文档库 最新最全的文档下载
当前位置:文档库 › 编码器接线中英德文对照表

编码器接线中英德文对照表

编码器接线中英德文对照表

编码器接线中英文对照表:

编码器计数的接线方法

15. 各种输出形式的旋转编码器与后续设备(PLC、计数器等)接线分别怎么接? ⑴与PLC连接,以CPM1A为例①NPN集电极开路输出 方法1:如下图所示 这种接线方式应用于当传感器的工作电压与PLC的输入电压不同时,取编码器晶体管部分,另外串入电源,以无电压形式接入PLC。但是需要注意的是,外接电源的电压必须在DC30V 以下,开关容量每相35mA以下,超过这个工作电压,则编码器内部可能会发生损坏。 具体接线方式如下:编码器的褐线接编码器工作电压正极,蓝线接编码器工作电压负极,输出线依次接入PLC的输入点,蓝线接外接电源负极,外接电源正极接入PLC的输入com端。 方法2:编码器的褐线接电源正极,输出线依次接入PLC的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 ②电压输出接线方式如图所示: 具体接线方式如下:编码器的褐线接电源正极,输出线依次接入PLC 的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。不过需要注意的是,不能以下图方式接线。 ③PNP集电极开路输出 接线方式如下图所示:

具体接线方式如下:编码器的褐线接工作电压正极,蓝线接工作电压负极,输出线依次接入PLC的输入com端,再从电源负极端拉根线接入PLC的输入com端。④线性驱动输出具体接线如下:输出线依次接入后续设备相应的输入点,褐线接工作电压的正极,蓝线接工作电压的负极。 ⑵与计数器连接,以H7CX(OMRON制)为例H7CX输入信号分为无电压输入和电压输入。 ①无电压输入:以无电压方式输入时,只接受NPN输出信号。 NPN集电极开路输出的接线方式如下: 具体接线方式如下:褐线接电源正极,蓝线接电源负极,再从电源负极端拉根线接6号端子,黑线和白线接入8和9号端子,如果需要自动复位,则橙线接入7号端子。 NPN电压输出的接线方式如下: 接线方式与NPN集电极开路输出方式一样。 ②电压输入NPN集电极开路输出的接线方式如下图所示: 具体接线方式如下:褐线接电源正极,蓝线接电源负极,再从电源负极端拉根线接6号端子,黑线和白线接入8和9号端子,如果需要自动复位,则橙线接入7号端子。PNP集电极开

编码器接线规范

编码器接线规范 编码器(encoder)是将物理信号编制、转换为可用以通讯、传输和存储的信号的一种设备。应用于速度控制或位置控制系统的检测元件。现场运输小车均使用的是帝尔TR 厂家的CEV65 M 型号编码器,其中C 表示紧凑绝对型、E 表示光学、V 表示实轴、M 表示多圈、65表示外壳 65mm。 图1编码器 图2 编码器后盖地址设定及接线端子介绍

编码器接线方法1: 所需工具:剥线刀、开口2mm一字改锥、内六花一套、偏口钳一把,开口3mm十字螺丝刀一把。 操作步骤: 1)设定地址,接线口朝下拿编码器,左边拨码是十位,右边拨码是个位。 2)设定终端:只接入线时,此编码器是终端,两个终端都打到ON;入线和出线都接时两个拨码都拨到1位。 3)接线: a)把接线端子的附件按顺序套在DP线上,如图3; 图3接线附属设备安装顺序 b)剥除DP线外层的橡胶层10cm左右,如图4; 图4 DP线拨线图5处理屏蔽线 c)把内层的金属屏蔽层屡开,并拧成一股,如图5; d)剥开线内部白色保护层,把屏蔽层接到图7中椭圆标出的螺丝上, 并接网线,A接绿线,B接红线,如图6,图7。

图6穿线图7接线 此方法优、缺点: 优点:屏蔽层接触好; 缺点:接线方法复杂,不易于操作 编码器接线方法2: 所需工具:DP线剥线刀、开口2mm一字改锥、内六花一套、偏口钳一把,开口3mm十字螺丝刀一把。 操作步骤: 1)设定地址,接线口朝下拿编码器,左边拨码是十位,右边拨码是个位。 2)设定终端:只接入线时,此编码器是终端,两个终端都打到ON;入线和出线都接时两个拨码都拨到1位。 3)接线: a)用专业DP线剥线刀剥线,按图8按顺序穿上附件,并做好屏蔽; 图8剥线图9穿线 b)接线,A接绿线,B接红线,如图10。

2013.7-多摩川编码器总结

2013.7 多摩川编码器总结 一、摘要 基于CPLD 和DSP 实现CPLD 与多摩川编码器的通讯,通过对编码器发送请求,得到编码器发回的数据并进行解码,得到绝对位置值。 二、学习步骤: 1、熟悉工作环境,掌握Modelsim 以及Quartus 的使用。 2、阅读多摩川编码器的通讯协议。 3、根据协议编写testbench ,并在Modelsim 上进行仿真调试。 4、仿真通过后,通过Quartus 编译后下载到CPLD 上并与编码器通讯,实际情况下运行。 5、完成各项要求的功能。 6、对代码进行优化,尽可能减少资源占用。 7、验收。 三、总体结构 双绞线,差分式,串行 地址/数据总线接口 RO,DI,DIR逻辑信号 结构分三部分:多摩川编码器,CPLD ,DSP 。 1、编码器跟CPLD 之间通过MAX485电平转换进行连接。 2、CPLD 与DSP 则通过总线进行连接(这一部分结构编写学长已经完成并且提供了端口连接) 3、主要工作是CPLD 的解码部分。 四、通讯协议 1、TS5668的技术指标:(物理层) 精度:单圈精度: 17位(131 072) 多圈精度: 16位(65 536) 最高转速/ ( r ·min - 1 ): 6 000】 输出:差分NRZ 编码二进制 传输速度/Mbp s : 2. 5 发送、接收电路:差分形式 通信方式:主从模式 接口:3FG ,4sig+ ,5sig -,7VCC ,8DGND 。4和5为差分信号接口。 2、通信步骤如下图:(逻辑链路层) 1)CPLD 向编码器发送一个控制字CF 2)3us 后编码器返回数据包。 3)CPLD 对数据包进行解码,并将得到的数据放在总线上,等待DSP 获取。 具体流程如下图:

曳引机使用说明书

曳引机使用说明书 安全可靠人性创新 永磁同步无齿轮曳引机 MTA50000AB

序言 感谢您使用该系列永磁同步无齿轮曳引机产品! 永磁同步电机技术作为一种电动机新技术应用于电梯曳引机领域开始于二十世纪九十年代,它带来了一次电梯公司形式上的革命。该系列永磁同步无齿轮曳引机采用盘式制动器、内转子型式。 本公司研发的永磁同步无齿轮曳引机的各项指标设计均符合国家相关规定,每台曳引机出厂前都经过严格的质量检验,对制动力、绝缘耐压、振动、噪音等各项指标进行了全面的检测,从而保证产品的质量和性能符合标准规定。 此手册为产品的一部分,旨在为用户正确使用无齿轮曳引机并提供曳引机安装、保养方面的指导,请务必妥善保管于安全的地方,以方便服务人员使用。在对机器进行安装、调试、使用、维修前,请务必阅读并理解此手册的内容。对不按此手册或不按我公司工程人员指导进行违规操作所产生的所有后果,我公司有权不予承担。 我公司拥有对本手册及其所包含信息的所有权,并有权对手册内容进行版本更新,而不另行通知。 严禁任何单位和个人,不经本公司同意复制部分或全部内容,用于同行业产品的说明和介绍。

目录 序言 一安全 ........................................................................................................ - 1 -二产品说明 ................................................................................................ - 1 -2.1曳引机介绍 (1) 2.2曳引机工作条件 (1) 2.3防护等级 (1) 2.4产品型号 (2) 2.5外形安装尺寸 (2) 2.6备件 (3) 三运输、仓储及吊装 ................................................................................. - 3 -四安装 ........................................................................................................ - 4 -4.1使用前检查 (4) 4.2安装注意事项 (4) 4.3远程松闸手动装置的安装及使用说明 (4) 4.3.1 安装 ................................................................................................ - 4 - 4.3.2 使用说明 ........................................................................................ - 5 -

多摩川产品资料说明

陀螺仪: 可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。 1、体积小、重量轻。适合于对安装空间和重量要求苛刻的场合,例如弹载测量等。 2、低成本。 3、高可靠性。内部无转动部件,全固态装置,抗大过载冲击,工作寿命长。 4、低功耗。 5、大量程。适于高转速大g值的场合。 6、易于数字化、智能化。可数字输出,温度补偿,零位校正等。 测速发电机: 输出电动势与转速成比例的微特电机。测速发电机的绕组和磁路经精确设计,其输出电动势 E 和转速 n 成线性关系,即 E=Kn,K 是常数。改变旋转方向时输出电动势的极性即相应改变。在被测机构与测速发电机同轴联接时,只要检测出输出电动势,就能获得被测机构的转速,故又称速度传感器。 测速发电机广泛用于各种速度或位置控制系统。在自动控制系统中作为检测速度的元件,以调节电动机转速或通过反馈来提高系统稳定性和精度;在解算装置中可作为微分、积分元件,也可作为加速或延迟信号用或用来测量各种运动机械在摆动或转动以及直线运动时的速度。 电子凸轮: 利用角度位置传感器来模拟机械凸轮各控制点的角度范围,并能独立输出各自的控制信号,此种设备称为电子凸轮,包含“机械凸轮+微动开关”的基本功能。 ?可以输出多路控制开关量(ON/OFF),且每路都可以独立预设起始、终止角度。 ?可以动态检测和显示实际运行角度,对设备运行和再调整实时检测。 ?可以随时修改预设角度,且每一路均有 LED 状态指示,“开态”点亮,“关态”熄灭。 ?各路输出信号在电气上相互隔离,抗干扰能力强,可靠性高。 ?动作精度可达到1°typical 轨迹球: 外型尺寸:1、1.4、2、3英寸 输出方式:PS2、USB、方波、脉冲输出

编码器的选型及技术解答

编码器的选型及技术解答 一、问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二、问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B 脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装臵中设立计数栈。 增量型编码器与绝对型编码器的区分:编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料;玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级。塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率:编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。A.B两相联接,用于正反向计数、判断正反向和测速。A、B、Z三相联接,用于带参考位修正的位臵测量。A、A-,B、B-,Z、Z-连接,

编码器控制线制作及连接

编码器控制云台的控制线连接图 一、D31摄像头的控制 方法一: 线缆制作: RJ45(网线)接口:直连线做法(白橙、橙、白绿、蓝、白蓝、 绿、白棕、棕) Com口做法:焊接2(白绿)、3(橙)、5(白棕)口 线缆连接: RJ45直接接在编码器的485口上,Com口直接接D31的控制线,不用485转232的转换头 注:此方法不能做为工程安装使用 方法二:

线缆制作: a)网线一端为水晶头(568B线序),将网线另一端颜色为橙白(485+) 和橙(485-)的线缆剥出。 b)DB9(公)到DB9(公)转接线:用双芯线将两个DB9头的2、3 脚线交叉连接,两芯线的屏蔽线将两DB9的第五根5脚线直连。 c)DB9(母)到VISCA(公)为成品线。 线缆连接: 将网线水晶头一端接到监控前端的RS485口,另一端颜色为橙白(485+)、橙(485-)分别接到485转换器的485+(T/R+)、485-(T/R-),对应关系为+对+,-对-;然后将485转换器的232接口接到DB9转接线上,再将DB9转接线另一端接到DB9(母)到VISCA(公)成品线的DB9端,然后将VISCA端接到SONYD100的VISCA口即可。 如果编码器的485口是用端子连接的话,就把网线的水晶头去掉,白橙接+橙接—,即可实现云台控制。 注:如果云台无法控制的话,把485的+—对调一下即可。二、高速球的云台控制 大多数高速快球的控制线为485接口,在连接控制线时,只需用两芯屏蔽线或网线进行连接。 1.当两端都是485接口时,用两芯屏蔽线按照+接+、—接—连 接。 2.一端为485接口,另一端为RJ45口,用高速球的+、—连接

编码器的安装使用与接线方法

编码器的安装使用与接线方法 绝对型旋转编码器的机械安装使用:绝对型旋转编码器的机械安装有高速端安装、低速端安装、辅助机械装置安装等多种形式。 高速端安装:安装于动力马达转轴端(或齿轮连接),此方法优点是分辨率高,由于多圈编码器 有4096圈,马达转动圈数在此量程范围内,可充分用足量程而提高分辨率,缺点是运动物体通过减 速齿轮后,来回程有齿轮间隙误差,一般用于单向高精度控制定位,例如轧钢的辊缝控制。另外编码器直接安装于高速端,马达抖动须较小,不然易损坏编码器。 低速端安装:安装于减速齿轮后,如卷扬钢丝绳卷筒的轴端或最后一节减速齿轮轴端,此方法已无齿轮来回程间隙,测量较直接,精度较高,此方法一般测量长距离定位,例如各种提升设备,送料小车定位等。 辅助机械安装:常用的有齿轮齿条、链条皮带、摩擦转轮、收绳机械等。 旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。 编码器有5条引线,其中3条是脉冲输出线,1条是COM端线,1条是电源线(OC门输出型)。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM 端连接,“+ ”与编码器的电源端连接。编码器的COM端与PLC输入COM端连接,A、B、Z两相脉冲输出线直接与PLC的输入端连接,A、B为相差90度的脉冲,Z相信号在编码器旋转一圈只有一个脉冲,通常用来做零点的依据,连接时要注意PLC输入的响应时间。旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地,提高抗干扰性。 编码器-----------PLC A-----------------X0 B-----------------X1 Z------------------X2 +24V------------+24V COM------------- -24V-----------COM[1]

编码器安装通用指引

本技术文档提供参考方案,旨在解决因机械安装和布线造成的编码器的故障。 一般指引 请不要敲击编码器请不要敲击编码器!! 请不要使编码器承受超出轴所允许的负载请不要使编码器承受超出轴所允许的负载!! 请不要打开编码器内部请不要打开编码器内部!! 请不要使用刚性联轴器不要使用刚性联轴器!! 请不要机械加工编码器本体或者轴请不要机械加工编码器本体或者轴!! 每种产品的安装方式都不尽相同,所以难于提供所有安装方式的信息。按照以下安装指引,结合相应的安装规范仔细安装,能保证产品运行的长久性。 柔性联轴器,伺服夹环,安装螺丝等其他安装硬件是不包含在编码器中的,如需要请与厂家联系。 编码器安装及接线指导

机械安装 实心轴类 1、编码器轴与用户端输出轴之间采用弹性软连接,以避免因用户轴的串动、跳动而造成编码器轴系和码盘的损坏。 2、安装时请注意允许的轴负载。 3、应保证编码器轴与用户输出轴的不同轴度<0.20mm ,与轴线的偏角<1.5°。 4、安装时严禁敲击和摔打碰撞,以免损坏轴系和码盘。 空心轴类 1、要避免与编码器刚性连接。 2、 安装轴的尺寸请参照对应的说明。 3、安装时编码器应轻轻推入被套轴,严禁用锤敲击,以免损坏轴承和码盘。 4、长期使用时,检查固定编码器的螺钉是否松动。 典型机械安装方式之一典型机械安装方式之一::伺服法兰型 1、固定机器上的驱动轴; 不能将编码器轴与机器直接相连接,通常采用柔性联轴器。 2、安装联轴器(1)到编码器上,请注意联轴器不要接触到编码器表面; 3、将带螺丝(3)的伺服夹环(2)推到安装法兰表面,但不要锁紧螺丝; 4、旋转伺服夹环(2)以便将编码器推入到位 5、旋转伺服夹环(2)进入到伺服套子中,然后轻轻缩紧。 6、在驱动轴上固定好联轴器(1)并尽量减少角度和水平对准误差以保证联轴器和编码器安装误差在允许范围内。 7、锁紧伺服夹环上的3个螺丝。

欧姆龙编码器正确的接线

(1)正确接线至关重要,如图1 为NPN 输出增量型E6B2-CWZ6C 的接线原理,图2 为NPN 输出增量型E6B2-CWZ6C 的实际接线,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源正极。 (2)下图为PNP 输出增量型E6B2-CWZ6B 的实际接线图,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源负极。

(3)图1 为绝对值型编码器的线与PLC 输入的点的对应图,图2 为NPN 输出绝对值型 E6C3-AG5C 的实际接线图,红色线接电源正极,黑色线接电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接输入0.08,PLC 的COM 接电源正极。

(4)下图为PNP 输出绝对值型E6C3-AG5B 的实际接线图,红色线接电源正极,黑色线接 电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接 输入0.08,PLC 的COM 接电源负极。 (5)图1 为线驱动编码器的接线原理,图2 为实际接线图,黑色线接A0+,黑红镶边线A0-,白色线接B0+,白红镶边线接B0- 橙色线接Z0+,橙红镶边线接Z0-,褐色线接电源+5V,蓝色线接电源0V,切勿接线错误。

多摩川编码器

ROTARY ENCODERS FA-CODER ? OIH35

ROTARY ENCODERS to high resolution are available to meet all of the requirements. High performance encoders supported by these high disk pro- ducing techniques are available. FA-CODER ?

Super-precision angle index device HISTORY OF ENCODER DEVELOPMENT AT TAMAGAWA SEIKI SPECIFICATION LIST (INCREMENTAL) SPECIFICATION LIST (ABSOLUTE) INDIVIDUAL SPECIFICATION (INCREMENTAL) INDIVIDUAL SPECIFICATION (ABSOLUTE) NOTICE IN TRANSMITTING TRANSMITTING DISTANCE HOW TO USE ENCODER CONTROL SIGNAL CONVERSION TIME NOTICE IN HANDLING MOUNTING WAY DEFINITIONS COUPLING SPECIFICATION MOUNTING PLATE ANGLE CONVERSION LIST I N D E X 2

1970 S45 1975 S50 1980 S55 1985 S60 3 100 3,600C/T 12bit 17bit HISTORY OF ENCODER DEV (for steel) TS5146 5,000C/T TS5410 Series 90k 480k C/T 19bit

omron编码器接线方法(行业二类)

文书#借鉴 1 欧姆龙E6B2系列(增量型编码器)接线方式 常用欧姆龙E6B2系列编码器有CWZ6C 、CWZ5B 、CWZ3E 三种,其中CWZ6C 和CWZ5B 分别是NPN 开路集电极和PNP 开路集电极输出(如下图),CWZ3E 是电压输出,因此在接线上前2者不同与以往编码器,不能直接接入变频器的脉冲采集装置中,以安川PG-2卡为例: 一:根据三极管放大电路,在集极与电源间增加偏置电阻接法 PG-2 +12V 0V A+A-B+B-E6B2-CWZ6C +-A B Z R PG-2 +12V 0V A+A-B+B- E6B2-CWZ5B +-A B Z R

文书#借鉴 2 其中R 取值680欧~2000欧,0.5W 其中针对安川PG-B2卡应选用680~1000欧的电阻 针对ABB PRBA01编码器模块应选用 15V (1000~1500欧),24V (1500~2000欧)的电阻(ABB 只能用偏置电阻接法,且A-B-不能同OV 短接,出差前 注意带电阻。) 若出现下列情况,则适当减少电阻阻值: A :脉冲信号不稳定,编码器反馈数值波动较大 B :正方向信号反馈数值正常,负方向反馈数值基本没有 C :反馈数值响应慢,电机运行电流不正常 二:直连法 PG-2 +12V 0V A+A-B+B-E6B2-CWZ6C +-A B Z PRBA01 +15V 0V A+A-B+B-E6B2-CWZ6C +-A B Z R

文书#借鉴 3 此接法经过实际运用信号正常,但有反映在超频下有可能发生异常,请在使用此连接方式时注意观察。 PG-2 +12V 0V A+A-B+B-E6B2-CWZ5B +-A B Z

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器传感器 凡是利用一定的物性(物理、化学、生物)法则、定理、定律、效应等把物理量或化学量转变成便于利用的电信号的器件。传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。[全文] ,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC PLC PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应按照易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。[全文] 、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源 光源光源产品具有LED显示、体积小、重量轻、易携带、电池供电、性能价格比高等特点,直观快速,是一种使用极其简单方便的测试工具,产品经过防震防潮处理,可以在野外恶劣环境下长时间工作。[全文] 垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器 旋转编码器旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。[全文] 也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器

2013.7 多摩川编码器总结

2013.7 多摩川编码器总结 一、摘要 基于CPLD 和DSP 实现CPLD 与多摩川编码器的通讯,通过对编码器发送请求,得到编码器发回的数据并进行解码,得到绝对位置值。 二、学习步骤: 1、熟悉工作环境,掌握Modelsim 以及Quartus 的使用。 2、阅读多摩川编码器的通讯协议。 3、根据协议编写testbench ,并在Modelsim 上进行仿真调试。 4、仿真通过后,通过Quartus 编译后下载到CPLD 上并与编码器通讯,实际情况下运行。 5、完成各项要求的功能。 6、对代码进行优化,尽可能减少资源占用。 7、验收。 三、总体结构 双绞线,差分式,串行 地址/数据总线接口RO,DI,DIR逻辑信号结构分三部分:多摩川编码器,CPLD ,DSP 。 1、编码器跟CPLD 之间通过MAX485电平转换进行连接。 2、CPLD 与DSP 则通过总线进行连接(这一部分结构编写学长已经完成并且提供了端口连接) 3、主要工作是CPLD 的解码部分。 四、通讯协议 1、TS5668的技术指标:(物理层) 精度:单圈精度: 17位(131 072) 多圈精度: 16位(65 536) 最高转速/ ( r ·min - 1 ): 6 000】 输出:差分NRZ 编码二进制 传输速度/Mbp s : 2. 5 发送、接收电路:差分形式 通信方式:主从模式 接口:3FG ,4sig+ ,5sig-,7VCC ,8DGND 。4和5为差分信号接口。 2、通信步骤如下图:(逻辑链路层) 1)CPLD 向编码器发送一个控制字CF 2)3us 后编码器返回数据包。 3)CPLD 对数据包进行解码,并将得到的数据放在总线上,等待DSP 获取。 具体流程如下图:

20137多摩川编码器总结

2013.7多摩川编码器总结 一、摘要 基于CPLD 和DSP 实现CPLD 与多摩川编码器的通讯,通过对编码器发送请求,得到 编码器发回的数据并进行解码,得到绝对位置值。 二、学习步骤: 1、 熟悉工作环境,掌握 Modelsim 以及Quartus 的使用。 2、 阅读多摩川编码器的通讯协议。 3、 根据协议编写testbench ,并在Modelsim 上进行仿真调试。 4、 仿真通过后,通过 Quartus 编译后下载到 CPLD 上并与编码器通讯,实际情况下运 行。 5、 完成各项要求的功能。 6、 对代码进行优化,尽可能减少资源占用。 7、 验收。 三、总体结构 结构分三部分:多摩川编码器, CPLD ,DSP 。 1、 编码器跟CPLD 之间通过MAX485电平转换进行连接。 2、 C PLD 与DSP 则通过总线进行连接(这一部分结构编写学长已经完成并且提供了端 口连接) 3、 主要工作是 CPLD 的解码部分。 四、通讯协议 1、 TS5668的技术指标:(物理层) 精度:单圈精度:17位(131 072) 多圈精度:16位(65 536) 最高转速/ ( r ? min - 1 ) : 6 000】 输出:差分NRZ 编码二进制 传输速度/Mbp s : 2. 5 发送、接收电路:差分形式 通信方式:主从模式 接口: 3FG , 4sig+ , 5sig-, 7VCC , 8DGND 。4 和 5 为差分信号接口。 2、 通信步骤如下图:(逻辑链路层) 1) CPLD 向编码器发送一个控制字 CF 2) 3us 后编码器返回数据包。 3) CPLD 对数据包进 行解码,并将得到的数据放在总线上,等待 DSP 获取。 具体流 程如下图: RO DI ,DIR 逻辑信号 MAX48电平转 换接口 CPL 解码 地址/数据总线接口 双绞线,差分式,串行 1/

编码器PLC接线

旋转编码器与后续设备(PLC、计数器等)接线如何接? 分享到: ⑴与PLC连接,以CPM1A为例: ①NPN集电极开路输出 方法1:如下图所示 这种接线方式应用于当传感器的工作电压与PLC的输入电压不同时,取编码器晶体管部分,另外串入电源,以无电压形式接入PLC。但是需要注意的是,外接电源的电压必须在DC30V以下,开关容量每相35mA以下,超过这个工作电压,则编码器内部可能会发生损坏。 具体接线方式如下:编码器的褐线接编码器工作电压正极,蓝线接编码器工作电压负极,输出线依次接入PLC的输入点,蓝线接外接电源负极,外接电源正极接入PLC的输入com 端。 方法2:

编码器的褐线接电源正极,输出线依次接入PLC的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 ②电压输出 接线方式如图所示: 具体接线方式如下:编码器的褐线接电源正极,输出线依次接入PLC的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 ③PNP集电极开路输出 接线方式如下图所示: 具体接线方式如下:编码器的褐线接工作电压正极,蓝线接工作电压负极,输出线依次接入PLC的输入com端,再从电源负极端拉根线接入PLC的输入com端。 ④线性驱动输出 具体接线如下:输出线依次接入后续设备相应的输入点,褐线接工作电压的正极,蓝线接工作电压的负极。 ⑵与计数器连接,以H7CX(OMRON制)为例

H7CX输入信号分为无电压输入和电压输入。 ①无电压输入: 以无电压方式输入时,只接受NPN输出信号。 NPN集电极开路输出的接线方式如下: 具体接线方式如下:褐线接电源正极,蓝线接电源负极,再从电源负极端拉根线接6号端子,黑线和白线接入8和9号端子,如果需要自动复位,则橙线接入7号端子。 NPN电压输出的接线方式如下: 接线方式与NPN集电极开路输出方式一样。 ②电压输入 NPN集电极开路输出的接线方式如下图所示:

编码器的定义

义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。查看详细规范>> 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 主要分类 编码器可按以下方式来分类。 1、按码盘的刻孔方式不同分类 (1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号, 编码器(图1)编码器(图1) 然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A 相、B相为相互延迟1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。 (2)绝对值型:就是对应一圈,每个基准的角度发出一个唯一与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。 2、按信号的输出类型分为:电压输出、集电极开路输出、推拉互补输出和长线驱动输出。 3、以编码器机械安装形式分类

(1)有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。 (2)轴套型:轴套型又可分为半空型、全空型和大口径型等。 4、以编码器工作原理可分为:光电式、磁电式和触点电刷式。 工作原理 由一个中心有轴的光电码盘,其上有环形通、暗的刻线, 编码器(图5) 有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率-编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 主要作用 它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,

CT 备选件选型 (有编码器接线图)

Commander SK
Options for Commander SK
Michael Nakulski
September 2004
Product Management Copyright 2004 ? Control Techniques
1

Commander SK
INDEX
Page 3 - Options for Commander SK Page 4 - LED Remote Mounting Keypad Page 5 - LCD Remote Mounting Keypad Page 6 - Parameter Memory Stick Page 7 - Fieldbus Option Modules Page 8 - Extended I/O Page 9 - Extended I/O with Real-time-clock Page 10 - Commissioning Software Page 11 - PLC Function Programming Software Page 12 - PLC Function Stick Page 13 - Connecting Cable for PC Page 14 - Additional EMC Filters Page 15 - Top NEMA 1 Cover Page 16 - Bottom Glanding Metal Cover
Product Management Copyright 2004 ? Control Techniques
2

相关文档