复用器2个。 8.摄像头1个。 9.监视器1个(或用电话代替)。 4、设计原理 《多路数据+多路电话光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、PCM编译码、波分复用等几个子系统,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十四、实验二十五、实验二十的方法; 《多路数据+多计算机+单路图像图像/语音全双工光纤综合传输系统》拟实现模拟图像、数据在同一光纤中传输。即在光纤中同时传输数字数据和模拟信号。一种解决方案综合了《光纤通信原理教学系统实验指导书》中的实验二十六、实验二十七、实验十六的知识; 《多路计算机+双路图像/语音全双工光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、变速率时分复用、解变速率时分复用、位时钟提取(数字锁相环DPLL)原理及实现五个实验,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十三、实验二十四、实验二十五、实验二十六、实验二十七。 5、设计要求 掌握结构化系统设计的主体思想,以自下而上逐步完善的方法实现指定的通信系统功能,并按要求测试相关参数、波形等实验数据,以积累一些典型的通信子系统的功能、性能、参数等知识以及系统集成的知识。 (1)在规定的时间内以小组为单位完成相关的系统功能实现、数据测试和记录并进行适当的分析。 (2)按本任务书的要求,编写《课程设计报告》(Word文档格式)。并用A4纸打印并装订; II

最新光纤通信调研报告

光纤通信调研报告 第1篇第2篇第3篇第4篇第5篇更多顶部 目录 第一篇:光纤通信综述报告第二篇:光纤通信第三篇:光纤通信第四篇:光纤通信第五篇:光纤通信更多相关范文 正文第一篇:光纤通信综述报告光纤通信综述报告 前言:孙老师,您好!在您给我们从光纤的历史、光纤通信的特点、光纤通信的应用给我们介绍了光纤通信之后,我对光纤通信有了一个更深层次的认识,也引发了我对光纤通信的兴趣,下面就是我结合您给我们讲的知识和我课外了解、收集的材料写的关于光纤通信的综述报告。 摘要:光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。 一、光纤通信的发展史

1、世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。 1970年损失为20db/km 的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。 1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45mb/s。 在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。光纤通信系统开始显示出长距离、大容量无比的优越性。 1996年技术取得突破,贝尔实验室发展了技术,美国mci公司在1997年开通了商用的线路。光纤通信系统的速率从单波长的2.5gb/s和10gb/s爆炸性地发展到多波长的

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信实验报告思考题

1、不考虑非线性效应,无啁啾的脉冲经过光纤的正常色散区和反常色散区传输后分别具有什么样的啁啾?为什么? 答:不考虑非线性效应,无啁啾的脉冲经过光纤的正常色散区后具有正啁啾和反常色散区传输后具有负啁啾。无啁啾的脉冲工作在正常色散区后,低频比高频传播得快,造成脉冲后沿传播速度比前沿传播速度快,从而产生正啁啾。无啁啾的脉冲工作在反常色散区后,高频比低频传播得快,造成脉冲前沿传播速度比后沿传播速度快,从而产生负啁啾。 2、低峰值功率的脉冲(不考虑非线性效应)在什么情况下,经过光纤传输会产生压缩效应? 答:脉冲要发生压缩的情形,应满足 2C<0,且。但一般的半导体激光器光源在直接强度调制时产生的光脉冲是负啁啾C<0,因此必须采用β2>0的单模光 1、传输光纤为G.652光纤,工作波长为C波段,如传输系统采用光纤光栅进行色散补偿,则需要什么类型的光纤光栅?其工作原理是什么? 传输光纤为G.652光纤,工作波长为C波段,如传输系统采用光纤光栅进行色散补偿,则需要啁啾光纤光栅。啁啾光纤光栅(Chirped FBG)的光栅周期(空间频率)随光纤长度有变化的光纤布拉格光栅,主要用于光纤色散补偿。 其工作原理是,普通单模光纤在1550nm波长时为色散值D>0(反常色散区)。光脉冲的高频分量(蓝移)较低频分量(红移)传输得快,导致脉冲展宽。经啁啾光纤光栅传输以后的入射光中的长波长分量(低频)位于脉冲后沿,使其在光栅的起始端就反射,而短波长分量位于脉冲的前沿,使其在光栅的末端才被反射,于是就补偿了色散效应,使脉冲宽度被压缩甚至还原。 1、有两个脉冲,其宽度不同,但峰值功率相同,通过相同的光纤后(不考虑光纤的色散),由自相位调制效应所展宽的光谱是否相同? 答:不相同。脉冲频谱的展宽程度还与脉冲形状有关。 2、脉冲在光纤中的自相位调制效应跟什么因素有关系?如何增强自相位调制效应? 答:自相位调制效应与输入光功率、传输距离、材料非线性折射率、光纤的型号、信号光的波长、输入脉冲的形状等因素有关。信道设置在非零色散波长附近将有利于增强自相位调制效应的影响;通过增强输入光功率的方法来增加自相位调制效应的影响;增加光纤传输距离来增大自相位调制效应;使用高非线性折射率的材料。

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验报告

光纤通信实验报告 课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。 二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平

均光功率的测试。 1、半导体光源的P -I 特性 I(mA) LD 半导体激光器P -I 曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P -I 的线性关系。 P -I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,没有扭折点, P -I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P -I 特性可以清楚地看出消光比的物理概念,如下图所示。

光纤通信实验报告

光纤通信实验报告 1245711201 陈海霞 实验一光通讯系统WDM系统设计 一、实验目的 1.了解数字光纤通信系统的结构 2.了解新技术在光纤通信中的应用 3.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 4. 利用Optisystem的优化功能仿真计算光纤通信系统的各项性能参数,并进行分析。 二、实验原理 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。 在WDM系统中的关键组件 (1)光发射机、接收机 信号在发射端经过光发射机进行A/D转换、编码并调制到特定的波长转换为光信号.完成信号的调制。在接收端接收到的光信号经接收机进行D/A转换、解码并转换电信号,完成解调过程。 (2)滤波器在WDM系统中进行信道选择,只让特定波长的光通过.并阻碍其它光波长通过。可调谐光滤波器能从众多的波长中选出某个波长让其通过。在WDM系统的光接收机中.为了选择所需的波长,一般都需依赖于其前端的可调谐滤渡器。要求其有较宽的谱宽以传输需要的全部信号谱成分,且带宽要窄以减小信道间隔。 (3)复用器/解复用器(MUX/DEMUX)将多个光波长信号耦合到一路信道中.或使混合的信号分离成单个波长供光接收机处理。一般,复用/解复用器都可以进行互易.其结构基本是相同的。实际上即是一种波长路由器.使某个波长从指定的输入端口l到一个指定的输出端口。 三、实验内容 (1)基本组成 八组外部调变激光、WDM Mux8X1(八对一的分波多任务器)、马赫轮德尔调变器,使用光谱分析仪和WDM analyzer分波多任务分析仪获取每个信道的信号频谱和总功率。

光纤通信实验报告

第五章 光纤色散对传输性能影响实验 实验二、色散补偿光纤对传输性能的影响 一、 实验目的 学习色散补偿的原理和方法。 二、 实验原理 对于简单的两段光纤的模型,在其组合色散排布下,传输方程解为: 22112221(,)(0,)exp ()22m i U L t U L L i t d ωωββωωπ∞ -∞??=+-?????式中,12m L L L =+是色散排布周期,2j β是长为j L 的光纤的群色度色散系数(j=1, 2)。由2β与D 的关系可得,色散补偿条件可以写为:11220D L D L += 若上式能够满足,则(,)(0,)m A L t A t =,即经过每一排布周期后,脉冲恢复到其初始宽度,尽管在每个周期内脉宽可能显著改变。 三、 实验配置图 四、 实验步骤 1.按照图搭建实验拓扑图。 2.设置第一段光纤(G.652光纤)“结构参数”,长度设置为80km ,参考点色散系数17ps/nm.km ;设置光线仿真参数,将“考虑色散”选框选中,不选“考虑非线性”和“四波混频”;

3.根据色散补偿的原理,设置第二段光纤(色散补偿光纤)参数,色散补偿需满足D1L1+D2L2=0,L2=80*17/100=13.6Km。在“结构参数”页中将参考点色散系数设置为-100 ps/nm.km,长度设置为13.6km,在“仿真参数”页中将考虑色散复选框选中,不考虑非线性和四波混频; 4.设置发射机参数,在“结构参数”页中将发射信道数为1,中心频率设置为193.1THz。在“仿真参数”页中,设置发射速率为10Gb/s,发射功率为5mW; 5.点击仿真按钮开始仿真,记录原始信号和补偿前后两个眼图分析仪结果。 五、仿真结果 眼图1: 眼图2: 眼图3:

光纤通信实验报告

光纤通信实验报告课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。

二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。 1、半导体光源的P-I特性 I(mA) LD半导体激光器P-I曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P-I 的线性关系。 P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th尽可能小,没有扭折点,P-I曲线的斜率适当的半导体激光器:I th小,对应P值就小,这样的激光器工作

电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。 P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P ) 的关系,即P-I 特性可以清楚地看出消光比的物理概念,如下图所示。 由图可知,当输入信号为“0”时,光源的输出光功率为P 00,它将由直流偏置电流I b 来确定。无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。所以从接收机角度考虑,希望消光比越小越好。但是,应该指出,当I b 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其它特性产生不良影响,因此,必须全面考虑I b 的影响,一般取I b = (0.7~0.9)I th (I th 为激光器的阈值电流)。在此范围内,能比较好地处理消光比与其它指标之间的矛盾。考虑各种因素的影响,一般要求发送机的消光比不超过-1dB 。在光源为LED 的条件下,一般不考虑消光比,因为它不加直流偏置电流 I b ,电信号直接加到LED 上,无输入信号时的输出功率为零。因此,只有以LD 作光源的 光发射机才要求测试消光比。 四、实验步骤 1、关闭系统电源,按如下说明进行连线: (1)用连接线将2号模块TH7(DoutD )连至25号光收发模块的TH2(数字输入),并把2号模块的拨码开关S4设置为“ON ”,使输入信号为全1电平。 (2)用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块 Δ P EXT PIN 消光比对灵敏度的影响

相关文档