文档库 最新最全的文档下载
当前位置:文档库 › 中国现有乙烯装置和技术水平

中国现有乙烯装置和技术水平

中国现有乙烯装置和技术水平
中国现有乙烯装置和技术水平

1.中国现有乙烯装置多少套?

2012年,我国乙烯工业产能快速增长,装置大型化、炼化一体化程度进一步提升,但开工率有所下降,进口量有所增加,总体走势呈以下三个特点:一是增速加快,乙烯总产能突破1700万吨/年。建设大型化装置、发展规模经济,是国内外乙烯工业实现低成本发展战略的有效途径。统计数据显示,100万吨/年乙烯与50万吨/年乙烯装置相比较,吨成本可降低25%.

截至2012年底,我国乙烯新增产能140万吨,总产能达1709.5万吨,比上年增长8.9%.一批新建和改扩建乙烯项目快速推进,其中大庆石化120万吨/年乙烯改扩建工程和抚顺石化80万吨/年乙烯装置,均实现一次开车成功,四川、武汉等地的煤制烯烃,以及浙江宁禾、陕西延长榆林等多个煤制烯烃项目在稳步推进中。

2012年,我国共有24家乙烯生产企业、有32套乙烯装置(其中石脑油基制乙烯装置28套),装置平均规模约52.4万吨/年,而2005年装置的平均规模仅为39.5万吨/年。若不计算煤制烯烃和甲醇制烯烃装置,蒸汽裂解装置共有29套,蒸汽裂解装置平均规模近60万吨/年,高于世界52万吨/年的平均规模。我国产能在80万吨/年以上的装置数量也有大幅增长。截至2012

年,共有10套80万吨以上的蒸汽裂解装置,合计产能达988万吨/年,占总产能的58.9%。单套最大规模为上海赛科119万吨/年的乙烯装置。乙烯生产企业平均规模74.1万吨/年,比2011年的68万吨/年增加了6.1万吨/年;乙烯装置平均规模57万吨/年,比2011年的56.1万吨/年上升了0.9万吨/年,高于世界52万吨/年的平均规模。

若不计算煤制烯烃和甲醇制烯烃装置,我国石脑油裂解乙烯装置的平均规模为59.2万吨/年,单套规模达80万吨/年以上的装置有8套,合计产能774万吨/年,占总产能的45%;单套规模60万吨/年以下的装置降至12套,产能合计263.5万吨/年,占总产能的16%.

据美国《油气杂志》最新统计数据显示,当前全球十大乙烯生产商排名情况如下:

排名第一的是埃克森美孚公司,共有19套装置,总产能1251.5万吨/年;

排名第二的是陶氏化学,共有18套装置,产能1214.48万吨/年;

排名第三的是沙伯公司,共有13套装置,产能1084.22万吨/年;

排名第四的是壳牌化学,共有13套装置,产能935.84万吨/

年;

排名第五的是中国石化集团公司,共有12套装置,产能637.5万吨/年;

排名第六的是道达尔公司,共有11套装置,产能593.3万吨/年;

排名第七的是利安德巴赛尔公司,共有8套装置,产能520万吨/年;

排名第八的是伊朗国家石化公司,共有7套装置,产能473.4万吨/年;

排名第九的是英力士公司,共有6套装置,产能465.6万吨/年;

排名第十的是台湾石化公司,共有5套装置,产能447.6万吨/年。

2.中国目前的乙烯生产能力及其技术水平如何?

经过数十年的发展,特别是在“十一五”期间,我国乙烯工业取得了举世瞩目的进步,同期世界新建的乙烯装置大多集中在中国。随着一系列乙烯装置的建成投产,到2010年底我国乙烯总产能达到1494.9×104t/a,成为全球仅次于美国(2755.4×104t/a)的第二大乙烯生产国。

设备国产化程度提升,乙烯原料趋向多元化。从装置国产化程度上看,乙烯生产工艺中所用的大型裂解炉、裂解气压缩机等关键设备已实现了国产化。

2012年10月,大庆石化年产120万吨乙烯改扩建工程龙头项目已生产出合格产品,实现了国内大型乙烯技术工艺包采用完全自主知识产权并实现完全国产化的目标。在抚顺石化大乙烯建设中,国产设备达到72%,实现了关键设备乙烯压缩机组的国产化,使我国成为世界上少数几个掌握这一技术的国家之一。

从乙烯原料上看,受资源限制,目前我国乙烯使用的原料以石脑油为主,其次是轻柴油、加氢尾油等。其中,石脑油占64%、加氢尾油占10%、轻柴油占10%,90%乙烯原料来自炼厂。原料的构成在目前或将来都不占优势。

丰富的煤炭资源加上烯烃市场巨大的需求量,使煤制烯烃项目具有一定的市场竞争力。随着神华包头等多个示范项目的投产,我国以煤等非石油基原料制乙烯的技术取得突破性进展。截至2012年底,我国共有煤制烯烃、甲醇制烯烃工业化装置4套,合计烯烃产能218万吨,生产聚乙烯56万吨,聚丙烯162万吨。

2009年8月28日,国家乙烯工业新原料来源示范项目———沈阳石蜡化工有限公司50×104t/a催化热裂解(CPP)制乙烯项目(以下简称CPP项目)在沈阳投产。该项目采用中国石化石油化工科学研究院研发的重油深度催化裂解制乙烯技术,以重质渣油为原料富产乙烯和丙烯,这是该技术首次工业化应用。由于操作条件缓和、设备材料要求低、投资相对较小以及主要原料常压渣油价格较低,与国内现有的乙烯装置相比,CPP项目生产的乙烯成本可降低20%。

我国西部大开发标志性工程、国内最大的炼化一体化工程———独山子石化千万吨炼油百万吨乙烯工程于2009年9月21日建成投产,该工程包括100×104t/a乙烯。

辽宁华锦化工集团公司500×104t/a油化工程(即乙烯原料工程)、扩能45×104t/a乙烯工程于2009年10月中旬投产,16×104t/a乙烯能力不变,再增加一套45×104t/a装置,产能达到61×104t/a。2.1.22010年新建和扩能乙烯项目随着几个百万吨级乙烯装置的投产,2010年我国乙烯产能达到1494.9×104t/a,“十一五”期间5年的产能增长接近前10个五年计划的总和。

2010年1月16日,天津石化100×104t/a乙烯装置产出合格产品,项目主要包括100×104t/a乙烯和1000×104t/a炼油。由于采用新工艺和新技术,乙烯综合能耗和炼油综合能耗达到国际先进水平。该项目的建成投产使天津石

化炼油一次加工能力达到1500×104t/a,乙烯生产能力达到120×104t/a,成为全国最大的乙烯生产企业之一和华北地区最大的炼油加工基地。

辽宁华锦化工集团“十一五”工程于2010年2月5日全面投产,其中包括45×104t/a乙烯。

2010年4月20日,镇海炼化公司100×104t/a乙烯裂解装置成功投产,标志着这个目前国内单套规模最大、技术最先进、国产化率最高的乙烯工程投产成功,镇海炼化也自此拥有2300×104t/a原油综合加工能力和100×104t/a乙烯生产能力,成为我国最大的炼化一体化企业。镇海炼化100×104t/a乙烯工程是国家建设项目,主要包括乙烯裂解等10套生产装置及配套公用工程,其中100×104t/a 乙烯裂解、45×104t/a聚乙烯、65×104t/a环氧乙烷/乙二醇和28.5×104t/a环氧丙烷/62×104t/a苯乙烯等装置,在世界同类装置中规模最大。在工艺技术上,大部分装置采用国产技术,其中6套装置采用中国石化自有技术,乙烯综合能耗达到国际水平。

中海壳牌石油化工股份有限公司是壳牌化学公司与中国海洋石油总公司各持股50%的合资企业,该公司于2010年3月在惠州大亚湾石化联合装置实施扩能。扩建前乙烯裂解装置的产能为80×104t/a,扩建后产能达到95×104t/a。通过结构调整,“十一五”期间我国乙烯布局优化取得成效,

在长三角、环渤海、珠三角和西部等地区形成了一批世界级乙烯生产基地。2010年乙烯产能按地区分,华东占42.4%、东北占16.4%、中南占12.5%、西北占13.3%、华北占15.5%,西南地区也正在建设乙烯装置,即将实现零的突破。

2009年8月28日,国家乙烯工业新原料来源示范项目———沈阳石蜡化工有限公司50×104t/a催化热裂解(CPP)制乙烯项目(以下简称CPP项目)在沈阳投产。该项目采用中国石化石油化工科学研究院研发的重油深度催化裂解制乙烯技术,以重质渣油为原料富产乙烯和丙烯,这是该技术首次工业化应用。由于操作条件缓和、设备材料要求低、投资相对较小以及主要原料常压渣油价格较低,与国内现有的乙烯装置相比,CPP项目生产的乙烯成本可降低20%。

我国西部大开发标志性工程、国内最大的炼化一体化工程———独山子石化千万吨炼油百万吨乙烯工程于2009年9月21日建成投产,该工程包括100×104t/a乙烯。

辽宁华锦化工集团公司500×104t/a油化工程(即乙烯原料工程)、扩能45×104t/a乙烯工程于2009年10月中旬投产,16×104t/a乙烯能力不变,再增加一套45×104t/a装置,产能达到61×104t/a。2.1.22010年新建和扩能乙烯项目随着几个百万吨级乙烯装置的投产,2010年我国乙烯产能达到1494.9×104t/a,“十一五”期间5年的产能增长接近前10个五年计划的总和。

2010年1月16日,天津石化100×104t/a乙烯装置产出合格产品,项目主要包括100×104t/a乙烯和1000×104t/a炼油。由于采用新工艺和新技术,乙烯综合能耗和炼油综合能耗达到国际先进水平。该项目的建成投产使天津石化炼油一次加工能力达到1500×104t/a,乙烯生产能力达到120×104t/a,成为全国最大的乙烯生产企业之一和华北地区最大的炼油加工基地。

辽宁华锦化工集团“十一五”工程于2010年2月5日全面投产,其中包括45×104t/a乙烯。

2010年4月20日,镇海炼化公司100×104t/a乙烯裂解装置成功投产,标志着这个目前国内单套规模最大、技术最先进、国产化率最高的乙烯工程投产成功,镇海炼化也自此拥有2300×104t/a原油综合加工能力和100×104t/a乙烯生产能力,成为我国最大的炼化一体化企业。镇海炼化100×104t/a乙烯工程是国家建设项目,主要包括乙烯裂解等10套生产装置及配套公用工程,其中100×104t/a 乙烯裂解、45×104t/a聚乙烯、65×104t/a环氧乙烷/乙二醇和28.5×104t/a环氧丙烷/62×104t/a苯乙烯等装置,在世界同类装置中规模最大。在工艺技术上,大部分装置采用国产技术,其中6套装置采用中国石化自有技术,乙烯综合能耗达到国际水平。

中海壳牌石油化工股份有限公司是壳牌化学公司与中国

海洋石油总公司各持股50%的合资企业,该公司于2010年3月在惠州大亚湾石化联合装置实施扩能。扩建前乙烯裂解装置的产能为80×104t/a,扩建后产能达到95×104t/a。通过结构调整,“十一五”期间我国乙烯布局优化取得成效,在长三角、环渤海、珠三角和西部等地区形成了一批世界级乙烯生产基地。2010年乙烯产能按地区分,华东占42.4%、东北占16.4%、中南占12.5%、西北占13.3%、华北占15.5%,西南地区也正在建设乙烯装置,即将实现零的突破。美国Shaw集团麾下的石-伟公司(S&W)承揽了中国石油两套80×104t/a乙烯装置的合同,石-伟公司提供专有技术以及工程和设备采购服务,其中一套由抚顺石化公司建在辽宁抚顺,另一套由四川石化公司建在四川彭州。抚顺石化扩建80×104t/a乙烯装置是抚顺石化百万吨乙烯工程的龙头装置,采用石-伟公司专利技术,裂解采用7台USC-176U型超选择性液体裂解炉和1台USC-12M型气体裂解炉,其中液体裂解炉为立式双炉膛管式炉高温热裂解,可实现分炉膛裂解/清焦。

休斯敦SRI咨询公司曾发布报告称,中国乙烯工业总体水平迅速步入了世界先进国家行列。中国最近建设的现代化乙烯石化联合装置,对即使具有原料成本优势的沙特阿拉伯生产商也极具竞争性。装备和规模达世界水平“引进--消化吸

收--集成创新--自主创新”是中国乙烯工业长期坚持的原则,而现代乙烯生产装置的特点是规模越大成本越低。在引进最先进乙烯装备的同时,中国乙烯工业巨头--中石化集团,对过去引进的中小型乙烯装置进行了技术改造和改扩建。不仅装置平均规模翻了一番,而且实现了在吸收引进技术基础上的自主研发,形成了一批自主的核心技术、专有技术和配套技术。因为有了自主技术,乙烯装备的国产化率明显提高,促进了重大装备国产化。乙烯工业是技术密集型产业,对装备的可靠性要求很高。按照“工艺技术国内外并重、装备以国产化为主”的思路,乙烯装备国产化率达到80%以上,不少装备质量达到了世界先进水平。通过自主创新和合作开发,中石化已具备了采用自主技术建设百万吨级乙烯装置的能力。近年来,我国乙烯工业技术装备水平显著提高,成功开发出大型乙烯裂解炉、聚丙烯、丙烯腈、重质原料催化热裂解、SBS弹性体等成套技术,部分专用设备实现了国产化。百万吨级乙烯裂解气体压缩机技术等接近或达到国际先进水平。“三剂”基本立足国内,达到或接近世界先进水平。大型乙烯工程建设由成套引进,转为仅引进工艺包和部分关键设备;由国外总承包转为国内自行设计、采购和组织建设,很多技术还出口到国外。目前,我国催化剂技术已出口到美国,中国石化与美国公司合作开发的裂解炉技术推广了30多台。专家指出,目前中国乙烯工业的技术和规模达到了世界

水平。乙烯大型装备的国产化,推动了石化装备制造业的发展和产品结构调整,带动了包括中国第一重型机械集团、沈阳鼓风机厂、杭州汽轮机厂、杭氧股份公司、兰石机械设备有限公司等一批大型骨干企业的发展。同时,乙烯大型装备的国产化进程,为中国石化工业的工程建设培育了一批具有国际水平的战略供应商,增强了中国石化装备工业参与国际市场竞争的能力。将形成乙烯产业集群, 纵观我国乙烯工业发展历程,首先发展的是规模,同时消化吸收引进技术自主创新,实现自主技术和重大装备的国产化。如今,我国乙烯工业又面临巨大的发展空间。目前,我国乙烯生产能力虽然跃居世界第二,但我国又是世界上最大的石化产品消费市场,2010年我国乙烯自给率也才达到58%。据冯世良介绍,按照我国《乙烯工业中长期发展专项规划》中的要求,加快乙烯工业的发展将成为“十一五”时期的突出重点。据了解,我国乙烯工业发展的突出重点将是增加乙烯总量,形成一批世界级乙烯生产基地。白颐则预言,今后中国的乙烯及下游石化装置的建设和改造将选择先进技术,加快乙烯重大装备的国产化、产业化进程。同时,努力实现乙烯工业的关键技术和装备的重点突破,推广重质原料油制烯烃技术,还要实现用煤制取乙烯,能耗和物耗将达到世界先

进水平。目前,我国珠三角、长三角和环渤海湾的“两洲一湾”地区,集中了上海、南京、茂名三个百万吨级乙烯生

产基地,以及燕山、齐鲁两个80万吨级乙烯基地。加上正在建设的福建、镇海、天津三个百万吨级炼油乙烯化工一体化基地,不久中国“两洲一湾”地区乙烯产能将超过东京湾,成为位居世界前列的乙烯产业集群。

技术进展

3.1 低碳烯烃转化技术

炼厂催化裂化装置和乙烯装置副产的C4和C5馏分、轻质裂解汽油或轻质催化汽油中含有大量C4-8低碳烯烃,可通过催化裂解或烯烃歧化两种工艺,将其转化为丙烯、乙烯。

3.1.1 催化裂解

选择性催化裂解工艺以利安德/KBR公司的Superflex工艺(流化床)和鲁奇公司开发的Propylur工艺(固定床)为代表。Superflex工艺可将2/3的进料转化为乙烯和丙烯,南非萨索尔技术公司2005年已启动一套装置采用该技术生产丙烯和乙烯。Proloylur工艺可以丁烯、戊烯和己烯为原料,其示范装置已在德国Worringen地区的BP公司装置上运行。此外,UOP与Atofina公司开发的催化裂解工艺OCP 已经过示范装置的验证。

3.1.2 烯烃歧化

烯烃歧化工艺是一种通过烯烃双键断裂并重新转换为新烯烃产物的催化反应,主要有鲁姆斯公司的OCT工艺和IFP的Meta-4工艺等。OCT技术以乙烯和2-丁烯为原料进

行歧化生产丙烯,我国上海赛科90万t/a乙烯装置应用了此项技术。据报道,至2008年亚洲将有7家公司采用OCT 技术。Meta-4烯烃转化工艺已在我国台湾省中油公司高雄炼厂完成中试验证。

乙烯技术国产化进展

(1)在裂解技术方面,先后开发成功了CBL-I、Ⅱ、Ⅲ、Ⅳ、V型裂解炉技术,适用于乙烷、石脑油、轻柴油和加氢尾油等原料的裂解,已在辽阳化纤、齐鲁石化、吉化公司、抚顺石化、燕山石化、中原乙烯及天津乙烯获得工业应用。近期又采用CBL技术为齐鲁石化建设了1台9万t/a的乙烷炉和2台6万-8万t/a的液体原料裂解炉。迄今为止,已建设的小于10万t/a的CBL炉共18台,累计生产能力达94万t/a。近年来与鲁姆斯公司合作开发10万t/a大型裂解炉技术,采用合作开发的SL-I、SL-Ⅱ型裂解炉技术已建和在建的裂解炉总能力达300万t/a,其中采用基于CBL技术的SL-I型炉已运行和在建的有4台,天津100t/a乙烯装置的11台10万t/a大型裂解炉正在设计中,镇海100万t/a 乙烯的裂解炉也将采用SL-I型技术;

(2)开发工艺软件包和相关工程技术,用CBL技术和乙烯工艺软件包成功地完成了中原乙烯和天津乙烯装置的扩能改造;

(3)开发分凝分馏塔技术(CFT),并成功地完成了试验

验证,已用于装置改造;

(4)发展了C2和C3加氢技术,已开发成功系列裂解气C2、C3加氢催化剂和工艺技术,并得到推广应用;

(5)开发了裂解炉扭曲片管强化传热技术、裂解炉结焦抑制剂以及高效塔盘、高效换热器技术工业应用后取得了良好效果;

(6)中国石化与鲁姆斯公司合作开发的新乙烯回收技术已用于茂名乙烯改造工程;

(7)利用重质原料生产乙烯、丙烯的技术已取得重要进展,包括重油接触裂解制乙烯(HCC)和催化裂解(CPP)技术等。

中国激光技术发展回顾与展望教学教材

中国激光技术发展回 顾与展望

中国激光技术发展回顾与展望 名称研制成功时间研制人 He-Ne激光器 1963年7月邓锡铭等 掺钕玻璃激光器 1963年6月干福熹等 GaAs同质结半导体激光器 1963年12月王守武等 脉冲Ar+激光器 1964年10月万重怡等 CO2分子激光器 1965年9月王润文等 CH3I化学激光器 1966年3月邓锡铭等 YAG激光器 1966年7月屈乾华等 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。 1、“6403”高能钕玻璃激光系统 1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。(4 )第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。(5)激光元器件和支撑技术有了突破性提高,如低吸收高均匀性钕玻璃熔炼工艺、高能脉冲氙气、高强度介质膜、大口径(1.2米)光学精密加工等。(6)培养和造就了一批技术骨干队伍。 2、高功率激光系统和核聚变研究 1964年王淦昌独立提出激光聚变倡议,1965年立项开始研究。经几年努力,建成了输出功率10(上标10)瓦的纳秒级激光装置,并于1973年5月首次在低温固氘靶、常温氘化锂靶和氘化聚乙烯上打出中子。1974年研制成功我国第一台多程片状放大器,把激光输出功率提高了10倍,中子产额增加了一个量级。在国际上向心压缩原理解密后,积极跟踪并于1976年研制成六束激光系统,对充气玻壳靶照射,获得了近百倍的体压缩。这一系列的重大突破,使我国的激光聚变研究进入世界先进行列,也为以后长期的持续发展奠定了基础

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

中国三大激光产业集群

透析中国三大激光产业集群 导读:目前我国激光产业主要应用于激光加工、医疗等行业,其中科研开发领域占12%,材料加工领域占32%,通讯领域占12%,信息领域占14%,医学领域占20%,测量与其他领域各占9%和1%。 OFweek激光网讯:激光加工(包括激光切割、焊接及表面处理等)是一种先进的生产技术。我国激光加工产业正大踏步地向前迈进,激光这个高科技名词已经由“阳春白雪”变为了真正的社会生产力,“发展高科技,实现产业化”已成为中国激光加工行业的现实。 激光作为新型光源,具有方向性好、亮度高、单色性好及高能量密度等特点。以激光器为基础的激光工业在全球发展发展迅猛,现在已广泛应用于工业生产、通讯、信息处理、医疗卫生、军事、文化教育以及科研等方面。据统计,从高端的光纤到常见的条形码扫描仪,每年和激光相关产品和服务的市场价值高达上万亿美元。 激光产业已形成完整、成熟的产业链分布,上游主要包括激光材料及配套元器件,中游主要为各种激光器及其配套设备,下游则以激光应用产品、消费产品、仪器设备为主。国内激光市场主要包括激光加工设备、光通信器件与设备、激光测量设备、激光器、激光医疗设备、激光元部件等,要应用则在于工业加工和光通信市场,两者占据了近7成的市场份额。 目前我国激光产业主要应用于激光加工、医疗等行业,其中科研开发领域占12%,材料加工领域占32%,通讯领域占12%,信息领域占14%,医学领域占20%,测量与其他领域各占9%和1%。 截至目前,全国共有5个国家级激光技术研究中心,10多个研究机构;有21个省、市生产和销售激光产品,常年有定型产品生产和销售、并形成一定规模的单位有200多家。国内激光行业已形成激光晶体、关键元器件、配套件、激光器、激光系统、应用开发、公共服务平台等环节构成的较完整的产业链。 我国激光加工产业可以分为四个产业带,珠江三角洲、长江三角洲、华中地区和环渤海地区。这四个产业带侧重点不同,珠三角以中小功率激光加工机为主,长三角以大功率激光切割焊接设备为主,环渤海以大功率激光熔覆和全固态激光为主,以武汉为首的华中地区则覆盖了大、中、小激光加工设备。 随着中国制造业转型升级,一些老工业基地及小企业基地,开始向高端制造领域转型。例如温州激光产业集群及鞍山大力发展激光产业等。 一、2020年武汉将成全球激光技术创新和产业发展集聚地

激光技术的发展与展望

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

激光焊接技术应用及发展趋势

激光焊接技术应用及其发展趋势 摘要:本文论述了激光焊接工艺的特点、激光焊接在汽车工业、微电子工业、生物医学等领域的应用以及研究现状,激光焊接的智能化控制,论述激光焊接需进一步研究与探讨的问题。关键词:激光焊接;混合焊接;焊接装置;应用领域 引言 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的Y AG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 一、激光焊接的质量与特点 激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种: 1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。 这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。 1、激光焊接的焊缝形状 对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。图2显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

激光技术的发展历史

73 2006 NO.9&10 记录媒体技术激 光的发明是20世纪中期一项划时代的成就,对人类社会文明产生了极其深远的影响。人们把 激光和原子能、半导体、计算机列在一起,称为20世纪的“新四大发明”。激光的出现不但引起了光学革命性的发展,冲击了整个物理学,并且对其它学科如化学、生物学和技术及应用学科如电机工程学、材料科学、医学等都产生了巨大的影响。像蒸汽机、发电机和电动机、晶体管、计算机这些创新一样,激光是一项通用技术,它提供了可以在大量实际领域应用的技术能力。对光盘存储而言,激光的发明是光盘存储技术必不可少的基础,它为光盘存储提供了一个有足够功率并且能够汇聚成很小光斑(微米级或亚微米级)的光源。可以说,没有激光的发明,就没有后来的光盘的发明。本文主要为光盘技术人员介绍激光技术的发展历史和趋势。 一、激光的发明和发展 所谓激光就是受激发射的光,是被其它辐射感应而激发的辐射。激光的英文名词为Laser ,是Light Amplification by Stimulated Emission of Radiation 的词首字母构成的新词,其原意是受激辐射光放大器。早期在我国曾被翻译成“莱塞”、“雷射”、“光激射器”、“光受激辐射放大器”等。直到1964年,由钱学森院士提议取名为“激光”,它既反映了“受激辐射”的科学内涵,又表明了它是一种很强烈的新光源。钱学森院士的提议得到国内学术界的一致认同,在中国大陆激光这个新名词就一直沿用至今。 现在我们知道,物质的发光过程有两种:一种称为自发辐射,另一种称为受激辐射。自发辐射是在没有外来光子情况下,原子自发地、独立地从高能级E 2向低能级E 1的跃迁。自发辐射是随机过程,跃迁时发出的光在相位、偏振态和传播方向上都彼此无关。受激辐射是处于高能级E 2的原子,在受到能量为hv = E 2-E 1的外来光子的激励时,跃迁到低能级E 1,并辐射一个与外来光子的频率、相位、振动方向和传播方向都相同的光子。 1916年,爱因斯坦根据物质发光和吸收必须符合能量守恒的基本原则,预言除了大量的自发辐射以外还必然存在着少量的受激辐射,并且这种受激辐射还 激光技术的发展历史 ◇顾 颖 会进一步引发同类的受激辐射,因此可以获得受激辐射被增强的效应。爱因斯坦的论断为激光的发明提供了理论基础。 图1 自发辐射和受激辐射 图2 爱因斯坦 此后,科学家们多次企图在原子发光实验中验证受激辐射的存在,但是要从大量的自发辐射中区分出只含万分之几的受激辐射确实是十分困难的,所以始终未能获得成功。 第二次世界大战时期,由于军事上雷达技术的需要,微波辐射和分子光谱学得到迅速发展,研究前沿向更短的波长领域推进,以达到更高分辨率的目标。战争结束后,美国军方对毫米级波谱学的研究工作保持着强烈的兴趣,因为其方便的部件可以用于减少导弹的重量、设计安装在坦克和潜水艇上的轻量级短波雷达、以及用于提高短波通讯的安全性。科学家们在军方的资助下能够利用战后剩余的微波设备继续微波辐射研究。1951年,美国哥伦比亚大学教授汤斯(Charles Townes)开始了“受激辐射微波放大器”(Microwave Amplification by Stimulated Emission of Radiation-MASER ,译作脉塞)的研究。1954年,汤斯和他的学生古尔德(Gordon Gou)合作制成了第一台脉塞,他成功地隔离了激发态氨(Ammonia)分子并实现了粒子数反转(上能级分子数分布大于下能级分子),把一束受激的氨分子束瞄准进入谐振腔,使腔内激发态氨分子受激跃迁产生24千兆赫频率的辐射信号。第一个脉塞辐射的波长略大于1厘米,功率只有几十毫微 瓦,但是能量集中在很窄的谱线内。同年,苏联科学

中国激光技术发展回顾与展望

中国激光技术发展回顾与展望 名称研制成功时间研制人 He-Ne激光器1963年7月邓锡铭等 掺钕玻璃激光器1963年6月干福熹等 GaAs同质结半导体激光器1963年12月王守武等 脉冲Ar+激光器1964年10月万重怡等 CO2分子激光器1965年9月王润文等 CH3I化学激光器1966年3月邓锡铭等 YAG激光器1966年7月屈乾华等 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。 1、“6403”高能钕玻璃激光系统 1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。(4 )第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。(5)激光元器件和支撑技术有了突破性提高,如低吸收高均匀性钕玻璃熔炼工艺、高能脉冲氙气、高强度介质膜、大口径(1.2米)光学精密加工等。(6)培养和造就了一批技术骨干队伍。 2、高功率激光系统和核聚变研究 1964年王淦昌独立提出激光聚变倡议,1965年立项开始研究。经几年努力,建成了输出功率10(上标10)瓦的纳秒级激光装置,并于1973年5月首次在低温固氘靶、常温氘化锂靶和氘化聚乙烯上打出中子。1974年研制成功我国第一台多程片状放大器,把激光输出功率提高了10倍,中子产额增加了一个量级。在国际上向心压缩原理解密后,积极跟踪并于1976年研制成六束激光系统,对充气玻壳靶照射,获得了近百倍的体压缩。这一系列的重大突破,使我国的激光聚变研究进入世界先进行列,也为以后长期的持续发展奠定了基础 3、军用激光研究 1966年12月,国防科委主持召开了军用激光规划会,48个单位130余人参加,会议制定了包括含15种激光整机、9种支撑配套技术的发展规划。虽未正式批准生效,但仍起了有益的推动作用。此后的几年内,这一领域涌现了一批重要成果。例如:(1)靶场激光距技术初试成功:采用重复频率为20赫兹的YAG调Q激光器,测距精度优于2米,最远测量距离达660公里,加在经纬仪上,可实现对飞行目标的单站定轨。这一成果为以后完成洲际导弹再入段轨迹测量创造了必要条件。(2)红宝石激光人造卫星测

激光加工的应用和发展趋势

课程:特种加工基础实训教程 题目:激光加工技术应用和发展趋势院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 时间:

目录 摘要 (2) 1引言 (2) 2激光的特点 (2) 定向发光 (2) 亮度极高 (2) 颜色极纯 (3) 3 激光加工技术的主要应用 (3) 激光打孔 (4) 激光快速成型 (4) 激光打标 (4) 激光切割 (5) 激光焊接 (5) 激光热处理 (6) 4 激光加工的发展趋势 (6) 数控化和多功能化 (6) 高频度和高可靠性 (7) 小型化和集成化 (7) 5 结语 (7) 参考文献 (7)

激光加工的应用和发展趋势 摘要:激光加工在现代产业中展示了强大的优势和发展潜力,成为21世纪的主导技术。本文主要介绍激光加工技术的应用现状和未来的发展趋势。 关键词:激光激光技术激光加工应用与发展趋势 1. 引言 激光是20世纪人类最伟大的发明之一,现在已广泛应用于工业、军事、科学研究与日常生活中。激光具有四大特性:高的单色性、方向性、相干性和亮度性。应用激光固有的四大特性,将具有高能量密度的,能被聚焦到微小空间的激光用于加工的方法叫激光加工。激光加工技术是一项集光、机电、材料及检测于一体的先进技术。激光加工主要涉及:激光焊接、激光切割、激光打标、激光雕刻等.现在一般的激光加工都采用了多项先进技术,多功能集成度高、实用性强、自动化程度高、操作简单、结果直观,而且加工过程中可实现动态同步跟踪显示,具有程序错误自动诊断、限位保护等功能。 2. 激光的特点 定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。 亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度

激光技术简介及发展历程介绍

激光技术简介及发展历程介绍 世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 一、激光技术应用简介 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1.冠钧激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2.冠钧激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。 激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。

激光技术的现状及发展前景论文

激光切割技术的现状与发展 班级:13光信1 姓名:邱丽芬学号:1311122107 {摘要}:介绍了我国国内激光切割设备的现状和激光切割技术的发展前景,简要介绍激光切割原理,提出了该技术的发展目标及需要解决的问题。 {关键词}:激光切割设备国内市场激光切割机现状发展前景 引言 近年来,激光切割加工技术发展很快,国际上每年都以20%~30%的速度增长。我国1985 年以来,更以每年25 %以上的速度增长。由于我国激光工业基础较差,激光加工技术的应用尚不普遍,激光加工整体水平与先进国家相比仍有较大差距,相信随着激光加工技术的不断进步,这些障碍和不足会得到解决。激光切割技术必将成为21 世纪不可缺少的重要的钣金加工手段。激光切割加工广阔的应用市场,加上现代科学技术的迅猛发展,使得国内外科技工作者对激光切割加工技术进行不断探入的研究,推动着激光切割加工技术不断地向前发展。 一.我国激光切割设备与现状 全球激光制造技术发展飞速,我国与国际激光技术水平的差距有所增大,高端的激光加工成套装备几乎全部依赖进口,致使国外激光制造装备在我国市场的占有率高达70%。预计未来10年内,我国对这些高性能激光切割系统的市场需求量将达到100亿元。如此迫切和巨大的市场需求反应出激光加工的手段已经覆盖到国民经济各个重要领域,同时也影响着国防、航空航天等关键技术的突破,我们不仅仅是解决目前国内该产品的空白,同时也旨在解决激光加工领域多层面技术核心问题,如激光数控、激光机床新型结构、高质量激光加工的技术瓶颈等。 从中小功率激光切割设备取代传统加工工艺的优势来分析,与传统刀具机床设备相比,激光设备采用无接触的热加工方式,具有极高的能量聚集性、光斑细小、热扩散区少、个性化加工、加工品质高、无“刀具”磨损等优势,激光切口光滑无飞边,一些柔性材料自动收口,无变形,加工图形可通过计算机随意设计和输出,无需繁杂的刀模设计和制作。

激光的发展历程及应用汇总

南京理工大学 研究生研究型课程考试 课程名称:现代物理学导论 考试形式:□专题研究报告√论文□大作业□综合考试 学生姓名:王慧学号: 512011424 评阅人:王清华 时间:2013年6 月

激光的发展历程及应用 王慧 (南京理工大学机械工程学院南京210094) 摘要:自1960年第一台激光器发明以来,经过儿十年的发展,激光技术的研究取得了飞越性的发展并广泛应用于人们生活的各个领域。本文主要介绍了激光的应用领域以及一此处于研究前沿领域的技术。 关键词:激光发展;激光历史;激光应用 The Development and Application Prospects Of Laser Technology Abstract:Since the advent of the first optical maser, there has been several dacades. In the short years laser technology has made transilient progress and has applied to in many affairs civil use. The article is about the application of laser technology which is under application and advancing front of study. Key words:Laser Development; Laser history; Laser Applications 一.引言 自1960年7月梅曼发明了世界上第一台红宝石激光器以来,经过四十多年的发展,人们在激光的研究上突破了许多技术难题并取得了相当的成就。激光被发明以来,以其方向性强、单色性好、高亮度和高度的时空相干性引起了科学家们特别是军事家们的广泛关注,经过科学家们的不懈努力,今天的激光仪器无论是从工作原理、实验手段,还是制造工艺都已逐步成熟。激光日益受到各大军事强国的重视,并有望成为未来军事技术发展中最活跃的一个领域之一。迄今为止,激光在军事领域已经广泛应用于定向能武器、航空航天、侦察与反侦察、制导、通信等诸多领域,大大提高了军队在高技术战争条件下的打击与防御能力。同时,激光的军转民技术也得到了很大的发展。 二.激光的发展历程 早在1917年,爱因斯坦在光量子假设基础上,提出了光的两种不同性质的辐射—自发辐射和受激辐射.从理论上预言了存在受激辐射光的可能性。1928年,德国的https://www.wendangku.net/doc/7618446987.html,denburg,H.Kopferman用实验证明了受激辐射假设成立。到本世纪五十年代,实验上验证了粒子数反转现象,并提出爱激辐射放 大理论,由这个理论所预见的粒子数反转体系对入射电磁场产生受激放大作用的可能性,首先在无线电电子学的微波技术领域内得以实现。1954年,氮分子气体微波量子放大器诞生。微波量子放大器技术的出现和进展。促进人们在光频波段的探索。1957年9月,美国的c.H.Townes第一次提出光频受激辐射放大设想,同每11月,美国的R.G.Gould 独立提出光频受激辐射放大构思并提出证据公证。继而许多人提出了各种激光器 建议.1960年5月」.5日第一台红宝石激光器〔69招A。)由美国人T.H.Maiman研制成功至此,激光技术就以科学史上罕见的高速度向前发展着,激光理论和激光应用也很快开拓。 在理论研究方面.激光技术的出现极大地促进了光辐射理论的发展。激光以前所有各类光源的发光纂本上属于自发辐射机制.光辐射与物质的作用属于弱光与物质的相互作用,其辐射理论属于有关弱光辐射的产

中国激光行业SWOT分析

中国激光行业SWOT分析 光谷激光连锁—蔡光斌目录: 前言 一、行业现状 二、目前存在的问题 三、我们的机遇与挑战 四、策略 前言 激光加工是一门21世纪发展极快的制造新技术,各国政府和工业部门都非常重视激光器和激光加工技术设备的发展。中国加入WTO以来国内正在迅速形成的“全球制造基地”,形成日益增长的巨大的激光加工应用市场和国际竞争新格局,中国的激光器和激光加工技术产业必将有一个大的发展。国内外投资者和激光业者正在抢滩这一市场。国内外从事激光器和激光加工技术系统研发、生产和经营的企业正面临极好机遇和挑战。 一、行业现状: 1、激光行业特点 A激光器市场的发展很大程度上依赖于某个特别应用市场的健康发展。80%的激光器销售主要集中在三大阵营:通信、数据存储和材

料加工。 B激光市场细分亮点:光纤激光器、二极管激光器、绿光激光器、锁模(超快)激光器以及用于制造太阳能电池的激光器成为市场中增长最为强劲 C激光器发展趋势:全固态激光器将取代传统激光器,并不断开拓新的重大应用领域。其方向为:微/小/中型器件沿着多样化、智能化、产业化方向发展,大功率器件将向高平均功率/高光束质量发展,而战略性应用的高能全固态激光器将得到特别加强而开发出更多新技术,如目前正待发展的热容运转技术和功率合成技术。;大功率半导体激光器及其阵列将成为新型高能激光源 2、国际激光市场特点: A激光市场几乎跟经济大环境同步衰退,市场的下滑引发市场份额的急剧变化。2009年全球经济经历了一场金融海啸的大洗礼,激光行业也未能幸免。2009年全球激光器市场的实际销售额为53.2亿美元,比2008年70.1亿美元的总销售额下降了24.1%,退回到了2003年的销售水平。主要原因是激光设备大多应用到工业制造领域,而制造业领域的整体衰退大大影响了激光厂商的业绩。 B世界激光器市场可划分为三大区域:美国(包括北美)占55% ,欧州占22%,日本及太平洋地区占23%。在世界激光市场上日本在光电子技术方面占首位,美国占第二位;在激光医疗及激光检测方面则美国占首位;而在激光材料加工设备方面则是德国占首位。相干

激光技术的发展情况和资料特点介绍以及应用概述

激光技术的发展情况和资料特点介绍以及应用概述 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。 这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半

相关文档
相关文档 最新文档