文档库 最新最全的文档下载
当前位置:文档库 › 常用的Z变换公式表

常用的Z变换公式表

常用的Z变换公式表
常用的Z变换公式表

表2-1 常用函数傅立叶变换表

表2-1 几种典型波形的傅立叶变换表 名称 波形函数()f t 波形图 频谱函数()F ω 频谱图 矩形脉冲 ,2 0, 2 E t t τ τ ?

名称 波形函数()f t 波形图 频谱函数()F ω 频谱图 梯形脉冲 1 111 110, 22,222, 222, 222t E t t E t E t t τττττττττττττ? ≥?? ???+-<<- ??-?? ?? ?-<?

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

信号系统Z变换习题讲解

信号系统Z 变换习题讲解 7-1 分别绘出下列各序列的图形。 (1)[](1/2)[]n x n u n = (2)[]2[]n x n u n = (3)[](1/2)[]n x n u n =- (4)[](2)[]n x n u n =- 解: 7-2 分别绘出下列各序列的图形。 (1)[][]x n nu n =-- (2)[]2[]n x n u n -= (3)[](1/2)[]n x n u n -=- (4)[](1/2)[]n x n u n =-- 解: 01 23 4 n (1) 01234 n (2) (3) 01234 n [n ] -1 -4 n (2) (1) (4)

7-3 分别绘出下列各序列的图形。 (1) []sin 5n x n π??= ??? (2)[]cos 105n x n ππ?? =- ??? 解: 7-5 序列x [n ]如图题7-5所示,把x [n ]表示为δ[n ]的加权与延迟之线性组合。 图 题7-5 解: []2[3][]3[1]2[3]x n n n n n δδδδ=-+-+-+- 7-7 求下列序列的z 变换X (z ),并注明收敛域,绘出X (z )的零极点图。 (1)(1/2)n u [n ] +δ [n ] (4)(1/2)n {u [n ] - u [n -8]} (5)δ [n ] -1 5δ [n -2] 解:1 1 1 (1)()[()[][]]()[]2212121112 2 2 n n n n n n n X z u n n z z n z z z z z z δδ∞ ∞ ∞ ---=-∞ ==-∞ = += + -=+= > - - ∑∑∑ (2)

一些常见的Z变换

附表A-2 常用函数的拉氏变换和z 变换表 序 号 拉氏变换()E s 时间函数()e t Z 变换()E s 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0 )()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 2 1s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 11+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 ) (a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ----- 11 2 2ωω +s t ωsin 2 sin 2cos 1 z T z z T ωω-+ 12 2 2ω+s s t ωcos 2 (cos )2cos 1 z z T z z T ωω--+ 13 22)(ω ω ++a s t e at ωsin - 22sin 2cos aT aT aT ze T z ze T e ωω----+ 14 2 2)(ω+++a s a s t e at ωcos - 222cos 2cos aT aT aT z ze T z ze T e ωω-----+ 15 a T s ln )/1(1- T t a / a z z -

常用傅里叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 | 线性 2时域平移 3频域平移, 变换2的频域对应 \ 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当| a | 趋向无 穷时,成为Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 / 傅里叶变换的微分性质 7变换6的频域对应

8 表示和的卷积—这 就是卷积定理 - 9 矩形脉冲和归一化的sinc函数 10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 11- tri是三角形函数 12变换12的频域对应 13高斯函数exp( ? αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。 ¥14 15 16》 a>0

18δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 【 19 变换23的频域对应20由变换3和24得到. 21` 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22由变换1和25得到 23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 / 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 25变换29的推广. 17变换本身就是一个公式

26【 变换29的频域对应. 27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到. 28u(t)是单位阶跃函数,且a > 0. 34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

求以下序列的z变换

习题五 Z 变换 1. 求以下序列的z 变换,并画出零极点图和收敛域。 n n n n n n n z a z a -==∑∑+=0 1) )(1 ()1() 1)(1(1111212a z a z a z a az az a z a az az ---= ---= -+-=-) (21)() 2(n u n x n ?? ? ??=) 1(21)() 3(--?? ?-=n u n x n )1(,1 )() 4(≥=n n x )5() 6()1||()() 1(<=a a n x n

∞ ====<<<

0 2 1 ==z z 零点为:极点为: 解: (4) ∑ -?∞ ==11)(n n z n z X ∞--? ?1 1)(n z dX 11n ∞ -- 解:因此,收敛域为 :1>z ∞ ==-====-z z z z e z e z j j ,0,1,1 , 00零点为:(极点为二阶)极点为:ωω 解:(6) )1(,1 )()4(≥= n n n x 1 0),()cos()()6(0<<+=r n u n Ar n x n φω

1 ,cos 21)cos(cos cos 21sin sin cos 21cos 1cos )( )()sin(sin )()cos(cos ) (]sin )sin(cos )[(cos( ) ()cos()( 2 01 012 010 12 010100000>+---= +-?-+--?=∴??-??=?-?=?+=---------z z z z z z z z z z z Y n u n n u n n u n n n u n n y ωωφφωωφωωφωφωφφωφωφω设 [则而的收敛域为则 )()( 1 )( X n y Ar n x z z Y n ∴?=>2 . 解 : 对X(Z)的分子和分母进行因式分解得 ) 4 3 1)(211)(211(2111111 ----+-+- =Z jZ jZ Z ) 4 3 1)(211)(411()21 1)(211()(11211-----++++- = Z Z Z Z Z Z X

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。 非确定性信号(随机信号):给定条件下 取值是不确定的

按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始无终” #

傅里叶级数的三角函数展开式 (n=1, 2, 3,…) 傅立叶系数: 式中T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式:周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图 解: 解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 幅频谱图相频谱图

二、周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式 复数傅里叶系数的表达式 其中a n,b n的计算公式与三角函数形式相同,只是n包括全部整数。 一般c n是个复数。 因为a n是n的偶函数,b n是n的奇函数,因此# 即:实部相等,虚部相反,c n与c-n共轭。 c n的复指数形式 共轭性还可以表示为 即:c n与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

傅里叶变换 讲解最通俗易懂的一片

【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶 变换?来源:胡姬的日志 写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。在此 向多位原创作者致敬!!! 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.wendangku.net/doc/7610570706.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

傅里叶变换公式

第2章 信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量 信号分析:从信号中提取有用信息的方法和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。 质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ??? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

)cos(000φω+t x 简谐信号及其三个要素 幅值 频率 相角 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐 信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()(ΛΛ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (=1, 2, 3,…) 傅立叶系数:

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

z变换的基本知识

z 变换基本知识 1 z 变换定义 连续系统一般使用微分方程、拉普拉斯变换的传递函数和频率特性等概念进行研究。一个连续信号()f t 的拉普拉斯变换()F s 是复变量s 的有理分式函数;而微分方程通过拉普拉斯变换后也可以转换为s 的代数方程,从而可以大大简化微分方程的求解;从传递函数可以很容易地得到系统的频率特征。因此,拉普拉斯变换作为基本工具将连续系统研究中的各种方法联系在一起。计算机控制系统中的采样信号也可以进行拉普拉斯变换,从中找到了简化运算的方法,引入了z 变换。 连续信号()f t 通过采样周期为T 的理想采样开关采样后,采样信号*()f t 的表达式为 0*()()()(0)()()()(2)(2)k f t f kT t kT f t f T t T f T t T δδδδ∞ ==-=+-+-+∑ (3)(3)f T t T δ-+L (1) 对式(1)作拉普拉斯变换 23*()[*()](0)()(2)(3)sT sT sT F s L f t f f T e f T e f T e ---==++++L ()e ksT k f kT ∞ -==∑ (2) 从式(2)可以看出,*()F s 是s 的超越函数,含有较为复杂的非线性关系,因此仅用拉普拉斯变换这一数学工具,无法使问题简化。为此,引入了另一个复变量“z ”,令 e sT z = (3) 代入式(2)并令1 ln *() ()s z T F x F z ==,得

1 2 ()(0)()(2)()k k F z F f T z f T z f kT z ∞ ---==+++=∑L (4) 式(4)定义为采样信号*()f t 的z 变换,它是变量z 的幂级数形式,从而有利于问题的简化求解。通常以()[*()]F z L f t =表示。 由以上推导可知,z 变换实际上是拉普拉斯变换的特殊形式,它是对采样信号作e sT z =的变量置换。 *()f t 的z 变换的符号写法有多种,如 [*()],[()],[()],[*()],()Z f t Z f t Z f k Z F s F z 等,不管括号内写的是连续信号、 离散信号还是拉普拉斯变换式,其概念都应该理解为对采样脉冲序列进行z 变换。 式(1),式(2)和式(3)分别是采样信号在时域、s 域和z 域的表达式,形式上都是多项式之和,加权系数都是()f kT ,并且时域中的()t kT s δ-、域中的 e ksT -及z 域中的k z -均表示信号延迟了k 拍,体现了信号的定时关系。 在实际应用中,采样信号的z 变换在收敛域内都对应有闭合形式,其表达式是z 的有理分式 11101110 () ()m m m n n n K z d z d z d F z z C z C z C ----++++= ++L L ++ m n ≤ (5) 或1z -的有理分式 1111011110(1) ()1l m m m n n n Kz d z d z d z F z C z C z C z ---+----+--++= ++++L L ++ l n m =- (6) 其分母多项式为特征多项式。在讨论系统动态特征时,z 变换写成零、极点形式更为有用,式(5)可改写为式(7) 11()() ()()()()() m n K z z z z KN z F z D z z p z p --= =--L L m n ≤ (7) 2 求z 变换的方法 1)级数求和法

常用傅里叶变换表

弧频率表示的时域信号注释傅里叶变换 线性1 时域平移2 频域平移3 , 变换2的频域对应 会收缩值较大,则如果 4 会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。 Delta 通过傅里叶变换的二元性性质。

5 交换时域变量和频域变量 . 得到 6 傅里叶变换的微分性质 变换7 6的频域对应 表示和的卷积—这 8就卷积定 9 矩形脉冲和归一化的sinc函数 变换10的频域对应。矩形函数是理

想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。 tri是三角形函数 11 12 变换12的频域对应 2t) ?α的傅里叶变 exp( 高斯函数 换是他本身. 只有当 Re(α) 13 > 0时,这是可积的。 14 15

a>0 16 17 变换本身就是一个公式 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克18 δ函数的重要性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 由变换1和25得到,应用了欧拉公 21 iat?iat eeat) / 2. 式: cos() = ( +

22 由变换1和25得到 n)(n(ω) . δ这里, 自然数是一个n阶微分。函数分布的是狄拉克δ 这个变换是根据变换23 7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 此处sgn(ω)为符号函数;注意此变 24 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. ut)是单位阶跃函数此处(; 此变换 27

根据变换1和31得到. uta > 0. ,且()是单位阶跃函数28 狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.

常用函数的拉氏变换和z变换表

附录A 拉普拉斯变换及反变换

… 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 @ i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ????? ?-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()()( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

傅里叶变换常用公式

(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 简介 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。 傅里叶变换定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。 ①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。傅里叶变换相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

常用傅里叶变换模板.doc

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2的频域对应 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平.当| a |趋向无穷 时,成为狄拉克δ函数。 5 傅里叶变换的二元性性质。通过交 换时域变量和频域变量得到. 6 傅里叶变换的微分性质

7 变换6的频域对应 8 表示和的卷积—这就是 卷积定理 9 变换8的频域对应。 [编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,sinc函数是 这类滤波器对反 因果冲击的响 应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变 换是他本身.只 有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第 一类贝塞尔函 数。 21 上一个变换的推 广形 式; T n(t)是 第一类切比雪夫 多项式。 22 U n(t)是第二类 切比雪夫多项 式。 [编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数分 布.这个变换展示了狄拉 克δ函数的重要性:该函 数是常函数的傅立叶变换24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

求下列序列的双边z变换.

习题六 一、求下列序列的双边z 变换,并注明收敛域。 (1),,0)21()(k k f ?????= 00≥?k k (2)?? ?????? ??,31,2)(k k k f 00≥?k k 二、求下列序列的z 变换,并注明收敛域。 (1))(])31()21[()(k k f k k ε-+= (2))()2cosh()(k k k f ε- 三、根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)2212)(--+=z z z F ?∞?z 0 (2)a z az z F ?-=-,11)(1 四、利用z 变换性质求下列序列的z 变换。 (1))()2 sin(k k k επ (2))(1 k k a k ε+ 五、求下列象函数的逆z 变换。 (1)5.0,5.011)(1?-=-z z z F (2)21,2113)(?++= z z z z F (3)a z a z az z F ?--=,1)( (4)2,2 3)(22 ?++=z z z z z F 六、利用卷积定理求下述序列f(k)与h(k)的卷积)()()(k h k f k y *=。 (1))2()(),()(-==k k h k a k f k δε

(2))1()(),()(-==k k h k a k f k εε (3))()(),()(k b k h k a k f k k εε== 七、描述某LTI 离散系统的差分方程为 )(2)1(7)(1.0)1(7.0)2(k f k f k y k y k y -+=-+-+ 已知,38)2(,4)1(),()4.0()(-=--=-=y y k k f k ε求该系统的零输入响应)(k y x 、零状态响应)(k y f 及全响应)(k y 。 八、已知某一阶LTI 系统,当初始状态1)1(=-y ,输入时)()(1k k f ε=,其全响应);(2)(1k k y ε=当初始状态1)1(-=-y ,输入时)(2 1)(2k k k f ε=,其全响应输入())(1)(2k k k f ε-=。求输入)()2 1()(3k k f k ε=时的零状态响应。

常用傅里叶变换

时域 信号 角频率 表示的 傅里叶 变换 弧频率 表示的 傅里叶 变换 注释 1 线性 2 时域平移 3 频域平移,变换2的频域对应 4 如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当|?a?|?趋向无穷时,成为狄拉克δ函数。 5 傅里叶变换的二元性性质。通过交换时域变量和频域变量得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这就是卷积定理 9 变换8的频域对应。 [编辑]平方可积函数

换换 10 矩形脉冲和归一化的sinc函数 11 变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 12 tri?是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是0阶第一类贝塞尔函数。 21 上一个变换的推广形式;?T n(t)?是第一类切比雪夫多项式。 22 U n?(t)是第二类切比雪夫多项式。 [编辑]分布

时域信号角频率 表示的 傅里叶 变换 弧频率 表示的 傅里叶 变换 注释 23 δ(ω)代表狄拉克δ函数分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到. 33 u(t)是单位阶跃函数,且a?> 0. 34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

相关文档