文档库 最新最全的文档下载
当前位置:文档库 › 电力系统分析实验

电力系统分析实验

电力系统分析实验
电力系统分析实验

实验1 电力系统潮流计算分析实验

一、实验目的

1、熟悉电力系统潮流分布的典型结构,

2、熟悉电力系统潮流分布变化时,对电力系统的影响,

3、根据电力系统潮流分布的结果,能够分析各节点的特点。

二、原理说明

潮流计算是研究和分析电力系统的基础。它主要包括以下内容:

(1)电流和功率分布计算。

(2)电压损耗和各节点电压计算。

(3)功率损耗计算。

无论进行电力系统的规划设计,还是对各种运行状态的研究分析,都须进行潮流计算。电力系统日常运行的潮流计算其实是对运行方式的调整从而制定合理的运行方式。

潮流计算的方法有手算的解析计算法和电子计算机计算法。在本实验平台中通过模拟电力系统运行结构取得各中原始数据,可根据线路形式以及参数初步进行潮流计算分析。但可能系统中一些设备原器件的非线性,造成理论计算和实际运行数据不符合,但基本在误差范围以内的,可作为全面分析实验中各中现象的理论依据。

电力系统潮流控制,包含有功潮流控制和无功潮流控制。电力网络中,各种结构都有自身的特点,因此潮流控制对电力系统安全与稳定、电力系统经济运行均具有重要意义。

THLDK-2电力系统监控实验平台上,根据电力网络中典型潮流结构特点,提供了7种网络结构进行分析。实验过程中,构建一个电力网络,增加或减少某些机组的有功出力和无功出力,在保持系统各节点电压在允许范围内的前提下,改变系统支路的有功潮流和无功潮流。可以研究某一单一网络结构,或者多中网络结构的互相变化,观察电力系统潮流的变化。

实验过程中,要运行“THLDK-2电力系统监控及运行管理系统”上位机软件,完成各种潮流分布中功率数值和方向变化,各母线电压的变化,最后数打印各中数据和图形,加以分析。

在本实验平台上,实验人员要首先分析并熟悉各种网络结构的特点,了解可能出现的变化规律,然后在实验中潮流控制时,各发电机的功率应该缓慢调节,待系统稳定后,再进行下一步调整,还应整体把握各发电机的出力,以及各母线电压的变化,始终保证整个网络的稳定安全运行。

注意:实验过程中调节功率时,务必保证监控台上线路中的电流不超过5A!!!潮流分析实验中,如果1#发电机与2#发电机的出口母线,通过断路器QF1连通,或者,3#发电机与4#发电机的出口母线通过断路器QF6连通,则1#、2#、3#和4#发电机的调差系数设置为+10,这样并列运行的机组才能合理分配无功功率,保证系统稳定运行。

三、实验内容与步骤

1、“THLDK-2电力系统监控及运行管理系统”上位机软件的运行

投入“操作电源”(向上扳至ON),启动电脑及显示器、打印机,运行上位机软件。使用步骤见光盘软件使用说明书。实验中,在上位机界面(图3-8)中可进行各种潮流分布图进行分析。

图1-1 潮流分布图选择

2、辐射形-放射式网络结构的潮流分布实验

(1)无穷大系统的调整以及电力网的组建

1)逆时针调整自耦调压器把手至最小,投入“操作电源”之后,投入“无穷大系统电源”,合闸QF19,接通8#母线,再合闸QF18 ,顺时针调整自耦调压器把手至400V。

联络变压器的分接头选择为UN。

2)依次合闸QF18→QF14→QF12→QF10→QF1→QF3→QF4→QF5→QF6,观察1#、4#、5#母线电压为400V左右,6#母线为220V左右。

(2)各发电机组的启动和同期运行

起动1#发电机组,控制方式:微机励磁,他励,恒压控制方式,组网运行,n=1500rpm,U G=400V。

此时,通过1#发电厂的自动准同期装置,将1#发电厂并入无穷大系统,1#发电机组并网后,手动调节微机调速装置和微机励磁装置,发出一定的有功功率和无功功率。

(3)潮流分布的控制以及潮流分布图的打印

依次按下QF8,QF9,QF11,QF13“合闸”按钮,网络结构如图1-2。在上位机软件中可选择潮流分布图中“第一种辐射形-放射式”窗口。

通过调节发电厂的有功功率和无功功率的输出,以及调整无穷大系统的电压,观察各种运行情况下,潮流分布数据,打印对应的潮流分布图、区域总体调度图。

(4)各发电机组的解列和停机

切除负载LD1、LD2、LD3和LD4,手动调节1#发电厂发出的有功功率和无功功率为0,按下监控实验台的QF G1“分闸”按钮,完成1#发电厂的解列操作,然后进行1#发电机组

的停机操作。

图1-2 辐射形-放射式原理图

2、环形-双端供电网络(1)网络结构的潮流分布实验

(1)无穷大系统的调整以及电力网的组建

1)逆时针调整自耦调压器把手至最小,投入“操作电源”之后,投入“无穷大系统电源”,合闸QF19,接通8#母线,再合闸QF18 ,顺时针调整自耦调压器把手至400V。

联络变压器的分接头选择为UN。

2)依次合闸QF1→QF15→QF7,观察1#、4#母线电压为400V左右。

(2)各发电机组的启动和同期运行

起动1#、4#发电机组,控制方式:微机励磁,他励,恒压控制方式,组网运行,n=1500rpm,U G=400V。

此时,通过1#发电厂的自动准同期装置,将4#发电厂并入无穷大系统,4#发电机组完成并网操作后,手动调节微机调速装置和微机励磁装置,发出一定的有功功率和无功功率。

进行同样操作,完成4#发电机组的启动和同期运行,并发出一定的有功功率。

(3)潮流分布的控制以及潮流分布图的打印

网络结构如图1-3。在上位机软件中可选择潮流分布图中“第三种环形-双端供电网络(1)”窗口。

通过调节发电厂的有功功率和无功功率的输出,以及调整无穷大系统的电压,观察各种

运行情况下,潮流分布数据,打印对应的潮流分布图、区域总体调度图。

图1-3 环形-双端供电网络原理图

(4)各发电机组的解列和停机

手动调节1#发电厂发出的有功功率和无功功率为0,按下监控实验台的QF G1“分闸”按钮,完成1#发电厂的解列操作,然后进行1#发电机组的停机操作。

然后按同样操作,依次完成4#发电机组的解列和停机操作。

四、实验报告

1、整理各种潮流结构下的潮流分布图,并且结合各发电厂的运行曲线图,线路上的各运行数据,对比分析。

2、分析潮流结构变化时,电力系统运行参数的变化情况,对各种数据和曲线实行对比分析。

实验2 电力系统负荷调整实验

一、实验目的

1、了解负荷调整的概念。

2、学会负荷调整的方法。

二、原理说明

电力负荷的大小随时间而异,负荷随时间变化的轨迹称为负荷曲线,最大负荷称为高峰负荷,最小负荷称为低谷负荷。由于工业电能不能存储,电力部门的发电功率必须实时跟踪负荷的变化,即高峰负荷时,必须要有和高峰负荷相当的发电容量,而在低谷负荷时,则要停掉部分机组。

负荷控制利用限制负荷或调整部分负荷用电时间的方法控制高峰负荷,减小高峰负荷和低谷负荷的差值,以平滑负荷曲线。

所谓负荷调整就是:当用电负荷增加时,电力系统的出力也应随之增加;当用电负荷减少时,电力系统的出力也须相应减少。如果各种用户最大负荷出现的时间过分集中,电力系统就得有足够的出力来满足用户需要,否则电力系统的出力和负荷就不能平衡,出现供小于求的状况,造成拉闸限电。当用电高峰时段已过,电力供大于求,造成发电设备的压机运行或停机。

用电负荷是一个不断变动的量,对一个地区而言,负荷变化的特性主要取决于用电行业结构、地域、季节变化、经济发展和生活水平。用电负荷在时间上的不均衡性使得某一时段用电较多,某一时段用电较少,这就形成了用电高峰负荷与低谷负荷。峰谷差愈大,电网运行愈不经济。

电力负荷管理系统是指能够监测、控制、管理本地区用户用电负荷的双向无线电力负荷管理系统(简称负荷管理系统)。通过负荷管理系统可以实现用电负荷监控到户,做到限电不拉闸,是电网错峰、削峰的重要技术手段。

本实验通过单机-无穷大网络结构,在中间段通过联络变压器带上区域负荷,研究负荷变化时,发电厂的输出功率、无穷大系统发出和吸收的功率、负荷的取用功率的变化情况,可根据实验数据分析负荷变化对对网络中运行参数的影响,从而分析电力系统中进行负荷调整以及负荷管理的原因。

三、实验内容与步骤

(1)无穷大系统的投入和调整

逆时针调整自耦调压器把手至最小,投入“操作电源”之后,投入“无穷大系统电源”,合闸QF19,接通8#母线,再合闸QF18,顺时针调整自耦调压器把手至400V。

依次按下QF19、QF18、QF1“合闸”按钮,观察1#母线电压为400V左右。联络变压器的分接头选择为UN。

(2)1#发电机组的起动和同期运行

起动1#发电机组,控制方式:微机励磁,他励,恒压控制方式,组网运行,n=1500rpm,U G=400V。

此时,通过1#发电厂的自动准同期装置,将1#发电厂并入无穷大系统,1#发电机组并网后,手动调节微机调速装置和微机励磁装置,发出一定的有功功率和无功功率:P=1kW,Q=0.75kVar。

(3)负荷的选择投入

依次按下QF14、QF10、QF11“合闸”按钮,投入负荷LD3,网络结构如图2-1。

图2-1 负荷调整实验原理图

记录此时发电机组的P和Q于表2-1中,同时记录1、3、5、10#智能电力监测仪有功

功率和无功功率于表2-1中。

依次按下QF12、QF13“合闸”按钮,投入负荷LD4,网络结构如图3-6。记录此时发电

图2-2

机组的P和Q,记录此时发电机组的P和Q于表2-1中,同时记录1、3、5、10#智能电力监测仪有功功率和无功功率于表2-2中。

(4)各发电机组的解列和停机

手动调节1#发电厂发出的有功功率和无功功率为0,按下监控实验台的QF G1“分闸”按钮,完成1#发电厂的解列操作,然后进行1#发电机组的停机操作。

四、实验报告

1、根据实验数据,分析负荷变化时,线路上功率的方向和数值变化,以及对发电机组

的输出功率的影响。

实验3 电力系统有功功率—频率特性实验

一、实验目的

1、掌握同步发电机组的有功功率-频率特性

2、掌握电力系统负荷的有功功率-频率特性

3、掌握电力系统的有功功率-频率特性

4、掌握机组间有功功率分配的原理和操作方法 二、原理说明

1、同步发电机组的有功功率特性-频率

同步发电机组是电力系统中的有功功率源,因此,研究同步发电机组的频率-有功功率特性具有重要意义。同步发电机转子的转速n 、转子极对数p 与定子电压的频率f 之间有如下关系:

60

pn

f =

此式说明,调频就是调速,调速就能调频。 同步发电机的频率-有功功率特性,表述同步发电机输出的有功功率与其频率之间的关系。它是同步发电机的一个重要特征,在调速器投入运行的条件下,该特性就是调速器的调差特性。

同步发电机组输出的有功与其频率的关系,称为同步发电机组的频率—有功功率特性(如图3-1所示),在调速器投入运行的条件下该特性就等于调速器的调差特性。

图3-1 同步发电机组的频率—有功功率特性

有功调差系数R 是用来描述同步发电机组的频率—有功功率特性曲线特征的重要参数,它定义为:

p

f

N

N P

f R ??-

=

有功功率调差系数R 在数值上等于机组的有功负荷从零值增加到机组的额定有功功率时(有功功率增量为一个标幺值),其频率增量的标幺值的绝对值。公式中的负号表示:下倾的曲线为正调差特性,上升的曲线为负调差特性,水平线是零调差特性。分析可知,零调差和负调差特性的机组不能并联运行,只有具有正调差特性的机组并联运行时,才可以稳定分配有功功率。

2、电力系统负荷的有功功率-频率特性

负荷波动是影响频率稳定的重要原因。电力系统有功功率负荷具有多种形式,将它们按与频率的关系划分为不同的类型。在电力系统中,高于三次方的负荷比例很小,故通常在计算中只能取到三次方即可。

研究负荷的工频特性,主要关心额定频率附近的一段曲线,在小范围研究问题时,数学上可以近似将曲线用直线来代替,在标幺值坐标里,这根直线的斜率反映了,负荷消耗的有功功率与电源频率之间的定量关系,即:

N

LN

L L f f P P k ??=

*

负荷的功频特性(如图3-2所示)具有单调上升的特点,当电力系统发生有功功率缺额时,频率将下降,由于频率的下降,负荷将自动减小其消耗的有功功率,系数*L k 越大,减小得越多,由于负荷消耗有功功率的自动减小,使得系统有功功率在较低频率下重新得以平衡。

图3-2 电力系统负荷的有功功率-频率特性

可见,负荷参与了有功功率平衡调节,它对系统频率的稳定起了有利的调节作用,而系数 *L k 正反映了负荷的这种调节能力的大小,称为负荷的频率调节效应系数,也称为负荷的单位调节功率。

电力系统负荷频率-有功功率特性是指负荷取用有功功率与系统频率之间的关系,它取决于负荷的类型。电力系统综合负荷的功频特性是由各种类型负荷的功频特性按比例组合而成。

本实验系统用电阻器作为有功功率负荷,电阻器取用频率正比于其他电源电压的平方。当发电机励磁控制系统工作于恒压方式下,电阻器取用功率与频率无关;当励磁控制系统工作于恒励磁电流方式时,由于机端电压正比于转速(即频率),所以电阻器取用功率与频率成平方关系。

3、电力系统的有功功率-频率特性

当电力系统发生频率波动时,同步发电机的调速器控制作用和负荷的频率调节效应是同时进行的。由于发电机调速器是按照偏差负反馈原理构成的,所以具有正调差,具有下倾的特性。也就是说,当电力系统频率下降时,同步发电机输出功率增加,发电机调差系数K G 越小,发电机组分担的变动功率△P 越大,反之则越小。另外,负荷的频率调节也相应减少,这一特点有助于在电力系统频率变动时功率重新获得平衡。因为当系统负荷突然增大时,发电机组输出功率因调节系统的延时而不能及时跟上,电力系统频率必然下降,而负荷吸收功率的减少,显然有助于功率的平衡。

电力系统中有许多台发电机组和不同类型的负荷,为了分析电力系统频率的方便,必须将所有发电机组和负荷(输电网络的损耗看成是负荷的一部分),分别并为一个等效发电机组和等效负荷。

调速器的调节作用:一次调节。频率的一次调整曲线如图3-3。

移动发电机的功频特性:二次调节(无差调节):手动或自动地操作调频器,使发电机组的频率特性平行地移动,从而使负荷变动引起的频率偏移可保持在允许范围内。频率的二次调整曲线如图3-4。

图3-3 频率的一次调整

图3-4 频率的二次调整

备注:P G″为无差调节。

4、机组间有功功率分配

系统负荷总量应在各并列运行机组间稳定而合理地得到分配,合理的含义是:各并联运行的机组所分配到的有功功率,按各机组自身容量为基准折算成标幺值时均相等,当电力负荷有功功率波动时,并列运行的机组中,调差系数较大的机组,将承担较小的有功功率增量;调差系数较小的机组,将承担较大的有功功率增量。

为此,要使有功功率负荷增量在各并联运行机组间得到合理稳定分配,就要求各机组具有相同的调差系数。同步发电机组典型的频率—有功功率特性曲线的调差系数一般在3%~5%之间。

三、实验内容与步骤

在本实验1~3步骤中,采用的电力网络结构如图3-5所示;实验4步骤中采用的电力网络结构如图3-25所示。在实验中,负荷LD2选择为“阻抗性”负载

图3-5 电力系统的频率—有功功率特性测定电力网络结构

图3-6 并列运行机组间的有功功率分配电力网络结构

1、同步发电机的频率-有功功率特性(发电机的有功调差特性)的测定

1)4#发电厂起动

控制方式:手动励磁,组网运行,n=1500rpm ,U G =400V 。 2)同步发电机频率-有功功率特性测定

按下THLZD-2电力系统综合自动化实验台上QF0“合闸”按钮,记录此时的功率和频率P 0和f 0。

依次按下监控台上的QF8、QF9“合闸”按钮,读取4#母线上7#智能仪表的数据,记录发电机组的两组功率和频率P 1和f 1、P 2和f 2,记录于表中3-1,作出有功功率-频率特性曲线。

计算发电机组的调差系数和发电机组的单位调节功率。

有功功率等于零值时的频率f 0和有功功率等于非零值时的频率f 1,按下列公式即可计算出机组的有功调差系数R 为:

%100/()

)((1010?---

=N

N P P P f f f R )(

2、负荷的频率-有功功率(负荷的频率调节效应)的测定

1)恒U G机端电压方式,负荷的有功功率-频率曲线的测定

① 4#发电厂起动

控制方式:常规励磁,他励,组网运行,n=1500rpm,U G=400V。

②负荷的有功功率-频率曲线的测定

按下THLZD-2电力系统综合自动化实验台上QF0“合闸”按钮,再依次按下监控台的QF8、QF9“合闸”按钮,投入负荷LD1、LD2。

调节微机调速装置,手动调节原动机的频率,读取4#母线上7#智能仪表的数据,记录此时发电机组的P,记录于表3-2中,作出有功功率-频率特性曲线。

2)恒I L励磁电流方式,负荷的有功功率-频率曲线的测定

① 4#发电厂起动

控制方式:手动励磁,组网运行,n=1500rpm,U G=400V。

②负荷的有功功率-频率曲线的测定

按下THLZD-2电力系统综合自动化实验台上QF0“合闸”按钮,再依次按下监控台的QF8“合闸”按钮,投入负荷LD1。

调节微机调速装置,手动调节原动机的频率,记录此时发电机组的P,记录于表3-3中,作出有功功率-频率特性曲线。

再按下QF9“合闸”按钮,投入负荷LD2。手动调节原动机的频率,记录此时发电机组的P,记录于表3-4中,作出有功功率-频率特性曲线。

3)计算两次实验测定的负荷调节效应系数。

3、电力系统的频率—有功功率特性的测定

1)4#发电厂起动

控制方式:手动励磁,并网运行,n=1500rpm,U G=400V。

2)频率的一次调整

在同一标里,绘制实验步骤1的发电机有功功率-频率特性曲线、步骤2在中的恒I L励磁电流方式,负荷有功功率-频率特性曲线,其交点为(P1、f1)、(P2、f2)。

3)频率的二次调整

手动调节调速器的增速按钮,使f=50HZ,记录此时发电机的功率和频率(P3、f3)。然后按下QF9分闸按钮,退出负荷LD2,记录此时发电机的(P4、f4)。最后按下QF2分闸按钮,退出全部负荷,记录此时发电机的(P5、f5)。

由以上步骤做出电力系统频率控制曲线(图3-25)。P L1为同时投入负荷LD1时,负荷有功功率-频率特性曲线;P L2为同时投入负荷LD1和LD2时,负荷有功功率-频率特性曲线。P G为频率的一次调整曲线,P G'为频率的二次调整曲线。

图3-7 电力系统频率控制曲线

4、并列运行机组间的有功功率分配实验

1)3#、4#发电厂起动,并列运行

控制方式:常规励磁,他励,无功调节档位调节为10档,组网运行,n=1500rpm,U G=400V。

2)负荷的分配

①两个发电厂机组起动运行后,3#发电厂THLZD-2电力系统综合自动化实验台上QF0“合闸”按钮,通过4#发电厂的准同期装置完成3#、4#发电机组的并列运行,依次按下监控台的QF8、QF9“合闸”按钮,记录此时各发电机组的P、f,以及负荷的有功功率于表3-5、3-6中。

②投入负荷LD3,记录此时各发电机组的P、f,以及负荷的有功功率于表3-5、3-6中。

③投入负荷LD4,记录此时各发电机组的P、f,以及负荷的有功功率于表3-5、3-6中。

四、实验报告

1、根据实验数据,作出同步发电机组的有功功率-频率曲线

2、根据实验数据,作出电力系统负荷的有功功率-频率曲线

3、根据实验数据,作出电力系统的有功功率-频率曲线

4、根据实验步骤和数据:负荷功率和各发电机组功率,分析机组间有功功率分配的原理,总结操作方法

5、分析调差特性对机组并列运行的影响。

实验4 复杂电力系统故障(暂态稳定)计算分析实验

一、实验目的

1、熟悉复杂电力系统三相相间短路故障时,对各发电厂以及输电线路运行参数的影响。

2、了解切除三相相间短路故障的实验步骤。

3、加深对复杂电力系统故障时的暂态稳定概念的理解。

二、原理说明

电力系统遭受大的扰动后,由于系统的结构和参数发生了较大的变化,因而系统的功率分布及各发电输出的功率也随之发生突然的变化。但是,由于原动机和调速机构有一定的惯性,需要经过一段时间后才能改变原动机输出的机械功率,这样就破坏了发电机与原动机之间的功率平衡,在发电机组的转轴上便会出现不平衡转矩。

电力系统遭受大的扰动后,产生两种不同的后果。一种是暂态过程逐渐衰减,系统过渡到一个新的稳态运行状态,各发电机仍然可以保持同步运行,电力系统是暂态稳定的。另一种是某些发电机之间的相对角度随时间不断增大,会产生系统功率和电压的剧烈震荡,使一些发电机和负荷不能继续运行,甚至导致系统解列,电力系统是暂态不稳定的。

在THLZD-2电力系统综合自动化实验平台上,已经完成了单机-无穷大暂态不稳定研究;在THLDK-2电力系统监控实验平台上,在多机电力系统运行中,通过线路XL5线路上的三相相间短路故障,完成多机电力系统的暂态稳定研究。

三、实验内容与步骤

1、“THLDK-2电力系统监控及运行管理系统”上位机软件的运行

投入“操作电源”(向上扳至ON),启动电脑及显示器、打印机,运行上位机软件。使用步骤见光盘软件使用说明书。

2、无穷大系统的调整以及电力网的组建

1)逆时针调整自耦调压器把手至最小,投入“操作电源”之后,投入“无穷大系统电源”,合闸QF19,接通8#母线,再合闸QF18 ,顺时针调整自耦调压器把手至400V。

联络变压器的分接头选择为UN。

2)依次合闸QF17→QF16→QF15→QF14→QF10→QF1→QF2→QF3→QF4→QF5→QF6→QF7,观察1#~5#母线电压为400V左右。

3、1#、4#、5#发电机组的启动和同期运行

分别起动1#、4#、5#发电机组,控制方式:微机励磁,他励,恒压控制方式,组网运行,n=1500rpm,UG=400V。

此时,通过1#发电厂的自动准同期装置,将1#发电厂并入无穷大系统, 1#发电机组完成并网操作后,手动调节微机调速装置和微机励磁装置,发出一定的有功功率和无功功率。

然后按同样操作,依次完成4#、5#发电机组的并网运行,发出一定的功率。

4、电力网络正常运行

网络结构如图4-1。手动或通过上位机遥控,调节各发电厂的微机调速装置和微机励磁装置,使各发电厂发出P=0.5kW,Q=0.5kVar。

图4-1 三相短路时,多机暂态稳定电力网络结构图

5、发生三相相间短路故障时,对电力网络暂态稳定的影响

1)控制XL5线路上的电流为1A,调节控制柜内的故障线路切除时间继电器的动作时间为5sec,按下短路按钮,观察各发厂的电压、电流、功率变化情况,以及线路上各参数的变化,并打印故障时刻的历史数据和曲线。

2)控制XL5线路上的电流为1A,调节控制柜内的故障线路切除时间继电器的动作时间为10sec,按下短路按钮,观察各发厂的电压、电流、功率变化情况,以及线路上各参数的变化,并打印故障时刻的历史数据和曲线。

3)控制XL5线路上的电流分别为2A、3A时,完成1)、2)实验。

6、各发电机组的解列和停机

手动调节1#发电厂发出的有功功率和无功功率为0,按下监控实验台的QF G1“分闸”按钮,在完成1#发电厂的解列操作后,进行1#发电机组的停机操作。

然后按同样操作,依次完成4#、5#发电机组的解列和停机操作。

四、实验报告

1、分析输电线路三相相间短路故障时刻的各发电厂和输电线路的运行曲线图,对比分析短路故障对整个系统正常运行的影响,总结解决办法。

2、分析短路故障切除时间对整个电力系统的影响。

实验5 复杂电力系统切机、切负荷稳定性实验

一、实验目的

1、加深对复杂电力系统暂态稳定概念的理解。

2、熟悉多机电力系统暂态稳定,各运行参数和状态的变化过程。

二、原理说明

在独立电力系统中,被研究的电力系统中的各元件,如同步发电机、变压器、输电线路、负荷等均不与无穷大系统连接,即同步发电机的电压、频率不受无限大系统的频率和电压的制约,而单独构成一个系统。独立电力系统的发电功率与用电功率相平衡,原动机调速器和发电机励磁调节装置,按各自的调差系数进行工作,达到相对稳定。

在THLZD-2电力系统综合自动化实验平台上,已经完成了单机-无穷大系统暂态稳定的各种特性研究;在THLDK-2电力系统监控实验平台上,在独立电力系统运行中,通过稳态运行时,投、切发电机组和负荷,完成多机电力系统的暂态稳定研究。

三、实验内容与步骤

本实验电力网络结构图如图5-1所示。

图5-1 切机、切负荷时,多机暂态稳定电力网络结构(1)

1、1#、4#、5#发电机组的启动

启动1#、4#、5#发电机组,控制方式:微机励磁,他励,恒压控制方式,n=1500rpm,U G=400V。

2、1#和4#发电机组的并列运行

联络变压器的分接头选择为UN。依次按下QF1,QF2,QF4,QF5,QF6、QF14,QF10,QF12“合闸”按钮,观察1#、4#、5#母线电压为400V左右,6#母线为220V左右。

此时,按下4#发电厂的QF0,将4#发电厂并入系统中,再通过1#发电厂的自动准同期

装置,完成1#与4#发电机组的并列运行,再通过5#发电厂的自动准同期装置,完成5#与1#、4#发电机组的并列运行。

3、负荷LD1、LD3、LD4投入运行

依次按下QF8,QF11,QF13“合闸”按钮,并手动调节各发电机组的微机调速装置和微机励磁装置,发出一定有功功率和无功功率。记录各发电机组、负荷和输电线路的P、Q、U、I、cosφ于表3-7中。

说明:U、I线电压、相电流,取某一相即可。

4、可变负荷LD2变化

(1)负荷LD2选择为“纯电阻”,投、切负荷LD2,记录各发电机组、负荷和输电线路的各运行参数。

图5-2 切机、切负荷时,多机暂态稳定电力网络结构(2)(2)负荷LD2选择为“纯电感”,投、切负荷LD2,记录各发电机组、负荷和输电线路

的各运行参数。

(3)负荷LD2选择为“阻抗”,投、切负荷LD2,记录各发电机组、负荷和输电线路的各运行参数。

记录数据同表3-7中。

5、网络结构变化

依次按下QF3,QF16,QF17、QF15、QF7“合闸”按钮,改变独立电力系统的网络结构(见图3-18),观察并记录系统内各运行参数的变化。

6、发电机组的投切对独立电力系统的影响

运行过程中,突然切除1#发电厂,观察并记录系统内各运行参数的变化。

四、实验报告

1、根据实验数据和特性曲线,分析多机电力系统切机,切负荷对电力系统暂态稳定的影响。

2、根据实验现象,分析提高暂态稳定性措施。

实验6 发电机组的起动与运转实验(准备实验)

一、实验目的

1.了解微机调速装置的工作原理和掌握其操作方法。

2.熟悉发电机组中原动机(直流电动机)的基本特性。

3.掌握发电机组起励建压,并网,解列和停机的操作

二、原理说明

在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。

图6-1为调速系统的原理结构示意图,图6-2为励磁系统的原理结构示意图。

图6-1 调速系统原理结构示意图

装于原动机上的编码器将转速信号以脉冲的形式送入THLWT-3型微机调速装置,该装置将转速信号转换成电压,和给定电压一起送入ZKS-15型直流电机调速装置,采用双闭环来调节原动机的电枢电压,最终改变原动机的转速和输出功率。

图6-2 励磁系统的原理结构示意图

(完整版)电力系统分析基础知识点总结

一.填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定 电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路 电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本 形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联 电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参 数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV) (225.5KV)(231KV)。 二:思考题 1.电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 2.电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 3.电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 4.电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 5.我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定? (p8-9) 答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 6.电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线答:三相功率S和线电压U、线电流I之间的固定关系为

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

《电力系统分析基础(Ⅰ)》第二次作业答案

首页 - 我的作业列表 - 《电力系统分析基础(Ⅰ)》第二次作业答案欢迎你,窦建华(FH112258006) 你的得分:85.0 完成日期:2014年01月23日09点14分 说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2014年03月13日)后显示在题目旁边。 一、单项选择题。本大题共2个小题,每小题20.0 分,共40.0分。在每小题给出的选项中,只有一项是符合题目要求的。 1. ( A ) A. B. C. 2. ( B )

A. B. C. 二、多项选择题。本大题共5个小题,每小题6.0 分,共30.0分。在每小题给出的选项中,有一项或多项是符合题目要求的。 1.电力系统中枢点的调压方式有( ) ( ACD ) A.顺调压 B.改变变压器的变比调压 C.逆调压 D.常调压 E.发电机调压 2.电力系统稳定性按干扰的大小可分为( ) ( AD ) A.静态稳定 B.电压稳定 C.动态稳定 D.暂态稳定 E.频率稳定 3.功角δ的物理意义为( ) ( ABC ) A.作为电磁参数代表发电机q轴电势之间的夹角 B.作为继续参数代表发电机转子之间的相对位置 C.各发电机机端电压之间的夹角 4.架空输电线路各序参数的特点有( ) ( AD ) A.正序参数与负序参数相等 B.正序参数大于负序参数 C.零序参数大于正序参数 D.零序参数大于负序参数

E.架空地线使等值的零序阻抗参数减小 5.电力系统中的无功功率负荷有( ) ( BCDE ) A.异步电动机 B.同步调相机 C.变压器 D.输电线路 E.电抗器 三、判断题。本大题共10个小题,每小题3.0 分,共30.0分。 1.采用自动重合闸将使最大可能的减速面积减小。() (错误) 2.电力系统一般采用火电厂作为主调频厂。() (错误) 3.电力系统电压大小主要受有功功率影响。() (错误) 4.不对称故障一般采用对称分量法进行分析。() (正确) 5.最大可能的减速面积大于加速面积,系统将失去暂态稳定。() (错误) 6.电压降落是指首末端两点电压的相量差。() (正确) 7.快速切除故障可以提高电力系统的暂态稳定性。() (正确) 8.自动励磁调节器是提高电力系统静态稳定的有效措施。() (正确) 9.电力系统二次调频可以实现无差调节。() (正确) 10.短路冲击电流是短路电流的最大有效值。() (错误) @Copyright2007 四川大学网络教育学院版权所有

电力系统分析实验报告

五邑大学 电力系统分析理论 实验报告 院系 专业 学号 学生姓名 指导教师

实验一仿真软件的初步认识 一、实验目的: 通过使用PowerWorld电力系统仿真软件,掌握电力系统的结构组成,了解电力系统的主要参数,并且学会了建立一个简单的电力系统模型。学会单线图的快捷菜单、文件菜单、编辑菜单、插入菜单、格式菜单、窗口菜单、仿真控制等菜单的使用。 二、实验内容: (一)熟悉PowerWorld电力系统仿真软件的基本操作 (二)用仿真器建立一个简单的电力系统模型: 1、画一条母线,一台发电机; 2、画一条带负荷的母线,添加负荷; 3、画一条输电线,放置断路器; 4、写上标题和母线、线路注释; 5、样程存盘; 6、对样程进行设定、求解; 7、加入一个新的地区。 三、电力系统模型: 按照实验指导书,利用PowerWorld软件进行建模,模型如下: 四、心得体会: 这一次试验是我第一次接触PWS这个软件,刚开始面对一个完全陌生的软件,我只能听着老师讲解,照着试验说明书,按试验要求,在完成试验的过程中一点一点地了解熟悉这个软件。在这个过程中也遇到了不少问题,比如输电线的画法、断路器的设置、仿真时出现错误的解决办法等等,在试验的最后,通过请教老师同学解决了这些问题,也对这个仿真软件有了一个初步的了解,为以后的学习打了基础。在以后的学习中,我要多点操作才能更好地熟悉这个软件。

实验二电力系统潮流分析入门 一、实验目的 通过对具体样程的分析和计算,掌握电力系统潮流计算的方法;在此基础上对系统的运行方式、运行状态、运行参数进行分析;对偶发性故障进行简单的分析和处理。 二、实验内容 本次实验主要在运行模式下,对样程进行合理的设置并进行电力系统潮流分析。 选择主菜单的Case Information Case Summary项,了解当前样程的概况。包括统计样程中全部的负荷、发电机、并联支路补偿以及损耗;松弛节点的总数。进入运行模式。从主菜单上选择Simulation Control,Start/Restart开始模拟运行。运行时会以动画方式显示潮流的大小和方向,要想对动画显示进行设定,先转换到编辑模式,在主菜单上选择Options,One-Line Display Options,然后在打开的对话框中选中Animated Flows Option选项卡,将Show Animated Flows复选框选中,这样运行时就会有动画显示。也可以在运行模式下,先暂停运行,然后右击要改变的模型的参数即可。 三、电力系统模型

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类) 开课学院及实验室: 实验时间 : 年 月 日 一、实验目的 1)初步掌握电力系统物理模拟实验的基本方法。 2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。 3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 二、实验原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为 当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或' E )恒定。这时发电机的功率特性可表示成 或 这时功率极限为 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。 (3)实验内容 1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈): 在相同的运行条件下(即系统电压U-、发电机电势E 。保持不变.罚芳赆裁Ll=E 。),分别 测定输电线单回线和双回线运行时,发电机的功一角特性曲线,&豆甍辜授冁蝮和达到功率极 限时的功角值。同时观察并记录系统中其他运行参数(如发电极端毫玉萼蔫交化。将两种 情况下的结果加以比较和分析。 实验步骤如下: a)输电线路为单回线; b)发电机与系统并列后,调节发电机,使其输出的有功和无ZZ 蔓专零: c)功率角指示器调零; d)逐步增加发电机输出的有功功率,而发电机不调节震磁: e)观察并记录系统中运行参数的变化,填入表1.3中: f)输电线路为双回线,重复上述步骤,将运行参数填入表l 。毒=:

电力系统继电保护仿真实验指导书(试用稿)讲解

电力系统继电保护 实验指导书 张艳肖编 适用于12级电气工程及其自动化专业 西安交通大学城市学院二○一五年三月

目录 第一部分MATLAB基础 ................................................................................... - 3 - 1.1 MATLAB简介 .......................................................................................... - 3 - 1.2 MATLAB的基本界面 ........................................................................... - 3 - 1.2.1MATLAB的主窗口 ...................................................................... - 3 - 1.2.2 MATLAB的主窗口 ....................................................................... - 3 - 1.3 SIMULINK仿真工具简介.................................................................... - 4 - 1.3.1SIMULINK的启动 ........................................................................ - 4 - 1.3.2SIMULINK的库浏览器说明........................................................ - 5 - 第二部分仿真实验内容.................................................................................. - 6 - 实验一电力系统故障.................................................................................... - 6 - 实验二电流速断保护.................................................................................... - 9 - 实验三三段式电流保护.............................................................................. - 13 - 实验四线路自动重合闸电流保护.............................................................. - 17 -

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

浙江大学电力系统分析综合实验1

实验报告 课程名称:__电力系统综合分析使实验__ 指导老师:____成绩:__________________ 实验名称:____同步发电机准同期并列实验___实验类型:_______同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一.实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、掌握微机准同期控制器及模拟式综合整步表的使用方法; 3、熟悉同步发电机准同期并列过程; 4、观察、分析有关波形(*)。 二.原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作自动化程度的不同,又分为:手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。 线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电 压专业:电气工程及其自动化 姓名:___xxxxx____ 学号:__0000000__ 日期:__2012.9.19___ 地点:________________

电力系统分析仿真实验报告

电力系统分析仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

电力系统分析仿真 实验报告 ****

目录 实验一电力系统分析综合程序PSASP概述 (3) 一、实验目的 (3) 二、PSASP简介 (3) 三、实验内容 (5) 实验二基于PSASP的电力系统潮流计算实验 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验步骤 (14) 四、实验结果及分析 (15) 1、常规方式 (15) 2、规划方式 (23) 五、实验注意事项 (31) 六、实验报告要求 (31) 实验三一个复杂电力系统的短路计算 (33) 一、实验目的 (33) 二、实验内容 (33) 三、实验步骤 (34) 四、实验结果及分析 (35) 1、三相短路 (35) 2、单相接地短路 (36) 3、两相短路 (36) 4、复杂故障短路 (36) 5、等值阻抗计算 (37) 五、实验注意事项 (38) 六、实验报告要求 (38)

实验五基于PSASP的电力系统暂态稳定计算实验 (39) 一、实验目的 (39) 二、实验内容 (39) 三、实验步骤 (40) 四、实验结果级分析 (40) 1、瞬时故障暂态稳定计算 (40) 2、冲击负荷扰动计算 (44) 五、实验注意事项 (72) 六、实验结果检查 (72)

实验一电力系统分析综合程序PSASP概述 一、实验目的 了解用PSASP进行电力系统各种计算的方法。 二、PSASP简介 1.PSASP是一套功能强大,使用方便的电力系统分析综合程序,是具有我国自主知识产权的大型软件包。 2.PSASP的体系结构: 报表、图形、曲线、 潮流计算短路计 电网基固定用户自定固定 第一层是:公用数据和模型资源库,第二层是应用程序包,第三层是计算结果和分析工具。 3.PSASP的使用方法:(以短路计算为例) 1).输入电网数据,形成电网基础数据库及元件公用参数数据库,(后者含励磁调节器,调速器,PSS等的固定模型),也可使用用户自定义模型UD。在此,可将数据合理组织成若干数据组,以便下一步形成不同的计算方案。

最新电力系统分析基础知识点总结

电力系统分析基础 目录 稳态部分 一.电力系统的基本概念 填空题 简答题 二.电力系统各元件的特征和数学模型 填空题 简答题 三.简单电力网络的计算和分析 填空题 简答题 四.复杂电力系统潮流的计算机算法 简答题 五.电力系统的有功功率和频率调整 1.电力系统中有功功率的平衡 2.电力系统中有功功率的最优分配 3.电力系统的频率调整 六.电力系统的无功功率和频率调整 1.电力系统的无功功率平衡 2.电力系统无功功率的最优分布 3.电力系统的电压调整 暂态部分 一.短路的基本知识

1.什么叫短路 2.短路的类型 3.短路产生的原因 4.短路的危害 5.电力系统故障的分类 二.标幺制 1.数学表达式 2.基准值的选取 3.基准值改变时标幺值的换算 4.不同电压等级电网中各元件参数标幺值的计算三.无限大电源 1.特点 2.产生最大短路全电流的条件 3.短路冲击电流im 4.短路电流有效值Ich 四.运算曲线法计算短路电流 1.基本原理 2.计算步骤 3.转移阻抗 4.计算电抗 五.对称分量法 1.正负零序分量 2.对称量和不对称量之间的线性变换关系 3. 电力系统主要元件的各序参数 六.不对称故障的分析计算 1.单相接地短路 2.两相短路 3.两相接地短路 4.正序增广网络

七.非故障处电流电压的计算 1.电压分布规律 2.对称分量经变压器后的相位变化 稳态部分 一 一、填空题 1、我国国家标准规定的额定电压有3kv 、6kv、10kv、35kv 、110kv 、220kv 、330kv、500kv 。 2、电能质量包含电压质量、频率质量、波形质量三方面。 3、无备用结线包括单回路放射式、干线式、链式网络。 4、有备用界结线包括双回路放射式、干线式、链式、环式、两端供电网络。 5、我国的六大电网:东北、华北、华中、华东、西南、西北。 6、电网中性点对地运行方式有:直接接地、不接地、经消弧线圈接地三种, 其中直接接地为大接地电流系统。 7、我国110kv及以上的系统中性点直接接地,35kv及以下的系统中性点不接地。 二、简答题 1、电力网络是指在电力系统中由变压器、电力线路等变换、输送、分配电能设备所组成的部分。 2、电力系统是指由发电机、各类变电所和输电线路以及电力用户组成的整体。 3、总装机容量是指电力系统中实际安装的发电机组额定百功功率的总和。

浙江大学电力系统分析综合实验1备课讲稿

浙江大学电力系统分析综合实验1

实验报告 课程名称:__电力系统综合分析使实验__ 指导老师:_ ___成绩: __________________ 实验名称:____同步发电机准同期并列实验___实验类型:_______同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一.实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、掌握微机准同期控制器及模拟式综合整步表的使用方法; 3、熟悉同步发电机准同期并列过程; 4、观察、分析有关波形(*)。 二.原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作自动化程度的不同,又分为:手动准同期、半自动准同期和全自动准同期三种方式。 专业:电气工程及其自 动化 姓名:___xxxxx____ 学号:__0000000__ 日期:__2012.9.19___

正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。 线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和频差,不断检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均匀均频控制脉冲。当所有条件满足时,在整定的越前时刻送出合闸脉冲。 三.实验项目和方法 1.机组微机启动和建压 (1)在调速装置上检查“模拟调节”电位器指针是否指在0位置,如果不 在,则应调到0位置; (2)合上操作台的“电源开关”,在调速装置、励磁调节器、微机准同期 控制器上分别确认其“微机正常”灯为闪烁状态,在微机保护装置上确认“装置运行”灯为闪烁状态。在调速装置上确认“模拟方式”灯为熄灭状态,否则,松开“模拟方式”按钮。同时确认“并网”灯为熄灭状态,“输出0”、“停机”灯亮。检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄,调速装置面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右); (3)按调速装置上的“微机方式自动/手动”按钮使“微机自动”灯亮;

电力系统仿真实验

实验简介 一.仿真软件简介 “电力世界仿真器” (Power World Simulator)。Power World Simulator是一个优秀的软件包,能够处理任何规模的电力系统,在大学、公司、政府管理人员、电力市场人员等中被广泛使用。本书的CD在该软件平台上集成了计算例题、问题和课程设计,对学生学习及理解概念和方法很有帮助。 可视化电网是最新的研究成果,也是今后电力系统潮流计算、研究的方向。其中关于潮流管理、网络控制、电力市场环境下的线路阻塞、三维网络图、市场力等问题都是很新的。 良好的人机交互界面,使用者可依托Power World Simulator,在该软件的基础上进行方便的修改,或者按照自己的设计要求,搭建实际的电力网络进行仿真。具有一定的实用性。 二.软件使用说明 两种模式:运行模式(Run Mode)、编辑模式(Edit Mode) 以两母线电力系统(Two Bus Power System)为例,介绍“电力世界仿真器”的使用: 菜单栏:文件、仿真、例题信息、选项/工具、最优潮流、窗口、帮助“文件”:新建、打开、保存、关闭、打印等 “仿真”:运行、暂停、重新开始、恢复还原、牛顿单步潮流算法、极坐标牛顿-拉弗逊潮流算法、高斯-塞德尔潮流算法等 “例题信息”:例题简介、发电机信息、母线(节点)信息、线路/变压器信息、负荷信息、导纳矩阵等 “选项/工具”:算法/环境---潮流算法(迭代收敛误差、最大迭代次数、功率基准、缺省潮流算法等)、短路分析 工具栏:略 Message log:信息日志,记录运行过程中的状态数据

例1-1 两节点电力系统的潮流仿真 1)打开例1-1:File—Open Case—Example1-1—Two Bus Power System 2)分析例1-1: a.单电源辐射型网络,网络元件(发电机、负荷、线路、断路器),网络节点(母线),额定电压,负荷率饼状图 b.元件参数:指向相应元件点右键---Information Dialogue.各元件参数如下:发电机:Bus Number、Bus Name、ID、Status Power and V oltage Control;Input-Output;Fault Parameter 母线:Bus Number、Bus Name、V oltage(p.u.)、V oltage(kv)、Angle(deg)、Status、Device Info(Load Information、Generator Information、Shunt Admittance) 线路(变压器):From Bus---To Bus、Nominal kv、Circuit、 Parameter(R、X、B、C);Limit A/B/C;Status; Flows:Line flow at Bus(Bus A)、Line flow at Bus(Bus B) 负荷率饼状图:From Bus---To Bus、Circuit、MVA Rating 负荷:Bus Number、Bus Name、ID、Status Load Information:Base Load Model(Constant Power、Constant Current、 Constant Impedance );Current Load(MW V alue、Mvar V alue、Load Multiplier、Bus V oltage Magnitude) 3)运行例1-1: a.Play(开始迭代)---Pause,观察仿真结果 b.更改元件的参数,如负荷大小、线路阻抗等,重新进行仿真 4)结果分析 a.观察仿真结果,如各节点电压、负荷率、功率分布、功率损耗等 b.记录各相关元件的参数,采用手算潮流的方法分析计算,并与仿真结果进行对比。 c.更改元件的参数,如负荷大小、线路阻抗等,重新进行仿真,并观察仿真结果,如各节点电压、负荷率、功率分布、功率损耗等。

武大电气《电力系统分析综合实验》2019年度PSASP实验报告

电气工程与自动化学院 《电力系统分析综合实验》2019年度PSASP实验报告 学号: 姓名: 班级:

1、阐述基于PSASP的电力系统分析综合实验的目的。 实验目的:掌握用PSASP进行电力系统潮流计算,短路计算,暂态稳定计算。(1)潮流计算可以为短路计算和暂态稳定计算提供初始状态,是电力系统计算中的基本计算,要求掌握软件的操作步骤,并对比分析牛顿拉夫逊法和PQ分解法的区别,在实验过程中体会PQ分解法相比牛顿拉夫逊法的特点。 (2)短路计算的目的要求根据数据结合对称分量法加深对于短路计算的理论知识的理解。 (3)暂态稳定计算里最关键的是故障极限切除时间的确定,加深对复杂电力系统暂态的判定的认识。 2、简要阐述本实验课程的主要实验任务 (1)掌握用PSASP对电力系统进行建模。 (2)潮流计算,包括对常规方式和规划方式的电力系统进行潮流计算。 (3)短路计算,基于潮流作业1和2等5个单相接地短路、AB两相短路、复杂故障短路计算等短路计算并分析结果。 (4)暂态计算,基于潮流作业1和2的瞬时故障进行暂态稳定计算并分析结果。 3、实验方案原理图介绍。 图1(a)常规方式(b)规划方式以上为系统常规运行方式的单线图。由于母线STNB-230 处负荷的增加,需对原有电网进行改造,具体方法为:在母线GEN3-230 和STNB-230 之间增加一回输电线,增加发电3 的出力及其出口变压器的容量,新增或改造的元件如下图虚线所示: 4、计算分析用建模数据的整理 表1母线数据

5、按照下列作业要求,完成计算分析实验作业。 (1)基于实验二的潮流计算,对牛顿法和PQ法的原理做比较性的说明。 表6 常规方式下PQ法和NR法的潮流计算摘要信息报表 表7 常规方式下PQ法和NR法的全网母线(发电、负荷)结果报表 牛顿拉夫逊法每次都对电压幅值和相位进行修正,且每次计算

电力系统分析(完整版)

电力系统分析复习题 9-1负荷的组成 1.综合负荷的定义 答:系统中所有电力用户的用电设备所消耗的电功率总和就是电力系统的负荷,亦称电力系统的综合用电负荷。它是把不同地区、不同性质的所有的用户的负荷总加起来而得到的。 2. 综合负荷、供电负荷和发电负荷的区别及关系 答:综合用电负荷加上电力网的功率损耗就是各发电厂应该供给的功率,称为电力系统的供电负荷。供电负荷再加上发电厂厂用电消耗的功率就是各发电厂应该发出的功率,称为电力系统的发电负荷。 9-2负荷曲线 1.负荷曲线的定义 答:反映一段时间内负荷随时间而变化的规律用负荷曲线来描述 ? 2.日负荷曲线和年负荷曲线的慨念 答:负荷曲线按时间长短分,分为日负荷曲线和年负荷曲线。日负荷曲线描述了一天24小时负荷的变化情况;年负荷曲线描述了一年内负荷变化的情况。 ? 3.日负荷曲线中最大负荷、最小负荷、平均负荷、负荷率、最小负荷系数的慨念 答:负荷曲线中的最大值称为日最大负荷max P (又称峰荷),最小值称为日最小负荷min P (又称谷荷);平均负荷是指某一时期(日,月,年)内的负荷功率的平均值,24 24d av W P Pdt =?;负荷率m k 是日平均负荷av P 与日最大负荷max P 之比,即max av m P k P = ;最小负荷系数α是日最小负荷min P 跟日最大负荷max P 之比,即min max P P α=。 ? 4.日负荷曲线的作用 答:日负荷曲线对电力系统的运行非常重要,它是调度部门安排日发电计划和确定系统运行方式的重要依据。 ? 5.年最大负荷曲线的定义和作用 答:年最大负荷曲线描述一年内每月(或每日)最大有功功率负荷变化的情况,它主要用来安排发电设备的检修计划,同时也为制订发电机组或发电厂的扩建或新建计划提供依据。 ? 6.年持续负荷曲线的定义、最大负荷利用时数的慨念、年持续负荷曲线的用途 答:年持续负荷曲线是按一年中系统负荷的数值大小及其持续小时数顺序排列而绘制成,作用是安排发电计划和进行可靠性估算。最大负荷利用小时数max T 是全年实际耗量W 跟负荷最大值max P 之比,即8760 max 0 max max 1 W T Pdt P P = =? 9-3负荷特性与负荷模型 1.负荷电压静态特性、ZIP 模型 答:当频率维持额定值不变时,负荷功率与电压的关系称为负荷的电压静态特性;负荷模型ZIP 是指在电力系统分析计算中对负荷特性所作的物理模拟或数学描述,负荷模型分为静态模型和动态模型。 2 2(/)(/)(/)(/)N P N P N P N q N q N q P P a V V b V V c Q Q a V V b V V c ??=++?? ??=++?? 其中系数满足11P P P q q q a b c a b c ++=??++=? 上式中第一部分与电压平方成正比,代表恒定阻抗消耗的功率;第二部分与电压成正比,代表与恒电流负荷相对应的 功率;第三部分为恒功率分量。 2.负荷频率静态特性的线性模型 答:(1)(1)N PV N qV P P k V Q Q k V =+????=+??? 和(1) (1)N Pf N qf P P k f Q Q k f =+????=+??? 式中()/N N V V V V ?=-,()/N N f f f f ?=-

电力系统分析基础知识点总结(第四版)

电力系统分析基础知识点总 结(第四版) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为 (220KV)(214.5KV)(209KV)(225.5KV)(231KV)。 二:思考题 电力网,电力系统和动力系统的定义是什么(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 电力系统的电气接线图和地理接线图有何区别(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 电力系统运行的特点和要求是什么(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。

电力系统分析实验指导书

第四章 电力系统功率特性和功率极限实验 一、实验目的 1. 初步掌握电力系统物理模拟实验的基本方法; 2. 加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3. 通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实 际及分析问题的能力。 二、原理与说明 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d ∑和X q ∑,则发电机的功率特性为: δδ2sin 2sin 2∑ ∑∑ ∑∑?-?+= q d q d d q Eq X X X X U X U E P 当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。根据一般励磁调节器的性能,可认为保持发电机E 'q (或E ')恒定。这时发电机的功率特性可表示成: δδ2sin 2sin 2∑∑∑∑∑?'-'?+''='q d q d d q Eq X X X X U X U E P 或 δ'''='∑sin d q E X U E P 这时功率极限为 ∑ '='d Em X U E P 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相

机或中继电力系统以稳定系统中继点电压等手段实现。 三、实验项目和方法 (一)无调节励磁时功率特性和功率极限的测定 1.网络结构变化对系统静态稳定的影响(改变x) 在相同的运行条件下(即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q),测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和达到功率极限时的功角值。同时观察并记录系统中其他运行参数(如发电机端电压等)的变化。将两种情况下的结果加以比较和分析。 实验步骤: (1)输电线路为单回线; (2)发电机与系统并列后,调节发电机使其输出的有功和无功功率为零; (3)功率角指示器调零; (4)逐步增加发电机输出的有功功率,而发电机不调节励磁; (5)观察并记录系统中运行参数的变化,填入表4-1中; (6)输电线路为双回线,重复上述步骤,填入表4-2中。 表4-1 单回线 表4-2 双回线 注意: (1)有功功率应缓慢调节,每次调节后,需等待一段时间,观察系统是否稳定,以取得准确的测量数值。

电力系统分析基础知识点总结(第四版)

填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV)(225.5KV)(231KV)。 二:思考题 电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定?(p8-9)答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线的载流答:三相功率S和线电压U、线电流I之间的固定关系为 面积越小,投资越小;但电压越高对绝缘要求越高,杆塔、变压器、断路器等绝缘设备投资越大。综合考虑,对应一定的输送功率和输送距离应有一最合理的线路电压。但从设备制造角度考虑,又不应任意确定线路电压。考虑到现有的实际情况和进一步发展,我国国家标准规定了标准电压等级。 导线型号LGJ-300/40中各字母和数字代表什么?(p27)

相关文档
相关文档 最新文档