文档库 最新最全的文档下载
当前位置:文档库 › 低渗透气藏修正等时试井产能曲线的建立与修正

低渗透气藏修正等时试井产能曲线的建立与修正

低渗透气藏修正等时试井产能曲线的建立与修正

119

CPCI

中国石油和化工

理论前沿低渗透气藏修正等时试井产能曲线的建立与修正

陈辉娜1 李士东1 连 洁2 朱英洁2 韩 琪1

(1.中国石油华北油田分公司勘探开发研究院 河北任丘 062550;2.中国石油华北油田分公司第四采油厂 河北廊坊 065000)

摘 要:修正等时试井作为适合低渗透气藏气井产能试井的方法,在国外气田得到了广泛应用。通过试井解释成果,建立二项式和指数式产能方程,在曲线出现异常时对其进行修正,从而使产能方程更完善。

关键词:修正等时试井 产能分析

由于修正等时试井等时阶段不要求气井流动达到稳定状态, 整个测试过程时间相对较短,因而较适用于低渗透气藏。气井稳定产能方程是确定无阻流量、 预测生产动态的重要手段和依据。本文利用修正等时试井解释成果, 经严格的理论计算求取气井的产能方程和气井的无阻流量,指导合理配产。

1 理论分析

在修正等时试井中,各次关井时间相同,最后以某一稳定产量生产较长时间,直至井底流压达到稳定。修正等时试井由等时不稳定阶段测试和延续流动期测试组成,四个等时的开关井为非稳定流动, 用于确定气井产能方程系数 B ;而延续期要求流动达到稳定, 用于确定气井产能方程系数 A 。

2 产能方程曲线的建立与校正

2.1 二项式产能方程曲线的建立

气井二项式产能方程为和无阻流量为:

(1

(2)

式中,P R 为地层压力(MPa );P wf 为井底流压(MPa );A 为二

项式产能方程层流系数(MPa ?d/(104m 3

);B 为二项式产能方程紊流系数 (MPa ?d )2/(104m 3)2

式(1)两端同时除以q

,得:

(3)

以产能试井数据为基础数据,在直角坐标系中作出j 与产

气量j 关系图,

(j=1,2,3,4;P wfj 是j 次生产期末的井底流压),将测试点回归为一条直线,这条曲线为不稳定产能曲线,直线的斜率为b ,截距为a 。由稳定点C (q ,P wf )做不稳定产能曲线的平行线,该条曲线的二项式方程即稳定产能曲线的方程。将由稳定产能曲线得到的方程系数A 、B 带入公式(2),即可确定绝对无阻流量。

2.2 指数式产能方程的建立

气井指数式产能方程为和无阻流量为: (4) (5)C 为渗流系数,(104m 3/d )/(MPa )2

;N 为渗流指数,表征流

动特征的常数。绘制lg (P r 2-P wfj 2)

~lgq j ,关系曲线(j=1,2,3,4;P wfj 是j 次生产期末的井底流压)

,这条曲线为不稳定产能曲线。过稳定点测试点C (qs ,Pwfs )做不稳定产能曲线的平行线,这条曲线称为稳定的产能曲线,如图2所示;这条线的斜率m 就是渗流指数n 的倒数; 产能方程与无阻流量的计算方法与二项式相同。

2.3 曲线拟合过程中的校正

在曲线拟合中,若出现

的异常情况,说

明在产能测试过程中井底压力或地层压力测试不准确,需进行产能

方程的校正。当测量的井底流压比实际值偏小时,会出现的

情况,设

为实际井底流压

与实测井底流压

的差值,有

(6)两边平方可得

(7)令

(8)

带入二项式产能方程可得

(9)

根据经验,可取

(10)

与实测曲线的截距,将求得的值带入式(8),

可得各个压力测试点的

值,利用式(9)拟合二项式曲线。也可通过不断调整

的值,使拟合过程中的线性相关系数以上,则可得气井二项式产能方程。利用校正后的数据拟合指数式产能方程,可得相应的校正后的指数式产能方程。

当测量的地层压力偏小时,会出现

的情况。设真实平均

地层压力为

,此压力值和实测压力值之差为

于是有: (11)令

(12)

二项式产能方程变化为:

(13)

可通过不断调整的值,使~关系曲线为直

线,并尽可能使拟合过程中的线性相关系数

以上,则可得气井二项式产能方程,利用校正后的数据最终拟合指数式产能方程。

5 认识及结论:

准确求取产能方程的意义重大, 但由于现场操作及储层物性的限制, 给求取产能方程带来了一定的困难, 通过方程的校正,可充分利用有效数据,最大程度反映气井的真实产能。

参考文献[1]陈元千. 油气藏工程计算方法[ M ] . 北京: 石油工业出版社, 1990.

[2]童宪章等( 译).气井试井理论与实践, 石油工业出版社 , 1988。[3]郝玉鸿 . 确定气井合理生产压差的简易方法,试采技术 [J],1998(1

低渗透气藏保护研究现状及进展

低渗透气藏保护研究现状及进展 在低渗透气藏开发过程中,每个施工环节都会造成地层损害。本文对低渗透气藏保护研究现状及进展进行整理和分析,使得室内实验人员及现场施工人员有针对性地开发和改进各种生产工艺技术,以达到很好的储层保护效果。 标签:低渗透气藏;储层保护 1 引言 对于“低渗透”气藏的渗透率上限,目前国内外尚无统一的界定标准。前苏联的标准是渗透率上限为50×10-3 μm2;而美国的标准是岩心的地表气测绝对渗透率小于20×10-3 μm2,在气层原始条件下,渗透率小于1×10-3 μm2,甚至多数情况下渗透率为1×10-3~0.01×10-3μm2之间。我国一般采用美国的划分标准。但实践证明,仅仅利用渗透率作为划分低渗透储层的定量标准,其根据是不充分的。因此,要划分低渗透储层,必须采用综合参数来确定,这些参数包括地层渗滤容量性质、产能及产层开发效果的经济标准[1]。 2 研究现状 在气藏开发过程中,每个施工环节都会造成地层损害。完全避免地层损害是不可能的,但是可以通过改进各种工艺和方法降低损害程度。要达到很好的储层保护效果,就必须搞清楚储层地质特征和损害机理,有针对性地开发和改进各种生产工艺技术。钻完井、增产和开采中低渗透气藏的损害机理主要包括:①流体滞留;②有害的岩石-流体和流体-流体作用;③逆流自吸效应;④熔结与岩面釉化;⑤凝析作用和凝析液的捕集;⑥地层微粒的活化作用;⑦固相沉积。避免钻井中气层损害的技术包括空气/惰性气体、空气雾、充空气或氮气的泡沫钻井液和欠平衡钻井液作为钻井液。仅从气层特征出发,先进的钻进-完井-增产技术系统是倡导采用氣体型工作流体,这也正是美国能源部(DOE)天然气资源与开发计划的核心技术[2]。 目前,对于低渗透气藏的储层保护技术工艺主要有以下四个方面:①采用合理的完井方式。完井方式确定的基本原则是针对储层的具体地质条件,结合工程作业要求,从长期效益考虑,以获得最大的综合利润为前提,最有效地开发气田; ②使用优质的钻井液。钻井液性能参数中,对储层伤害影响最大的是钻井液密度、滤失量和含砂量。因此,为减少损害程度,必须将这3项参数控制在最低程度; ③缩短钻井液对储层浸泡时间。储层浸泡时间控制在96h内为最佳。而减少浸泡时间主要着手于:a提高钻井速度,缩短储层钻井时间;b加强生产各环节的横向联系和组织协调管理工作;消除由于固、测井组织工作不协调而造成的停待;加快钻穿储层后的完井工作;④避免井喷事故的发生:a实施近平衡压力钻井技术;b具有配套完善、状况良好的井口装置;c有一支技术过硬、操作熟练的职工队伍和严格的管理措施;d加强井控技术措施的落实。

试井分析13

1、试井: 是一种以渗流力学为基础,以各种测试仪表为手段,通过油井、气井或水井生产动态的测试来研究油、气、水层和测试井的生产能力、物理参数,以及油、气、水层之间的连通关系的方法。 2、特种识别曲线: 特种识别曲线:在某一情形或某一流动阶段在某种坐标系(半对数坐标系或直角坐标系)下的独特的曲线,称为“特种识别曲线”。 3、叠加原理: 如果某一线性微分方程的定解条件是线性的,并且它们都可以分解成若干部分,即分解成若干个定解问题,而这几个定解问题的微分方程和定解条件相应的线性组合,正好是原来的微分方程和定解条件,那么,这几个定解问题的解相应的线性组合就是原来定解问题的解。4、井筒储集系数: 用来描述井筒储集效应的强弱程度,即井筒靠其中原油的压缩等原因储存原油或靠释放井筒中压缩原油的弹性能量等原因排出原油的能力。 5、无限导流性垂直裂缝: 具有一条裂缝,裂缝宽度为0,沿着裂缝没有压力损失。 无量纲量:不具有量纲的量。 井筒储集系数:用来描述井筒储集效应的强弱程度,即井筒靠其中原油的压缩等原因储存原油或靠释放井筒中压缩原油的弹性能量等原因排出原油的能力。 干扰试井:是一种多井试井,是在一口井上改变工作制度,以使油层中压力发生变化,在另一口井加入高度压力计测量压力变化的试井方法。 6、表皮效应:在井筒周围有一个很小的环状区域,由于各种原因,其渗透率与油层不相同,当原油从油层流入井筒时,在这里产生一个附加压降,这种现象称为表皮效应。 37、产能试井:改变若干次油井、气井或水井的工作制度,测量在各个不同工作制度下的稳定产量及与之相对应的井底压力,从而确定测试井(或测试层)的产能方程、无阻流量、井底流入动态曲线和合理产量等的方法。 38、常规试井解释方法:以Horner方法为代表的,利用压力特征曲线的直线段斜率或截距反求地层参数的试井方法。 简答题 1、说明使用早期资料画成的特种识别曲线不通过原点的原因,如何纠正? 答:在记录开(关)井时间时有误差,导致使用早期资料画成的特种识别曲线不通过原点。 纠正办法是在直角坐标系中画出Δp-t关系曲线是一条直线,这条直线与横坐标的交点就是时间误差的大小,将直线平移到通过原点,就能将时间误差校正。 2、简述使用无量纲的优点并写出P D、t D、C D的表达式 答:1、由于若干有关的因子已经包含在无因次量的定义之中,所以往往使得关系式变得很简单,因而易于推导、记忆和应用。 2、由于使用的是无因次量,所以导出的公式不受单位制的影响和限制,因而使用更为方便。

攻克复杂气藏开发技术难题

一、我国天然气工业现状及发展远景 (一)我国能源现状及需求矛盾 我国一次能源资源比较丰富,常规资源总量超过8321亿吨标准煤,探明剩余可采总储量1392亿吨标准煤,资源总量仅次于美国和俄罗斯。能源结构以煤为主,占87.4%,石油、天然气资源相对贫乏,仅占3.1%。能源生产和消费主要表现出以下特点:一是人均能源拥有量低,能耗高。我国人均煤炭探明储量仅为世界平均值的45.5%,人均石油可采储量仅为世界平均值的 10.7%,天然气为4.9%。而值得关注的是,我国万元GDP总能耗是世界水平的3倍,能源的低水平利用造成能源的大量浪费,进一步加剧能源供应的紧张局势。二是我国能源结构以煤为主,能源自给率达到94%,但石油和天然气自给率低。我国是世界第二大能源生产国和第二大能源消费国,能源生产和消费以煤炭为主,占总量的68%左右;石油和天然气工业尽管得到了较快发展,但仍满足不了国民经济快速发展的需要。我国1993年开始成为石油净进口国,目前对进口原油的依存度已超过40%。三是资源勘探程度低,地域分布不均。目前,我国煤炭资源探明程度17.5%,石油可采资源量探明程度不到30%,天然气为 12.5%,从能源地域分布看,煤炭主要分布在西北部地区,石油和天然气的主产区-东部地区资源开发已进入中后期,勘探逐步转向西北部的三大盆地和海洋,是今后资源接替的主阵地。西北部地区远离经济发达区,“北煤南运”,“西电(煤、气)东送”建设投资大,能源输送损耗高。四是石油和天然气供需矛盾突出。我国是世界上石油消费增长最快的国家之一,2004年石油消费创历史新高,年增长4220万吨,增长率高达15.8%,位居世界第一,远高于同期国内原油产量2%的年增长率;同期国内天然气年产量增长率高达22%,供需矛盾将进一步加剧。 (二) 我国天然气工业现状及需求矛盾 经过几十年的发展,我国天然气工业取得了长足的进步,储量大幅度增长,产量稳步上升,输配气系统快速发展,四大产区和八大区域市场格局基本形成(东北地区、渤海湾、长江三角洲、东南沿海、中部、西南部、中西部、西部共八大区域市场),为国内天然气大发展奠定了良好的基础。突出表现在以下几个方面: 勘探不断取得突破,开发资源基础雄厚。我国自90年代以来,不断加大天然气勘探力度,天然气资源量大幅增长。先后在塔里木、鄂尔多斯、四川及莺-琼等盆地,发现了克拉 2、长庆、普光、大牛地等大气田,每年新增探明地质储量1000~4000亿方,年均增加可采储量1500亿方,剩余可采储量由1990年的2416亿方增长到2005年的26757亿方,增长了11倍,探明储量储采比达到44,为天然气开发奠定了雄厚的资源基础。 天然气产量稳步增长,四大产气区格局基本形成。随着长庆、青海和塔里木等地区气田的相继投入开发,天然气产量由1990年的135亿方,上升到2005年的500亿方,基本形成了四川、鄂尔多斯、塔里木和海域四大主力产气区。

气藏评价指标

气藏经营管理水平评价试行技术规范 2007年12月

气藏经营管理水平评价技术规范 一、各类气藏涵义 1、干气藏 储层气组成中不含常温常压条件下液态烃(C 5以上)组分,开采过程中地下储层内和地面分离器中均无凝析油产出,通常甲烷含量>95%,气体相对密度<0.65。 2、湿气藏 在气藏衰竭式开采时储层中不存在反凝析现象,其流体在地下始终为气态,而地面分离器内可有凝析油析出,但含量较低,一般小于50 g/m 3。 3、凝析气藏 在初始条件下流体呈气态,储层温度处于压力—温度相图的临界温度与最大凝析温度之间,在衰竭式开采时储层中存在反凝析现象,地面有凝析油产出,凝析油含量一般>50 g/m 3。 4、中高渗断块砂岩气藏 是指平均空气渗透率≥10×10-3μm 2、平均每个断块含气面积<1.0km 2的小断块砂岩气藏。 5、低渗断块砂岩气藏 是指平均空气渗透率<10×10-3μm 2、平均每个断块含气面积<1.0km 2的小断块砂岩气藏。 6、断块砂岩气顶 是指油气藏范围内平均每个断块含油气面积<1.0km 2、含气面积系数<0.5、天然气储量系数<0.5的砂岩油藏气顶。 = 油气叠加总面积 含气面积系数含气面积

7、低渗块状砂岩干气藏 是指平均渗透率<10×10-3μm 2的块状砂岩干气藏。 8、裂缝—孔隙型低渗砂岩气藏 是指基质平均空气渗透率<10×10-3μm 2、具裂缝—孔隙双重介质渗流特征的砂岩气藏。 9、深层低渗砂岩凝析气藏 是指气层埋藏深度≥3500 m —<4500 m 、平均渗透率<10×10-3μm 2的砂岩凝析气藏。 10、超深层缝洞型碳酸盐岩凝析气藏 是指气层埋藏深度≥4500m 、以缝洞型碳酸盐岩(块状或层状)为主的碳酸盐岩凝析气藏。 11、超深层砂岩凝析气藏 是指气层埋藏深度≥4500m 的砂岩凝析气藏。 12、低渗致密砂岩岩性气藏 是指空气渗透率<0.1×10-3um 2 、孔隙度<10%、以岩性圈闭为主的砂岩气藏。 二、评价参数及计算方法 1、气藏—是指单一圈闭中具有统一压力系统和统一气水或气油界面的天然气聚集。包括纯气藏、油田气顶气藏、凝析气藏等。 2、开发单元—指具有独立层系井网的、有连续完整开发数据的计算单元。 3、开发管理单元—是指以开发单元为基础,把同一构造、气藏类型相同、 = 原油地质储量+折算成当量油的天然气储量 天然气储量系数 按当量油折算的天然气地质储量

长庆气区低渗透气藏开发技术

长庆气区低渗透气藏开发技术新进展 发布时间:2013-08-13 14:40 来源:天然气工业点击率:122次字体:大中小 摘要:鄂尔多斯盆地发育上、下古生界两套含气层系,天然气资源量丰富,但储层非均质性强,开发难度大。近10年来,中国石油长庆油田公司相继实现了低渗透碳酸盐岩气藏(靖边气田)、低渗透砂岩... 鄂尔多斯盆地发育上、下古生界两套含气层系,天然气资源量丰富,但储层非均质性强,开发难度大。近10年来,中国石油长庆油田公司相继实现了低渗透碳酸盐岩气藏(靖边气田)、低渗透砂岩气藏(榆林气田)和致密气藏(苏里格气田)的经济有效开发。近期该公司以建设“西部大庆”为目标,低渗透气藏开发水平显著提高,又取得了一系列的新进展: ①水平井已经成为低渗透致密气藏开发的主体技术,其单井产气量达到直井的3倍以上,产能建设比例保持在50%以上; ②丛式井钻完井技术、工厂化作业模式等提高了单井产量,降低了开发成本; ③井、集气站、处理厂数字化建设提升了气田的生产管理水平。 截至2012年底,长庆气区建成了年产300×10^8 m3以上的天然气产能力,当年产气量达到290×10^8 m3,长庆气区已经成为我国重

要的天然气生产基地。下一步该公司将按照“攀峰工程”发展规划,以提高单井产量、提高采收率、降低开发成本为目标,加强4个方面的技术攻关:水平井加体积压裂技术系列、储气库建设技术系列、多层系气藏立体开发技术系列和低产低效井综合治理技术系列。 一、长庆气区低渗透气藏开发技术新进展 1、水平井成为低渗透致密气藏开发主体技术 (1)储层预测及精细描述技术 加强三维地震技术攻关,充分利用三维资料优势开展储层预测,准确描述储层空间展布。在资料处理方面,将叠前时间偏移技术应用于水平层状地层,为地震精确成像及储层空间展布预测提供了保证,同时应用三维变速成图技术(图1),准确描述目标储层的微构造特征。在资料解释方面,以叠前反演为主要技术手段,识别目标层砂体及有效储层,采用可视化技术有效指导水平井位部署。

不同气藏开发难点及开发方式

不同气藏开发难点及开发方式 一、水驱气藏开发难点: 与气驱气藏相比较,水驱气藏有采气速度小、产能递减快、采收率低、投资大和成本高等特点。 1、采气速度低 为了控制水驱气藏特别是非均质水驱气藏的选择性水侵或边底水的突进,水驱气藏开发中采气速度低于气驱气藏。 2、产能递减快 边底水较活跃的水驱气藏,开发过程中气井出水是迟早要发生的,边底水侵入气井的主要产气层段,使气体相对渗透率降低,且气井出水后,井筒内流体密度加大,增加井底回压,使气井产量大幅度递减,甚至水淹。 3、采收率低 在非均质水驱气藏中,水窜形成多种方式的水封气,同时气井的水淹也使气藏废弃压力高于气驱气藏,因而降低了水驱气藏的采收率。气藏非均质性越强,水侵强度越大,气藏一次采收率越低。 4、建设投资大,采气成本高 由于水驱气藏建设中,增加了卤水转输、处理、泵站、管网、回注井等配套建设和二次采气中排水采气井下工艺,地面配套设备以及补充开发井增多,因而投入资金多,操作费用高,使水驱气藏的采气成本大大高于气驱气藏。 由于水驱气藏在天然气开发中的重要地位,五十年代以来,国内外科技工作者,围绕水驱气藏开发中的诸多难点,开展了大量理论、实验和气田现场研究工作,我国四川盆地天然气田开发已有较长的历史,水驱气藏从威远气田算起,三十多年来做了大量科研攻关工作,取得了可喜的成果,总结了水驱气藏的开发地质规律,形成了系列配套的采气工艺技术,获得了良好的开发效果和经济效益。本章以四川水驱气藏开发实例为主,从气藏工程的角度,说明水驱气藏开发的地质特征和动态特征,以供同类气藏开发借鉴和参考。 二、水驱气藏开发阶段的划分和特征 根据气藏、气井产水情况及生产方式,水驱气藏开发阶段可划分为:无水采气阶段、气水同产阶段及二次采气人工助排阶段(排水采气阶段)。有时为了分析气藏水侵对产气量的影响,也同时使用根据气藏稳产情况划分产量上升、稳定和递减三个阶段。 1、无水采气阶段 无水采气阶段是水驱气藏开发初期,生产气井尚未出地层水的开采阶段(不包括已钻穿气水界面的气水同产井)。此阶段气井所产的水全部是凝析水。一旦气井出水或气藏的主产气井出地层水,即进入气水同产阶段。 无水采气阶段有时包括气藏的试采期、产能建设期甚至部分稳产期。由于水驱气藏边底水水侵的滞后性,该阶段气藏的动态特征与气驱气藏相近似、气井产气量稳定、自然递减率小、地层压力、井口压力下降缓慢与累积采气量相适应,气藏单位压降采气量基本是一常数,因此,该阶段也是应用动态法复核容积法储量的最好时机。 无水采气阶段也是通过试井、生产测井、生产井动态资料的录取,油、气、水分析,开发试验区及水井、观察井等气藏监测系统资料的录取,对气藏地质和动态特征深化认识的阶段。从而对静态地质模型进行调整、进而优化开发方案。 尽量延长气藏、气井的无水采气期,是水驱气藏减少水封气的形成、提高采收率的重要措施。无水采气期越长,气藏稳产期也越长,稳产期末采出程度也越高,因此,加强无水采气期的动态基础工作,对提高气藏的开发效果具有重要意义。 2、气水同产阶段

低渗透气藏开发难点与技术对策

·86· 从我国目前已经发现和开采的天然气藏中,低渗以及特低渗藏所占据的比例是比较大的。随着我国天然气资源的不断开采,一般将非常规天然气看成是比较有效的能源补充。但是对于低渗气藏来说,其主要特点就是埋藏比较深、储物层的性能比较差,而且含水饱和度也是比较高的,所以目前的产能以及采收效率都比较低。如何更好的实现对于低渗气藏的高效开发,对于解决我国在生产生活过程中对能源的需求具有非常重要的作用。 1 低渗气藏的地质特征以及开发特征 1.1 低渗气藏的地质特征 建南地区下叠统飞仙关组总体上是在大的海退背景下发育的一套碳酸盐岩沉积。飞仙关组自下而上划分为飞一段至飞4段,其中飞1~飞2段厚度一般为220m 左右,其岩性表现为底部深灰色、灰色页岩夹薄层灰岩,向上为灰色、深灰色泥晶灰岩夹瘤状灰岩及蠕虫状灰岩,飞1段层薄,飞2段泥质条纹与缝合线较发育。 飞3段厚度一般在120~140m 间,岩性由浅灰色、灰色泥晶灰岩与砂屑、鲕粒灰岩构成,水平层理、砂屑条带及冲刷构造多见,局部可见丘状交错层理;纵向上常呈现泥晶灰岩-颗粒灰岩-泥晶灰岩的岩性组合特点。 飞4段岩性稳定,厚度一般为20.0~30.0m,岩性由黄灰色、紫红色(含)泥质云岩、含泥质灰岩、含云质灰岩和含灰云岩构成,该段层薄、色杂,发育水平层理,局部见有部分暴露标志,是工区良好对比标志层之一。1.2 低渗气藏的开发特征 在油井投产之前,一般都会经过酸化作业,各井酸化或酸压作业后产气量均得到了明显的增加。因此对于低孔低渗碳酸盐储层,通过酸化酸压等措施可以获得工业气流。并且在进行具体的分析之后有以下几点认识:1)在酸化、酸压前未获得自然产气量的气井,酸化、酸压后均获得了不同程度的天然气。增加程度从0.36~9.55万m 3大小不等。2)能够获得自然产能的气井,酸化后测试产量均有不同程度的增加。所有气井经过酸化后产量都得到了提升,产量从1.34~3.01m 3提升到5.70~36.90m 3不等。3)随着用酸量的增加,酸化效果得到提升,最终的试气产量也得到了不同程度的增加。从经过两次及两次以上酸化作业的气井中选取了4口井进行对比分析,从两次酸化产量与酸量可以看出第二次酸化后的试气产量均比第一次高,且用酸量也比第一次多,得出随着酸量的增加,酸化后的气产量也增加。 2 低渗气藏的开发难点以及相应的对策 2.1 开发难点 1)勘探技术不是非常发达。对于现有的低渗气藏的勘探技术,还不可以对流体的具体分布情况进行预测,这样就非常容易在分析地震以及钻井相关资料时候出现偏差。2)储层物性比较差以及钻井完成后对储层造成的伤害。对于低渗气藏来说,其储层的物理性质是比较差的,这样就会使得地层里面的渗流阻力非常大,形成比较大的压力差,会让渗流条件变得更差。3)不合理的开发方法。如果开发井网的方式选择的不合理,就很难达到预期的采收目标。例如当一个井存在许多层的时候,不同层之间的物理特性以及压力差都会存在很大的差异。如果这时候没有采用合理的开采方式,就会让底边的锥进变得很快,让地层水提前产出来,造成渗流孔道的堵塞。4)气藏的水侵。如果产生水侵,就非常容易使得单相流变成两相流,这样就会让生产压差变得很大,使得气井的产量大幅度降低。2.2 技术对策 1)欠平衡钻井完井技术。通过利用这种方式,可以将正压力差对井底岩屑的压持效应大幅度降低。2)酸化技术。通过利用酸化技术,可以将底层的渗流能力得到极大的改善,从而将低渗气藏的产能提升上去。3)压裂技术。对于低渗气藏的压裂来说,应该达到的要求就是具有很强的携砂能力、能够很好地防止塌陷以及具有较低的密度。4)地震震动法。通过利用地震波可以将储层的物理特性进行改变,具体的实施方法主要包括两种:一种是利用井下震动源来对周围的井进行处理,或者是利用地面的震动源将能量传递到附近井的地带;另外一种方法就是利用振动源将能量从地面传递到气层。 3 结语 对于低渗气藏来说,储层孔隙度比较低、具有很差的通透性,因此气产量还是比较低的,而且也不能够进行稳定的生产。所以对于相关技术人员来说,应该抓紧研究出能够更好对于低渗气藏进行开发的有效方法,将低渗气藏的产量提升上去。 参考文献: [1] 徐冰青,刘强,陈明,等.低渗透和特低渗透气藏提高采收率综 述[J].天然气勘探与开发,2007,30(2):47-49 [2] 郑勇.文23气田低伤害酸化工艺技术研究与应用[J].钻采工 艺,2007,30(3):51-53.收稿日期:2017-11-29 作者简介:银熙炉,中国石化江汉油田分公司采气一厂。 低渗透气藏开发难点与技术对策 银熙炉 (中国石化江汉油田分公司采气一厂,重庆 404120) 摘 要:在这篇文章中,我们的主要研究目的就是低渗气藏开发技术的相关对策,并且对低渗气藏的地质特 征以及开发特征进行了分析,对于不同类型的低渗气藏开发技术进行了整合。 关键词:低渗气藏;开发难点;技术对策 中图分类号:TE348 文献标识码:B 文章编号:1004-275X(2018)01-086-01

低渗气藏水平井产能影响因素敏感性分析_孙娜

收稿日期:20110115;改回日期:20110415 基金项目:“973”项目“高效天然气藏形成分布规律与凝析、低效气藏经济开发的基础研究”(2001-CB -209-100);黑龙江省科技攻关项目 “水平井产能设计及指标预测方法研究” (GZ05A301)作者简介:孙娜(1983-),女,助理工程师,2006年毕业于大庆石油学院工商管理专业,2009年毕业于大庆石油学院油气田开发工程专业,获硕士学位,现 从事油气田开发方面工作。 文章编号:1006-6535(2011)05-0096-04 低渗气藏水平井产能影响因素敏感性分析 孙 娜 (中油吉林油田公司,吉林 松原138003) 摘要:为了提高吉林油田水平井开发深层天然气的产能和经济效益,研究了低渗透率气藏水平井产能影响因素。所考虑的影响因素包括储层渗透率、 储层厚度、水平段长度、纵向位置、表皮系数、压裂裂缝条数。研究表明:在相同渗透率下,随着水平井段长度、气层厚度和压裂缝条数的增加,水平井采气指数增加,而且三者对水平井采气指数的影响显著;水平井采气指数随表皮系数的增加而降低幅度逐渐减缓;纵向位置影响甚微;水平井采气指数随着储层渗透率的增大而逐渐增大。 关键词:低渗气藏;水平井;产能;影响因素;吉林油田中图分类号:TE319 文献标识码:A 引言 影响气藏水平井产能的主要因素包含储层厚 度、水平段长度、水平井在油藏中的位置、钻井液与完井表皮效应、压裂、酸化等,不同原因对产能的影响各异 [1-7] 。结合X 气藏实际,采用综合考虑储 层非均质性的数值模拟技术研究气藏水平井产能的影响因素 [8-10] ,为今后X 气藏水平井开发提供 科学理论依据。 1X 气藏概况 X 气田是低压、低丰度、低渗、非均质性强的复 杂岩性气藏。X 气田为河流相沉积, 2套含气层系之间无明显隔层,属于无边底水、同岩性干气气藏,为同一温度、压力系统。据完钻井统计,目的层段平均钻遇有效厚度为13.93m ,气层单层厚度薄,储量丰度低,不适合分层系开发,因此采用一套层系开发。气藏驱动类型为定容弹性驱动,因此开发方式采用天然能量衰竭式降压开采。 根据X 气藏水平井设计井位,对储层渗透率、储层厚度、水平段长度、表皮系数、压裂裂缝条数进行敏感性分析。数值模拟中用到的参数取值见表1。 2产能影响因素敏感性分析 2.1 气层厚度 图1为储层其他参数不变、改变储层厚度和渗透率引起的气井产能的变化情况。可以看出,水平井采气指数与气层厚度几乎呈现线性变化,水平井采气指数随气层厚度的增加而增加。对于气藏渗透率来说,随着气层厚度的增加,气藏渗透率对水平井采气指数的影响越明显。

低渗透气藏开发及稳产技术研究

低渗透气藏开发及稳产技术研究 罗 迪1,张小龙1,谭 红2 (1.西南石油大学研究生部,四川成都 610500;2.西南油气田重庆气矿开县采输气作业区,重庆 405400) 摘 要:低渗透气藏在世界及我国分布广泛,由于低渗气藏本身的特点,开发这类气藏存在投资大,经济效益低的特点,相比常规气藏而言开发难度大得多。低渗气藏开发技术的发展对经济有效的开发低渗气藏具有非常重要的意义。通过相关文献的调研和分析,对低渗气藏的特点以及开发和稳产的关键性技术进行阐述,对有效的开发低渗透气藏具有一定的借鉴和指导作用。 关键词:低渗透;气藏;开发稳产;技术 中图分类号:T E348 文献标识码:A 文章编号:1006—7981(2011)09—0115—02 我国的低渗透气藏资源十分丰富,广泛分布在松辽盆地、鄂尔多斯盆地、四川盆地和中原油田,这些低渗致密气藏已成为我国天然气供应重要的气源地[1]。但是,低渗气藏储层物性差,储量丰度低,储层容易受到伤害,开发效益相对较差。因此,提高低渗透气藏天然气储量的动用程度,不断的提高开发技术水平,是低渗透气藏高效开发与稳产的关键。 1 低渗透气藏的特点 目前国内外对低渗透气藏尚没有统一的划分标准,以前关于低渗透气田的定义大多是参考低渗透油田的标准,并且多是根据储层的物性进行划分。胡文瑞在其《低渗透油气田概论》中指出,低渗透气藏是指常规开采方式难以有效规模开发的气藏,包括低渗透砂岩气藏、火山岩气藏、碳酸盐岩气藏以及煤层气气藏等。该类气藏不是一般的技术可以实现有效规模开发的气藏,基本的参数选取条件包括:渗透率小于以及孔隙度小于8%。早期低渗透气藏标准的分类是在1980年[2],美国联邦能源管理委员会(PERI)根据《美国国会1978年天然气政策法(NG -PA)》的有关规定,率先提出了确定致密气藏的注册标准是其原始渗透率低于。 低渗气藏具有储量大、难开发、产量低的特点。一般需要经过一定的增产措施后才能获得有经济价值的产量,在钻井和完井过程中气藏储层易受到伤害,开发技术复杂且难度大。低渗透气藏储层特征主要表现为:非均质性强、泥质含量高、孔隙度和渗透率低、高毛管力以及高含水饱和度。开发上的特征主要表现为:渗流规律不遵循达西定律,具有启动压力梯度;气井自然产能低;弹性能量小,产量和压力下降快,产出程度低等[1]。 2 开发及稳产技术 2.1 气藏描述技术 目前已发现的一些低渗透气藏具有连片性差、非均质性强、气井产能分布不均衡的特点,如长庆气区上古气藏。在气藏描述时将储层分为4类:Ⅰ类储层为试气时产能大,投产后产能高,稳产条件也好;Ⅱ类储层为试气时产量和稳定产量都较低;Ⅲ类储层不经改造难以获得工业气流;Ⅳ类储层在目前的经济、工艺技术条件下难以开采[3]。为了更好的对低渗气藏进行描述,在气藏工程方面应通过气井生产动态特征和压力系统分析开展井间连通性研究,判断储集层的连通性,划分出连通性良好的区域。利用先进的地震软件对有利区内地震资料进行精细处理、解释,进一步优选开发井位,初步形成了储集层地震预测、岩溶古地貌恢复小幅度构造预测、储集层微观特征、砂体描述、储集层连通性分析等技术[4]。 2.2 钻井技术 低渗透气藏钻井技术主要包括钻水平井、欠平衡钻井以及空气钻井[1]。 水平井泄流范围大,单位压差下与直井相比具有较高的产能。虽然水平井的钻井费用一般相当于钻直井费用的2倍,但是水平井对油气田开发的效益却是直井的3~5倍,因此,国外广泛应用水平井开发低渗透气藏。以美国为代表的应用钻水平井的技术已成为一种重要的低渗透致密气藏增产改造的措施。 在钻井过程中,利用自然或人工方法使钻井液当量循环压力低于地层压力,地层流体有控制地流入井筒的钻井称为欠平衡钻井。欠平衡钻井可分为边喷边钻和人工诱导的欠平衡钻井两种类型,其主要特点表现在: 减少地层损害; 提高机械钻速,延长钻头寿命; 避免井漏,减少压差卡钻; 改善地层评价,减少增产措施; 保护环境,降低作业成本。由于欠平衡钻井自身的优势以及世界石油工业 115  2011年第9期 内蒙古石油化工 收稿日期:2011-03-15 作者简介:罗迪(1987-),四川南充人,现为西南石油大学油气田开发工程在读硕士。

试井分析复习资料

一、概念题 1.表皮效应:由于钻井液的侵入,射开步完善,酸化,压裂等原因,在井筒周围有一个很小的环形区域,这个区域的渗透率与油层不同因此,当原油从油层流入井筒时,产生一个附加的压力降,井底受污染相当于引起正的附加压降,井底渗透性变好相当于引起一个负的附加压降,将这种影响称之为表皮效应。定义表皮系数)ln()1(S w skin skin r r k k -=,表征井底的表皮效应。这个附加压力降用无量纲形式表示,得到无量纲压力降,它用来表征一口井表皮效应的性质和严重程度称之为表皮系数。 2.井筒储集系数:对于开井和关井时,由于原油具有压缩性和油套环空中液面的升降等原因,造成地面和地下的产量不相等。PWBS —纯井筒储积阶段。用“井筒储集系数” p V dp dV C ??≈=(物理意义:井筒压力变化1MPa ,井筒中原油的变化的体积为C 立方米)来描述井筒储集效应的强弱程度。即井筒靠其中原油的压缩等原因储存原油或靠释放井筒中的压缩原有的弹性能量等原因排出原油的能力。 3.测试半径: 4.有效半径:不完善井的共同特点之一是井底附近的渗流面积发生改变,可以把不完善井假想成具有某一半径的完善井,其产量与实际产量相等,此假想完善井的半径称为折算半径或有效半径 s w we e r r -=,s 为表皮系数,w r 为井筒内径。 5.裂缝的储能比:ω为弹性储能比,是裂缝的弹性储能与整个系统弹性储能之比。 裂缝孔隙度占总孔隙度比例越大,ω值也越大。 6.窜流系数:λ为其大小反映基岩中流体向裂缝窜流能力,基岩渗透率大,或裂缝密度大,λ值越大。 7.无阻流量:无阻流量:井底流压(表压)降为零(绝对压力为14.7psi )即一个大气压时,气井达到最高的极限产量,这时的产量称为气井的无阻流量AOF 。 8.流动系数----kh/μ 9.导压系数:t C k φμη=,其物理意义为单位时间内压力传播的面积,用来表征地层流体压降的传播速度。 10.叠加原理:如果某一线性方程的定解条件也是线性的,并且它们都可以分解成为若干部分,即分解为若干个定解问题,而这几个定解问题的微分方程和定解条件相应的线性组合,正好也是原来的微分方程和定解条件,那么这几个定解问

低渗气藏主要损害机理及保护方法的研究

[收稿日期]2000-01-11;[修定日期]2000-02-03;[责任编辑]王 梅 [基金项目]中国石油天然气集团公司“九五”重点科技攻关项目“探井保护油气层技术”的部分研究成果。 低渗气藏主要损害机理及保护方法的研究 张 琰,崔迎春 (石油大学,北京昌平 102249) [摘 要]针对低渗透砂岩的特点,就气藏损害的特殊性、影响气藏损害的因素以及评价方法特殊性 的研究结果进行了概括性的论述,并给出了相应的预防气藏损害的方法。 [关键词]低渗气藏 应力敏感 水锁效应 [中图分类号]TE12213+4 [文献标识码]A [文章编号]0495-5331(2000)05-0076-03 1 气藏损害的特殊性 与油藏相比,天然气藏的储层物理特性更为复杂,气体有不同于液体的特殊的可压缩性。在我国,大多数气藏属于低渗气藏。低渗气藏普遍具有低孔、低渗的特点,气、水及少量的油赖以流动的通道很窄,渗流阻力很大,液、固界面及液、气界面的相互作用力很大,使水锁效应和应力敏感性明显增强,并导致油、气、水渗流规律发生变化,使得低渗气藏损害具有不同于油藏的特殊性。 对于中、高渗油藏,由于孔喉孔、道尺寸较大,通常外来固相颗粒侵入储层以及储层孔隙空间的微粒运移引起渗流通道堵塞是造成油藏损害的主要原因。对于气藏,由于孔喉、孔道狭小,因此,外来工作液中的固相颗粒难于侵入储层,但液相可侵入储层,而且一旦工作液中的水相侵入储层,就会在井壁周围孔道中形成水相堵塞。另一与中、高渗油藏显著的不同点是,气藏岩石非刚性特征较强,渗透率对周围应力变化很敏感,应力的变化可以引起的渗流通道的收缩,造成气藏渗透率下降。由于低渗气藏岩石致密、渗流空间狭小、微粒不为气体润湿等原因,因此在低渗气藏一般不存在微粒运移的损害,即也不存在流速敏感性损害。 2 影响气藏损害的因素 211 应力敏感性 气藏的应力敏感性定义为气藏对所受净压力的敏感程度。许多研究者对此进行了初步研究,得到的结论是:低渗气藏具有很强的应力敏感性,应力敏感是由空隙和毛细管被压缩和关闭引起的。 低渗气藏的高应力敏感性是气体在低渗气藏中 的非线性渗流特性引起的。对孔隙性储层的研究结果表明,低渗储层同中、高渗储层不同,低渗储层中气体的渗流受滑脱效应的影响,存在多种渗流形态,这与低渗岩心的渗透率、含水饱和度以及围压、驱替压力的大小有关。 研究结果表明:低渗气藏渗透率与所受净压力 (净压力=围压-1/2驱替压差)有关,净压力存在一个应力敏感点。当岩样所受净压力低于此点时,净压力越大,储层渗透率降低越严重;高于它时,净压力对储层渗透率的影响变小;当净压力继续增大到可以将岩石压破时,渗透率将大幅度增高。 应力敏感性还与储层含水饱和度有关,含水饱和度愈高,应力敏感性愈强。这可能是滞留在孔道里的水,占据了孔隙空间,从而增加了岩样的应力敏感性。当含水饱和度较低时(小于30%),仅在一定的驱替压力范围内存在达西渗流。当含水饱和度较高时(大于30%至束缚水饱和度以下),气体的渗流存在非达西渗流现象:在较低的驱替压力下为非线性渗流,高的驱替压力下为线性渗流。但此时气体的流动规律同达西线性渗流不同,气体的渗流存在附加压力损失,并出现“启动压差”现象。 气藏岩石还具有一定的压力滞后效应,因此由于应力敏感引起损害不会因应力消失而完全恢复。 储层渗透率不但是储层岩石自身储渗特征的函数,而且也是围压、驱替压力的函数,因此,通常地表测得的渗透率不能真实反映气藏流动特征,还要用储层条件下测得的应力敏感性和有关数据加以校正。 低渗气藏呈现以上应力敏感性规律的原因,可能是由于:(1)岩石存在微裂缝。这些微裂缝在一定的净压力下易于闭合,闭合后的裂纹在卸压过程不 6 7第36卷 第5期2000年9月 地质与勘探GE O LOGY AND PROSPECTI NG V ol.36 N o.5 September ,2000

试井分析

试井分析 第一部分:试井简介 试井的分类:稳定试井 产能试井 试井等时试井 不稳定试井 一、基本定义 1、产能试井:改变若干次测试井的工作制度,测量在各个不同工作制度下的稳定产量及与之相对应的井底压力,从而确定井的产能方程,无阻流量,动态曲线,合理产量等。 2、不稳定试井:改变测试井的产量,从而在油层中形成一个压力扰动或变化,并测量由此所引起的井底压力随时间的不稳定变化过程。 二、试井目的 估算完井效率、井底污染情况,判断是否需要采取增产措施,分析增产措施效果,估算地层压力、控制储量或原始地质储量,地层参数,判断边界情况,连续性等。 第二部分:产能试井方法及解释 试井方法 一、稳定试井 测试方法:连续以3~4个不同的稳定产量生产(由大到小),每个产量生产都要求流压达到稳定;测量每个稳定产量及相应的稳定流压、油压、气油比和出砂量等,最后终关井测底层压力。测试前要求先清井及初关井。 二、回压试井 回压试井针对气井,其测试方法与油井的稳定试井相同。 三、等时试井 测试方法:连续以3~4个稳定产量开井生产相同的时间,而不管流压是否达到稳定,但要求一定要进入径向流阶段。在每个不同气嘴生产之间都插入一个关井压力恢复,而且要恢复到地层压力。最后一次生产要延续很长时间,一直到流压稳定,称为延时测试,最后终关井得到地层压力。 四、修正等时试井 测试方法:连续以3~4个稳定产量开井生产相同的时间,而不管流压是否达到稳定,在每个油嘴开井生产之间插入的关井时间相同,且关井时间常与开井时间相同。同样有延时测试和终关井。

试井解释 试井解释分为绘制产能曲线,写出产能方程,绘制流入动态曲线。产能方程有指数式产能方程和二项式产能方程。 一、指数式产能方程 n wf R g p p C q )(22-= (1) 式中:n —渗流指数,15.0≤≤n ,当1=n 时,气体为层流;当5.0=n 时,气体为纯湍流。 g q —气体流量 R p —地层压力 wf p —井底流压 对(1)式两边取对数有 )l g (lg lg 2 2wf R g p p n C q -+= (2) 变形得 C n q n p p g wf R lg 1lg 1)lg(2 2 - =- (3) 在双对数坐标纸上绘制)(2 2 wf R p p -与g q 的关系曲线(直线)。直线斜率为n /1,截距为C n lg 1- 2 2 wf R p P - )/10(3 4 d m q g 指数式产能方程曲线

试井分析

1 稳定试井 逐步地改变井的工作制度,测量出每一工作制度下稳定的井底压力、产油量、产液量、产气量、含砂量或注水量。 同义词:系统试井。 5.2 流入动态方程 油井稳定试井时所得出的指示曲线,可用如下方程式表示:q 0=C(p n -p wf ) n,式中:p n 、p wf ——分别为地层压力和井底压力; q ——油井产量; C、n——系数。 5.3 指示曲线 根据稳定试井测得的油、气、水井产量或注入量及流动压力资料而绘制出的曲线。一般以产量或注入量为横坐标,以流动压力为纵坐标。 5.4 采油指数 油井日产油量除以生产压差所得出的商。 5.5 比采油指数 单位油层厚度的采油指数。 5.6 产液指数 油井日产液量除以生产压差所得出的商。 5.7 吸水指数 水井日注入量除以注水压差所得出的商。 5.8 等时试井 气井以某一稳定流量q 1生产一段时间t 1 ,然后关井知道压力恢复至稳定 状态;再开井以流量q 2 生产相同的时间,然后再关井知道压力恢复至稳定状态,如此循环进行三次以上流量的测试。最后一次流量测试,生产时间应延长至达到稳定流状态。除最后一个流动期外,每个流动期的时间相等;关井期间井底压力逐渐上升至近似等于平均地层压力,因此关井时间不相等。 5.9 气井产能方程 根据气井产能测试资料处理所得到得描述气井产能的方程。 5.10 气井产能曲线 根据气井产能测试资料整理绘制的曲线。 5.11 改进等时试井 关井压力恢复时间与开井生产时间相等的等时试井。 5.12 真实气体势函数 由下述积分定义:Φ(p)=2 式中:Φ(p)——拟压力值; P ——任意一个基准压力; μ(p)——气体粘度; Z(p)——气体偏差系数。 同义词:真实气体拟压力。 5.13 不稳定试井 当井生产稳定后,改变井的工作制度,测量井底压力随时间发生的变化值。 5.14 压力恢复试井 当井生产稳定后,关井并测量井底压力随时间的恢复值。

相关文档
相关文档 最新文档