文档库 最新最全的文档下载
当前位置:文档库 › 机械波

机械波

机械波
机械波

波动(一)

1.位于原点的波源产生的平面波以u=10m/s 的波速沿X 轴正

向传播, 使得X=10m 处的P 点振动规律为 Y=0.05COS(2πt -π/2) (m), 该平面波的波动方程

?????

?---=??????-?-=2)1010(2cos 05.02)(2cos 05.0:ππππx t u x t y 解 ??

????+-=ππ23)10(2cos 05.0x t 2. 如图表示t=0 时刻正行波的波形图, O 点的振动位相是(C )

(A) -π/2 (B) 0 (C) π/2 (D) π

设O 点的振动表达式为 y=Acos(ωt+?) 则O 点的速度表达式为

v =-ωAsin(ωt+?)

t=0时

y 0=Acos ?=0

v 0=-ωAsin ?<0 则有 cos ?=0 , sin ?>0 ∴ ? = π/2

3. 已知一平面谐波的波动方程为Y=0.1COS(3t -6x)m, 则周期是(2π/3)s ,波线上相距2m 的两点间相差是12rad

解: ω=3s -1 ?T=2π/ω=2π/3(s) 2π/λ=6 ? λ=π/3 ,

?? = 2π?x /λ=6×2=12(rad)

u

Y 0 X

4. 已知波源在原点(X=0)的平面谐波的方程为Y=A COS(Bt -CX), 式中A 、B 、C 为正值恒量, 则此波的振幅为A ,波速为B/C , 周期为2π/B , 波长为2π/C , 在任何时刻,在波传播方向上相距为D 的两点的周相差为CD .

解: 由 Y=Acos(2πt/T+2πx /λ+φ)=Acos(Bt -C x ) 得 2π/T=B 2π/λ=C φ=0

∴ 振幅为A , T=2π/B , λ=2π/C , u=λ/ T=B/C

Δφ=2π(x 2-x 1)/ λ=2πD /λ=CD

5. 如图所示是一平面余弦波在t=0.25s 时刻的波形图, 波速为u=40m/s, 沿X 的正方向传播, 写出此波的波动方程. 解: A=0.1m , u=40m/s λ=40m

ω=2πu/λ=2π?40/40=2π(s -1) 设O 点的振动表达式为 y=0.1cos(ωt+?) =0.1cos(2πt+?)

则v =-0.2πsin(2πt+?)

t=0.25s 时, O 点的振动为y=0.1cos(π/2+?)=0 , 速度为 v =-0.2πsin(π/2+?)<0 ,

即 cos(π/2+?)=0 , sin(π/2+?)>0 ,

得π/2+?=π/2 , ∴ ?=0

O 点的振动表达式 y=0.1cos2πt

波动表达式 y=0.1cos [2π(t -x /40)]

Y(m)

0.1 0 10 20 30 40 X(m) u

波动(二)

1. 一平面谐波在弹性媒质中传播时, 在传播方向上某质元在平衡位置时,则它的能量为( C )

(A) 动能为零, 势能最大 (B) 动能为零,势能为零

(C) 动能最大, 势能最大 (D) 动能最大,势能为零 (由E p =E k =mv 2/2 和质元在平衡位置时速度最大可得)

2. 下面说法正确的是( B )

(A) 在两个相干波源连线中垂线上各点必为干涉极大

(B) 在两列波相遇的区域的某质点若恒为静止, 则这两列波必相干

(C) 在同一均匀媒质中两列相干波干涉结果由波程差来确定

(D) 两相干波相遇区各质点, 振幅只能是A 1+A 2或(A 1-A 2)的绝对值.

3. 如图A 、B 为两个同位相的相干波源, 相距4m, 波长为1m, 设BC 垂直AB, BC=10m, 则B 、C 之间(B 点除外)将会出现 3 个干涉加强点.

解:干涉加强点,光程差为 r 1-r 2=k (k =0,1,…)

在B 点, r 1-r 2=4(m)

在C 点, r 1 =[(AB)2+(BC)2]1/2 =[42+102]1/2 =10.8(m)

r 2=BC=10m , r 1-r 2=0.8m

在B 、C 之间任一P 点,有 0.8≤r 1-r 2<4 (B 点除外) 对干涉加强点有:0.8≤ k λ <4 即0.8< k< 4, 可见k=1,2,3时, P 点干涉加强,且在B 、C 之间。所以有三个干涉加强点。 A B C r 2 r 1

P

4. S 1和S 2是两相干波源相距1/4波长, S 1比S 2周相超前π/2, 设两波在S 1S 2连线方向上的振幅相同, 且不随距离变化, 问S 1S 2连线上在S 1外侧各点处合成波的振幅为多少? 又在S 2外侧点处的振幅为多少?(设两波的振幅都为A 0)

解: A 1=A 2=A 0 , φ1—φ2=π/2 , I 1=I 2=I 0=(1/2)ρω2A 02u 合振动的振幅为

)cos 1(2cos 2202122212?+=?++=??A A A A A A

设P 1为S 1外侧的任一点, P 2为S 2外侧的任一点。则

在P 1点,4

12λ=

-r r π=π+π=-λπ+?-?=?22)(21221r r ? 0)11(2)cos 1(22020

2=-=?+=A A A ? 02

1 ,0 22=ρω==∴u A I A 在P 2点, 4

12λ-=-r r 02

2)(21221=π-π=-λπ+?-?=?r r ? 20202024)11(2)cos 1(2A A A A =+=?+=?

S 1 S 2 P 1

P 2

, 2 0A A =∴ 02242

1 I u A I =ρω= 5. 设平面横波1沿BP 方向传播, 它在B 的振动方程为 Y 1=0.2COS2πt(cm),平面横波2沿CP 方向传播,它在C 点的振动方程为Y 2=0.2COS(2πt+π)(cm),PB=0.40m, PC=0.50m, 波速为0.20m/s, 求:

(1) 两波传到P 处时的周相差

(2) 在P 点合振动的振幅.

B P

C

解: (1) u=0.2m/s , ω=2π(s -1) , ν=ω/2π=1Hz

λ=u/ν=0.2m , φ2-φ1=π Δφ=φ2-φ1-(2π/λ)(PC -PB)=π-π=0 (2) A 1=A 2=0.2×10-2m A=[A 12+A 22+2A 1A 2cos Δφ]1/2=[A 12+A 22+2A 1A 2]1/2

=A 1+A 2=0.4×10-2m

波动(三)

1.某时刻驻波波形曲线如图所示,则a,b 两点的位相差是( A )

(A) π (B) π/2 (C) π/4 (D) 0

波节两边质元振动相位相反

2. 如图, 在X=0处有一平面余弦波波源, 其振动方程是Y=ACOS(ωt+π), 在距O 点为1.25λ处有一波密媒质界面MN, 则O 、B 间产生的驻波波节的坐标是0.25λ,0.75λ ,

1.25λ;波腹的坐标是0 , 0.5λ , λ.

解: 此情况有半波损失B 点是波节 O 、B 间的距离为1.25λ,是λ/4 的奇数倍(5倍),故能形成稳定

的驻波. ∵相邻波节距离为λ/2

∴从B 点开始,各波节相应的 坐标依次为1.25λ,0.75λ,0.25λ 而波腹的坐标依次为0,0.5λ, λ.

3. 空气中声速为340m/s, 一列车以72km/h 的速度行驶, 车上旅客听到汽笛声频率为360Hz, 则目送此火车离去的站台上的旅客听到此汽笛声的频率为( B )

(A) 360Hz (B) 340Hz (C) 382.5Hz (D) 405Hz 解: 已知u=340m/s , νs =360Hz , v s =-72km/h=-20m/s

Y a λ/2 9λ/8 b X M X B N O

Hz 340360)

20(340340v u u S S R =?--=-=νν

4. 设入射波的波动方程为Y 1=ACOS2π(t/T+x/λ), 在x=0处发生反射, 反射点为一自由端,求:

(1) 反射波的波动方程

(2) 合成波的方程,并由合成波方程说明哪些点是波腹,哪些点是波节.

解: (1) x =0点的振动表达式 T

t A y 2c o s 0π= 反射点为自由端,无半波损失,所以反射波的波动表达式为

)(2cos 2λπx T t A y -=

(2) 驻波表达式

)(2cos )(2cos 21λ

πλπx T t A x T t A y y y -++=+= T t x A 2cos 2cos 2πλπ=

波腹处:1 2cos =λπx 即πλπk x = 2得2λk x =(∵x ≥0,∴k ∈N)

∴x =0, λ/2, λ, 3λ/2,…

波节处:0 2cos =λπx 即πλπ)21( 2+=k x 得2

)21(λ+=k x ( k ∈N) ∴x =λ/4, 3λ/4, 5λ/4,…

5.一声源的频率为1080Hz,相对于地以30m/s 的速率向右运动, 在其右方有一反射面相对于地以65m/s 的速率向左运动, 设空气的声速为334m/s, 求:

(1) 声源在空气中发出声音的波长;

(2) 每秒钟到达反射面的波数;

(3) 反射波的速率;

(4) 反射波的波长.

解: 已知νs =1080Hz , v s =30m/s , v R =65m/s , u=334m/s

(1) )m (281.010*******v u s

s =-=-='νλ (2) )Hz (5.1417108030

33465334v u v u s s R R =?-+=-+=νν (3) 反射波的速率u'=334m/s (波速只与介质有关)

(4) 对反射波而言, 反射面就是波源,而 νs '=νR

v's =v R =65m/s

)m (19.05.141765334v u s s =-=''-'=

''νλ

波动(习题课) 1. 一平面谐波在弹性媒质中传播时, 在传播方向上某质元在负的最大位移处, 则它的能量是( B )

(A) 动能为零, 势能最大 (B) 动能为零, 势能为零

(C) 动能最大, 势能最大 (D) 动能最大, 势能为零解: 由y=Acos [ω(t -x/u)+φ]=-A ? cos [ω(t -x/u)+φ]=-1 ? sin 2[ω(t -x/u)+φ]=0

∴W k =W p =ρA 2ω2sin 2[ω(t -x/u)+φ]/2=0

2. 一平面谐波在媒质中传播中, 若一媒质质元在t 时刻的波的能量是10J, 则在(t+T)(T 为波的周期)时刻该媒质质元的振动动能是 5 J .

解: ∵W(t+T)=W(t)=2W k (t)=2W k (t+T)

∴W k (t+T)= W(t)/2=10/2=5(J)

3.沿X 轴正方向传播的一平面余弦横波, 在t=0时,原点处于平衡位置且向负方向运动, X 轴上的P 点位移为A/2, 且向正方向运动, 若OP=10cm <λ, 则该波的波长为( C )

(A) 120/11cm (B) 120/7cm (C) 24cm (D) 120cm

4. 图示为一平面谐波在t=2s 时刻的波形图, 波的振幅为0.2m, 周期为4s, 则图中P 点处点的振动方程为

y=0.2cos(πt/2-π/2) (m )

解: A=0.2m, T=4s, ω=2π/T=π/2 y=0.2cos(πt /2+φ) v=-(π/10)sin(πt /2+φ) t=2s 时,y=0.2cos(π+φ)=0 即cos(π+φ)=-cos φ=0 v=-(π/10)sin(π+φ)= (π/10)sin φ<0 , 得cos φ=0, sin φ<0 ∴ φ = -π/2 y=0.2cos(πt /2-π/2)(m)

Y(m) u O P X(m)

5.已知一沿X 轴正方向传播的平面余弦横波, 波速为20cm/s, 在t=1/3s 时的波形曲线如图所示, BC=20cm, 求:

(1) 该波的振幅A 、波长λ和周期T ;

(2) 写出原点的振动方程;

(3) 写出该波的波动方程.

Y(cm)

10 u

0 B C X(cm)

-5

-10

解: 已知 u =20cm ?s -1 BC=20cm

(1)从图可知 A=10cm , λ=2BC=40cm , T=λ/u =40/20=2s

(2) 原点的振动表达式和速度表达式分别为

)cos(10)2cos(?π?π+=+=t t T

A y )sin(10?ππ+-=??=t t

y v 时s t 31=5)3cos(10-=+=?πy 0)3

sin(10<+-=?ππv 则有 ,2

1)3c o s (-=+?π 0)3sin(>+?π 得 π?π

323=+ 3332πππ?=-=∴

∴)3cos(10ππ+

=t y

(3)波动表达式 ]3

)20(cos[10]3)(cos[10ππππ+-=+-=x t u x t y ∴]3

)20(cos[10ππ+-=x t y 6. 一平面谐波沿X 正向传播, 波的振幅A=10cm, ω=7π, 当t=1s 时;X=10cm 处的a 质点正通过其平衡位置向Y 轴负方向运动, 而X=20cm 处的b 质点正通过Y=5cm 点向Y 轴正方向运动, 波长λ>10cm, 求该平面波的表达式. 解: t =1s 时,在x=x a =10cm 0cos 10==a a y ?;

0cos =a ?0sin ,0sin ><a a a A V ??ω-=)

,2,1,0( 22 =-=m m a ππ

?得 t=1s 时,在x =x b =20cm 处

5cos 10==b b y ?;21cos =b ?0

sin ,0sin <>b b b A V ??ω-=)

,2,1,0( 23m n n n b ≥=--= ππ?得 t=1s 时,a 、b 两点的相位差 )(2a b x x -=λ

π??)23()22(

ππππ????n m b a ----=-=且 ππ6

5)(2+-=m n

π

??λ20 ,0<<即<<a b x x - π??65 ,0==-∴m n 有 πλπ6

5)(2=-a b x x cm x x a b 24)1020(5

12)(512=-=-=∴λ

波动(习题课后作业)

1. 传播速度为200m/s, 频率为50Hz 的平面简谐波, 在波线上相距为0.5m 的两点之间的相位差是( D )

(A) π/3 (B) π/6 (C) π/2 (D) π/4 解: λ=u/λ=200/50=4(m)

Δφ=(2π/λ)Δx =(2π/4)?0.5=π/4

2. 图为沿X 轴正向传播的平面余弦横波在某一时刻的波形图, 图中P 点距原点1m, 则波长为( C )

(A) 2.75m (B) 2.5m (C) 3m (D) 2.75m Y(cm) 解: 设波表达式为 )2 cos(?λπω+-=x t A y x =0处 3) cos(2=+=?ωt y v =-2ωsin(ωt+φ)<0

即23

) cos(=+?ωt ,

sin(ωt+φ)>0 得 6 π?ω=+t

所以t 时刻的波形分布函数为)26cos(2x y λπ

π-= P 点t 时刻的位移 0)26cos(2=-=λ

ππy P 点t 时刻的速度 0)26sin(2>--=λπ

πωv 3

2 O P X

得 0)26cos(=-λππ 0)26sin(<-λπ

π 226πλππ-=- ∴ λ = 3m

3. 一横波沿X 轴负方向传播, 若t 时刻波形曲线如图所示, 在t+T/4时刻原X 轴上的1、2、3三点的振动位移分别是( B )

(A) A 、0、-A (B) -A 、0、A (C) 0、A 、0 (D) 0、-A 、0

4. 两个相干波源S 1和S 2, 相距L=20m, 在相同时刻, 两波源的振动均通过其平衡位置, 但振动的速度方向相反, 设波速u=600m/s, 频率ν=100Hz, 试求在S 1和S 2间的连线上因干涉产生最弱点的所有位置(距S 1的距离).

解: 已知φ1–φ2=π, 设S

1为原点,在S 1和S 2连线间 任取一点P ,其坐标为x

??

x S 2 ?S 1 L=20m L –x P x

L x x L x r -=--=?2)(r ?--=?λπ???221)

2(2L x --=λππ)(6100

600m u

===νλx x 3

2326)220(3ππππππ-++=-?+=x 3

235ππ-=干涉减弱条件 π?)12(+=?k πππ)12(3

235+=-k x 即 得 ),2,1,0( 31 ±±=-=k k x 因 20

0≤≤x 即 20310≤-≤k 解得 31319≤≤-

k 所以 0 ,1 ,2 ,3 ,4 ,5 ,6------=k )(1 , 4 , 7 , 10 , 13 , 16 , 19 m x =∴

大学物理机械波习题及答案解析

一、选择题: 1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为 (SI),该波在t = 0.5 s 时刻的波形图是 [ B ] 2.3407:横波以波速u 沿x 轴负方向传播。t 时刻波形曲线如图。则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 [ ] 3.3411:若一平面简谐波的表达式为 ,式中A 、B 、C 为正值常量,则: (A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B [ ] 4.3413:下列函数f (x 。 t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。其中哪个函数表示沿x 轴负向传播的行波? (A) (B) (C) (D) [ ] 5.3479:在简谐波传播过程中,沿传播方向相距为(λ 为波长)的两点的振 动速度必定 ] 2)42(2cos[10.0π +-π=x t y ) cos(Cx Bt A y -=)cos(),(bt ax A t x f +=)cos(),(bt ax A t x f -=bt ax A t x f cos cos ),(?=bt ax A t x f sin sin ),(?=λ 21 x u A y B C D O x (m) O 2 0.1 0 y (m) ( A ) x (m) O 2 0.1 0 y (m) ( B ) x (m) O 2 - 0.1 0 y (m) ( C ) x (m) O 2 y (m) ( D ) - 0.1 0

(A) 大小相同,而方向相反 (B) 大小和方向均相同 (C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ] 6.3483:一简谐横波沿Ox 轴传播。若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的 (A) 方向总是相同 (B) 方向总是相反 (C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ] 7.3841:把一根十分长的绳子拉成水平,用手握其一端。维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长 (C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。若波的表达式以余弦函数表示,则O 点处质点振动的初相为: (A) 0 (B) (C) (D) [ ] 9.5193:一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是: (A) A ,0,-A (B) -A ,0,A (C) 0,A ,0 (D) 0,-A ,0. [ ] 10.5513:频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小 于波长的两点振动的相位差为,则此两点相距 (A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m [ ] 11.3068:已知一平面简谐波的表达式为 (a 、b 为正值常量),则 (A) 波的频率为a (B) 波的传播速度为 b/a (C) 波长为 π / b (D) 波的周期为2π / a [ ] 12.3071:一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示。则坐标原点O 的振动方程为 (A) (B) π21ππ 23π 31)cos(bx at A y -=]2)(cos[π+'-=t t b u a y ] 2)(2cos[π -'-π=t t b u a y x u a b y O 5193图 x y O u 3847图

《机械波》实用教案

机械振动和机械波 一、波的形成和传播 1、波的形成-------------------------------------------------------------------------------------->分解传播过程 (1)波的形成过程:(图演示)波源的振动带动周围质点做受迫振动。 (2)波的形成条件:波源+介质 2、波的传播 (1)各质点振动的T、f、A与波源相同,起振时状态相同; (2)离开波源越远,起振越慢开始,相位落后越多(下表);----------------------->相位即“弧度” 时刻P0P1P2P3P4 00———— T/8π/40——— T/4π/2π/40—— 3T/83π/4π/2π/40— T/2π3π/4π/2π/40 (3)机械波传递波源的振动形式、能量和信息,不传播质点; ①. 每个质点在各自的平衡位置附近振动 ②. 波形向传播方向“平移” (4)起振时间相差T的整数倍的质点,运动状态总相同。

3、波的分类 (1)横波:质点的振动方向与波的传播方向垂直 ①. 特征:波形具有波峰和波谷相间 ②. 实例:绳波,水波 (2)纵波:质点的振动方向雨波的传播方向相同 ①. 特征:波形具有密部和疏部相间 ②. 实例:声波,弹簧波动 <练习> 1.下列关于振动和波的关系,正确的是() A、有机械波必有机械振动 B、有机械振动必有波 C、离波源越远的质点振动周期越长 D、波源停止振动时,介质中的波动立即停止 2.下列关于机械波的说法正确的是() A、相邻的质点要互相做功 B、纵波的质点可以随波迁移 C、振源开始时怎样振动,其它质点开始时就怎样振动 D、波中各质点的振动频率是相同的 3.如图所示,是一列沿绳子向右传播的横波,除去第1点,在途中速度最大的点是第()点,加速度最大的点是第()点。 4.一列横波某时刻的波形如图所示,经过0.25s途中P点第一次到达波峰,此后在经过0.75s,P点的位移和速度可能是() A、位移是2cm,速度为零 B、位移是零,速度方向沿+y方向 C、位移是-2cm,速度为零 D、位移是零,速度方向沿-y方向 5.如图为波沿一条固定的绳子向右刚传播到B点时的情形,由图可判别A点刚开始振动时的振动方向是() A、向左 B、向右 C、向上 D、向下 答案:A;ACD;3,5;BD;D;

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

选修3-4《机械波》专题复习

有的放矢,重拳出击 陈修斌 江苏省赣榆高级中学(222100) 本期所涉及的《机械波》这个章节的内容为选考要求,但在所有的选考内容中是重点考查的内容,高考考查的频率高,范围广。重点考查机械波的基本概念、公式,考查波的图像和不同时刻的波形以及波在空间和时间上的周期性和双向性。近几年高考中如2007年普通高等学校招生考试广东卷第12题,(上海卷)第9题,(四川理综)第20题;2008年普通高等学校招生考试全国Ⅰ卷第16题,(全国Ⅱ卷)第17题,(北京卷)第16题;2009年普通高等学校招生考试全国Ⅰ卷第20题,(北京卷)第15题,(重庆卷)第15题,(四川卷)第19题,(广东卷)第14题等都对这一部分内容进行过考查。 预测2010年的机械波考题仍将保持以选项题为主,一个考题往往多个知识点,重点在简谐运动的规律和图象;波的形成过程和波长、波速和频率的关系,波的图象和波的多解问题仍是考查的热点.尤其是波的图象中已知某一时刻的波形图,判断方向和求位移、路程及质点坐标;已知某两时刻的波形图涉及的多解问题预测是重点考查的重点。笔者就这一部分易考点加以梳理,供同学们参考。 易考点一 考查波的基本概念 例1、一列简谐横波沿直线传播,在波的传播方向上有P 、Q 两个质点,它们相距0.8m .当 0=t 时,P 、Q 两点位移恰好都是正的最大值,且P 、Q 间只有一个波谷.当s t 6.0=时, P 、Q 两点正好都处于平衡位置,且P 、Q 两点间有一个波峰和一个波谷,且波峰距Q 点距离第一次0.2m ,试求:(1)若波由P 传到Q ,波的周期;(2)若波由Q 传到P ,波的速度; (3)若波由Q 传到P ,从0=t 时开始观察,哪些时刻P 、Q 间(P 、Q 除外)只有一个质点位移等于振幅. 解析:本类型题往往先画出波形图,在波形图上依据题意找出适合题目要求的质点,从而确定该波的波长、周期、波速等,本题可画出如图1所示波形图,标出P 、Q 点,不难求出=0.8 m λ (1) 若波由P 传至Q ,依题意可作出如图2所示波形图,则T s t 4 3 6.0== (2) 解得s T 8.0= 图1 图2

《机械波的产生和传播》教学设计

《机械波的产生和传播》教学设计(教案) 一、教材分析 本章《机械波》是在《机械振动》的基础上讲述波的基本知识。波是一种比较重要而普遍的运动形式,是后续电磁波、光波的基础。《波的形成与传播》一节是《机械波》的第一节,学好这一节的内容对后续课程波的描述、波的图象、波的各种特性至关重要,起着承上启下的作用。波是一种比较抽象的运动形式,是高中物理教学中的难点之一,本节教材对学生的理解能力、空间想象和逻辑推理能力及联系实际能力有较高的要求,它需要学生能想象出多个质点同时又不同步的运动从整体上形成波的(空间传播)情景。 教学重点:横波的形成与传播过程的规律。 教学难点:质点振动和波传播的关系。 教学疑点:波传播的是什么? 二、教学目标: 1、知识目标: (1)理解波的形成与传播。知道产生机械波的条件。 (2)知道横波和纵波,知道波峰和波谷,密部和疏部。 (3)知道机械波,理解机械波传播振动形式,传递能量和信息。 2、能力目标: (1)通过波动模型的建立过程,提高学生的抽象想象能力。 (2)根据对机械波模型的分析判断,提高分析推理能力。 3、情感目标: (1)从波的形成过程中,体会个体与整体的关系,明确个体动作要服从整体动作,培养学生的集体主义精神。 (2)通过观察波的形成过程,体验科学美感,陶冶学生的审美情操。体验大自然各种波动的自然美感。 三、教学方法设计: 本节课采用实验观察法。在教学中通过演示实验、学生动手实验及多媒体课件创设形象化的动态情景并提出相关系列问题。要求学生观察、研究和总结得出结论并能回答相关问题以达到教学的目标要求。在教学中渗透问题探究式学习,充分体现以学生为主的现代教学理念(教师只是起引导作用)。 四、教学过程设计: 1、创设情景,引入课题: 首先让学生观看四个事先拍成录相的演示实验现象课件(水波、随风飘的旗、绳波和电磁波等四种波动情景),让学生观看后对波有个初步印象。并提出两个问题以引入本节课要完成的教学内容: (1)波是如何形成的?

机械波 专题训练

专题(一)机械波的形成于传播 1.关于机械振动和机械波的关系是() A.有振动必有波 B.有波必有振动 C.有振动不一定有波 D.有波不一定有振动 2.关于横波和纵波,下列说法中正确的是() A.横波和纵波都存在波峰和波谷 B.横波和纵波的质点振动方向不同,因此,这两种波不可能沿同一方向传播 C.地震中形成的彼,既有横波,也有纵波 D.横渡与纵波都能在固体.液体.气体中传播 3.在以下各种波中,属于机械波的有() A.水波B.光波C.无线电波D.地震波 4.波在传播的过程中,正确的说法是() A.介质中的质点是随波迁移 B.波源的振动能量随波迁移 C.波源的能量靠振动质点的迁移随波传递 D.介质的质点每完成一次全振动,波向前传播一个波长的距离 5.下列说法中,正确的是() A.打开香水瓶盖,较远处的人也能闻到香水味,是由于香水随声波传播的原因 B.掉到池塘中心的皮球,不能通过搅动水来使它靠岸 C.地震波中有横波,也有纵波,是一段时间只有根波,另一段时间只有纵波 D.纵波中的疏部和密部是介质中的质点原来就分布好的,是固定不动的 6.在一平静的湖面上漂浮着一轻木块,向湖中投入一石块,在湖面上激起水波,关于木块的运动情况,以下正确的是() A.因为“随波逐流”木块将被推至远处 B.因不知道木块离波源的远近如何,所以无法确定木块的运动情况 C.无论木块离波源的远近如何,它都不能被波推动,最多只能在湖面上做上下振动 D.木块被推动的距离与木块的质量大小和所受水的阻力的大小等情况有关 7.关于振动和波的关系,说法正确的是() A.有机械振动就一定有机械波 B.波动的频率等于介质中备质点的振动频率 C.质点的振动方向总跟波的传播方向相同 D.波的传播速度一定跟质点的振动速度相同 8.下列说法正确的是() A.质点振动方向总是垂直于波传播方向 B.只有横波的波形图才能作成正余弦曲线的形状,纵波则不能 C.波动过程是运动形式和质点由近及远的传播过程 D.如果振源停止振动,在介质中传播的波动不立即停止运动 9.下列说法中不妥的是() A.在纵波中,质点的疏部中心位移和密部中心位移均为零 B.横波中,质点在波谷时动能最小 C.纵波中,疏部中心质点动能最小 D.机械波是波的一种形式 参考答案:

机械波教案

教学目标: 1.掌握机械波的产生条件和机械波的传播特点(规律); 2.掌握描述波的物理量——波速、周期、波长; 3.正确区分振动图象和波动图象,并能运用两个图象解决有关问题 4.知道波的特性:波的叠加、干涉、衍射;了解多普勒效应 教学重点:机械波的传播特点,机械波的三大关系(波长、波速、周期的关系;空间距离和时间的关系;波形图、质点振动方向和波的传播方向间的关系) 教学难点:波的图象及相关应用 教学方法:讲练结合,计算机辅助教学 教学过程: 一、机械波 2.机械波的分类 机械波可分为横波和纵波两种。 (1)质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。 (2)质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。 分类质点的振动方向和波的传播方向关系形状举例 横波垂直凹凸相间;有波峰、波谷绳波等 纵波在同一条直线上疏密相间;有密部、疏部弹簧波、声波等 说明:地震波既有横波,也有纵波。 3.机械波的传播 (1)在同一种均匀介质中机械波的传播是匀速的。波速、波长和频率之间满足公式:v=λf。 (2)介质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。 (3)机械波转播的是振动形式、能量和信息。 4.机械波的传播特点(规律): 5.机械波的反射、折射、干涉、衍射 一切波都能发生反射、折射、干涉、衍射。特别是干涉、衍射,是波特有的性质。 干涉区域内某点是振动最强点还是振动最弱点的充要条件: 根据以上分析,在稳定的干涉区域内,振动加强点始终加强;振动减弱点始终减弱。 至于“波峰和波峰叠加得到振动加强点”,“波谷和波谷叠加也得到振动加强点”,“波峰和波谷叠加得到振动减弱点”这些都只是充分条件,不是必要条件。 点评:描述振动强弱的物理量是振幅,而振幅不是位移。每个质点在振动过程中的位移是在不断改变的,但振幅是保持不变的,所以振动最强的点无论处于波峰还是波谷,振动始终是最强的。 点评:关于波的干涉,要正确理解稳定的干涉图样是表示加强区和减弱区的相对稳定,但加强区和减弱区还是在做振动,加强区里两列波分别引起质点分振动的方向是相同的,减弱区里两列波分别引起质点分振动的方向是相反的,发生变化的是振幅增大和减少的区别,而且波形图沿着波的传播方向在前进。 (2)衍射。 ①波绕过障碍物的现象叫做波的衍射。 ②能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多。

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

机械波的形成与传播教学设计

机械波的产生与传播教学设计 一、教材分析 本章《机械波》是在《机械振动》的基础上讲述波的基本知识。波是一种比较重要而普遍的运动形式,是后续电磁波、光波的基础。《波的形成与传播》一节是《机械波》的第一节,学好这一节的内容对后续课程波的描述、波的图象、波的各种特性至关重要,起着承上启下的作用。波是一种比较抽象的运动形式,是高中物理教学中的难点之一,本节教材对学生的理解能力、空间想象和逻辑推理能力及联系实际能力有较高的要求,它需要学生能想象出多个质点同时又不同步的运动从整体上形成波的(空间传播)情景。 教学重点:横波的形成与传播过程的规律。 教学难点:质点振动和波传播的关系。 教学疑点:波传播的是什么? 二、教学目标: 1、知识目标: (1)理解波的形成与传播。知道产生机械波的条件。 (2)知道横波和纵波,知道波峰和波谷,密部和疏部。 (3)知道机械波,理解机械波传播振动形式,传递能量和信息。 2、能力目标: (1)通过波动模型的建立过程,提高学生的抽象想象能力。 (2)根据对机械波模型的分析判断,提高分析推理能力。 3、情感目标: (1)从波的形成过程中,体会个体与整体的关系,明确个体动作要服从整体动作,培养学生的集体主义精神。 (2)通过观察波的形成过程,体验科学美感,陶冶学生的审美情操。体验大自然各种波动的自然美感。 三、教学方法设计: 本节课采用实验观察法。在教学中通过演示实验、学生动手实验及多媒体课件创设形象化的动态情景并提出相关系列问题。要求学生观察、研究和总结得出结论并能回答相关问题以达到教学的目标要求。在教学中渗透问题探究式学习,充分体现以学生为主的现代教学理念(教师只是起引导作用)。 四、教学过程设计: 1、创设情景,引入课题: 首先让学生观看四个事先拍成录相的演示实验现象课件(水波、随风飘的旗、绳波和电磁波等四种波动情景),让学生观看后对波有个初步印象。并提出两个问题以引入本节课要完成的教学内容: (1)波是如何形成的?

大学物理机械波知识点总结

大学物理机械波知识点总结 【篇一:大学物理机械波知识点总结】 高考物理机械波知识点整理归纳 机械振动在介质中的传播称为机械波(mechanical wave)。机械波和电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁 波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的 传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以 在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械 波和电磁波的许多物理性质,如:折射、反射等是一致的,描述它 们的物理量也是相同的。常见的机械波有:水波、声波、地震波。 机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不 一定有机械波产生。 形成条件 波源 波源也称振源,指能够维持振动的传播,不间断的输入能量,并能 发出波的物体或物体所在的初始位置。波源即是机械波形成的必要 条件,也是电磁波形成的必要条件。 波源可以认为是第一个开始振动的质点,波源开始振动后,介质中 的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。介质 广义的介质可以是包含一种物质的另一种物质。在机械波中,介质 特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会 产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播 速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。

下表给出了0℃时,声波在不同介质的传播速度,数据取自《普通高 中课程标准实验教科书-物理(选修3-4)》(2005年)[1]。单位v/m s^- 1 传播方式和特点 质点的运动 机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质 点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传 播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒 的运动.阻尼振动为能量逐渐损失的运动. 为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进 行介绍,其他形式的机械波同理[1]。 绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端 进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断 地进行周期性上下抖动,就形成了绳波[1]。 把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带 动第二个质点振动,只是质点二的振动比前者落后。这样,前一个 质点的振动带动后一个质点的振动,依次带动下去,振动也就发生 区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上 红布条,我们还可以发现,红布条只是在上下振动,并没有随波前 进[1]。 由此,我们可以发现,介质中的每个质点,在波传播时,都只做简 谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形 式的传播,质点本身不会沿着波的传播方向移动。

物理机械波知识点总结

物理机械波知识点总结 导读:高中物理选修3-4机械波重要知识点 描述机械波的物理量——波长、波速和频率(周期)的关系 ⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 ⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。 ⑶波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 波的干涉和衍射 衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。 判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。

高中物理选修3-4重要知识点 相对论的时空观 经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。 相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。 相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。 时间和空间的相对性(时长尺短) 1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。 2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。而在垂直于运动方向上,其长度保持不变。 高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度

2018高考专题《机械波》

2018高考专题复习《机械波》 类型一:波动图像基本规律 1. (2012年·天津·7) 沿x 轴正向传播的一列简谐横波在t =0时刻的波形如图所示,M 为介质中的一个质点,该波的传播速度为40m/s ,则t =401s 时( ) A .质点M 对平衡位置的位移一定为负值 B .质点M 的速度方向与对平衡位置的位移方向相同 C .质点M 的加速度方向与速度方向一定相同 D .质点M 的加速度方向与对平衡位置的位移方向相反 变式1:若M 点是x=1.5m 处质点,哪个时刻振动至波谷? 变式2:若N 点(未画)此时在y=-1cm 处,哪个时刻振动至波峰? 类型二:双图像问题 2. 如图所示,图甲为一列沿水平方向传播的简谐横波在t =0时的波形图,图乙是这列波中质点P 的振动图线,那么: (1)该波的传播速度为________m/s ; (2)该波的传播方向为________(填“向左”或“向右”); (3)图甲中Q 点(坐标为x =2.25 m 处的点)的振动方程为:y = cm. 变式1:若M 点 (未画) 是x=2.125m 处质点,M 点的振动方程为: 变式2:若N 点(未画)此时在y=-0.1cm 处,N 点的振动方程为: 3. 一简谐横波沿x 轴正方向传播,若在x =1 m 处质点的振动图象如图所示,则该波在t =0.3 s 时刻的波形曲线为( ). 变式1:(2013四川理综)图1是一列简谐横波在t =1.25s 时的波形图,已知c 位置的质点比a 位置的晚0.5s 起振,则图2所示振动图像对应的质点可能位于( ) A .a

机械波的产生(教案)

D、机械波的产生 一、教学任务分析 本节课是上海市二期课改高一年级物理教材第四章《周期运动》的第D节内容,《D机械波的产生》是在学习了《C机械振动》之后,对振动的群体性现象进行的更为深入的探究。 机械波是机械运动中比较复杂的运动形式,属于周期性运动,广泛地涉及物理学的诸多领域。 本节课的内容重在要求学生能够了解波的产生条件和传播过程中的特点,为下节课《E 机械波的描述》打下基础,同时也为高二电学中的电磁波等后续知识的学习做准备。 学习本节内容需要的知识有:运动学相关知识、动力学相关知识、机械振动、周期运动等。 从生活中的有关机械波的例子入手,本节课逐步引导学生构建起有关机械波的理性认识,建立有关“机械波”、“机械波的传播”、“机械波的特点”等概念。 以教师的演示实验逐步引导学生探究机械波的形成条件、机械波的传播特点,分析得到有关机械波的相关知识。 本设计强调学生在学习过程中深化对机械波的理性认识,通过对简单实际问题的分析与研究,知道机械波在实际生活中的应用,从而自觉联系生活,有意识地思考生活中的一些物理现象。 本节课属于基础性课程范畴,计划安排1课时。 本节课的教学对象是南洋模范中学(上海市实验性、示范性高级中学)高一普通班的学生。 通过前面的学习,学生已经具备了相关的运动学和动力学的基本知识,并认识了质点振动的特点和规律,但对于机械波的认识依旧停留在对日常生活现象观察的感性层面,并未形成理性层面的、较为系统的认知网络,因此本节课通过引导学生观察实验、分析机械波的成因以及动态传播过程特征,进一步提高学生观察、实验、抽象思维、推理和综合分析问题的能力。 二、教学目标: 1、知识与技能: (1)知道机械波的形成过程。 (2)能绘制横波在不同时刻的波形图。 (3)知道横波。 (4)理解机械波产生和传播的条件。 2、过程与方法: (1)通过对日常生活中有关波动现象的观察、分析、总结、提炼物理现象的特点,体会物理概念形成的过程,感受科学探究的乐趣。 (2)通过演示实验来探究物理现象的规律。 3、情感态度价值观: (1)通过“生活→物理→生活”的学习过程,感受科学探究的趣味性与实用性。 (2)培养学生通过辨证的观点探究物理过程及其规律。 (3)塑造学生唯物主义的世界观和方法论。 三、教学重点难点:

机械振动与机械波专题练习(带详解)

机械振动与机械波专题练习(带详解) 一、多选题 1.下列有关波动现象的特性与应用说法正确的是( ) A .医学诊断时用“ B 超”仪器探测人体内脏,是利用超声波的多普勒效应 B .5G 通信技术(采用3300﹣5000MHz 频段),相比现有的4G 通信技术(采用1880﹣2635MHz 频段),5G 容量更大,信号粒子性更显著 C .在镜头前装偏振片,可以减弱镜头反射光 D .电子显微镜的电子束速度越大,电子显微镜分辨本领越强 【答案】BD A.“B 超”仪器通过它的探头不断向人体发出短促的超声波(频率很高,人耳听不到的声波)脉冲,超声波遇到人体不同组织的分界面时会反射回来,又被探头接收,这些信号经电子电路处理后可以合成体内脏器的像,没有使用多普勒效应。故A 错误; B.5G ,即第五代移动通信技术,采用3300﹣5000MHz 频段,相比于现有的4G (即第四代移动通信技术,1880﹣2635MHz 频段)技术而言,具有极大的带宽、极大的容量和极低的时延。5G 容量更大,信号的频率更大,所以粒子性更显著。故B 正确; C.在镜头前装偏振片,可以减弱被拍摄物体反射光,而不是减弱镜头反射光。故C 错误; D.电子显微镜的电子束速度越大,则电子的波长越短,电子显微镜分辨本领越强。故D 正确 2.如图所示的装置中,在曲轴AB 上悬挂一个弹簧振子,若不转动把手C ,让其上下振动,周期为1T ,若使把手以周期()221T T T >匀速转动,当运动都稳定后,则( ) A .弹簧振子的振动周期为1T B .弹簧振子的振动周期为2T C ..弹簧振子的振动频率为2 1T D .要使弹簧振子的振幅增大,可让把手转速减小 E.要使弹簧振子的振幅增大,可让把手转速增大

机械振动和机械波知识点总结

机械振动与机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做得往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置得力即回复力。回复力就是以效果命名得力,它可以就是一个力或一个力得分力,也可以就是几个力得合力。 产生振动得必要条件就是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1、定义:物体在跟位移成正比,并且总就是指向平衡位置得回复力作用下得振动叫简谐振动。简谐振动就是最简单,最基本得振动。研究简谐振动物体得位置,常常建立以中心位置(平衡位置)为原点得坐标系,把物体得位移定义为物体偏离开坐标原点得位移。因此简谐振动也可说就是物体在跟位移大小成正比,方向跟位移相反得回复力作用下得振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2、简谐振动得条件:物体必须受到大小跟离开平衡位置得位移成正比,方向跟位移方向相反得回复力作用。 3、简谐振动就是一种机械运动,有关机械运动得概念与规律都适用,简谐振动得特点在于它就是一种周期性运动,它得位移、回复力、速度、加速度以及动能与势能(重力势能与弹性势能)都随时间做周期性变化。 (三)描述振动得物理量,简谐振动就是一种周期性运动,描述系统得整体得振动情况常引入下面几个物理量。

1、振幅:振幅就是振动物体离开平衡位置得最大距离,常用字母“A”表示,它就是标量,为正值,振幅就是表示振动强弱得物理量,振幅得大小表示了振动系统总机械能得大小,简谐振动在振动过程中,动能与势能相互转化而总机械能守恒。 2、周期与频率,周期就是振子完成一次全振动得时间,频率就是一秒钟内振子完成全振动得次数。振动得周期T跟频率f之间就是倒数关系,即T=1/f。振动得周期与频率都就是描述振动快慢得物理量,简谐振动得周期与频率就是由振动物体本身性质决定得,与振幅无关,所以又叫固有周期与固有频率。 (四)单摆:摆角小于5°得单摆就是典型得简谐振动。 细线得一端固定在悬点,另一端拴一个小球,忽略线得伸缩与质量,球得直径远小于悬线长度得装置叫单摆。单摆做简谐振动得条件就是:最大摆角小于5°,单摆得回复力F就是重力在圆弧切线方向得分力。单摆得周期公式就是T=。由公式可知单摆做简谐振动得固有周期与振幅,摆球质量无关,只与L与g有关,其中L就是摆长,就是悬点到摆球球心得距离。g就是单摆所在处得重力加速度,在有加速度得系统中(如悬挂在升降机中得单摆)其g应为等效加速度。 (五)振动图象。 简谐振动得图象就是振子振动得位移随时间变化得函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象就是正弦或余弦函数图象,它直观地反映出简谐振动得位移随时间作周期性变化得规律。要把质点得振动过程与振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等得变化情况。 (六) 机械振动得应用——受迫振动与共振现象得分析 (1)物体在周期性得外力(策动力)作用下得振动叫做受迫振动,受迫振动得频率在振动稳定后总就是等于外界策动力得频率,与物体得固有频率无关。 (2)在受迫振动中,策动力得频率与物体得固有频率相等时,振幅最大,这种现象叫共振,声音得共振现象叫做共鸣。 2机械波中得应用问题 1、理解机械波得形成及其概念。 (1)机械波产生得必要条件就是:<1>有振动得波源;<2>有传播振动得媒质。 (2)机械波得特点:后一质点重复前一质点得运动,各质点得周期、频率及起振方向都与波源相同。 (3)机械波运动得特点:机械波就是一种运动形式得传播,振动得能量被传递,但参与振动得质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波得物理量关系: 注:各质点得振动与波源相同,波得频率与周期就就是振源得频率与周期,与传播波得介质无关,波速取决于质点被带动得“难易”,由媒质得性质决定。

《大学物理学》机械波练习题

机械波部分-1 《大学物理学》机械波部分自主学习材料(解答) 一、选择题 10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A)均为2π; (B)均为 π-; (C)π 与 π-; (D)π-与π。 【提示:图(b ) 2 π- ,图(a ) 可见0x =则初相角为2 π】 10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A)波长为5m ; (B)波速为1 10m s -?; (C)周期为 1 3秒; (D)波沿x 正方向传播。 【提示:利用2k πλ=知波长为1003λ= m ,利用u k ω=知波速为1 100u m s -=?,利用2T πω=知周期为1 3 T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】 10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4 T t =时刻的波形如图所示, 则该波的表达式为( D ) (A)cos[()]x y A t u ωπ=- +; (B)cos[()]2x y A t u π ω=--; (C)cos[()]2x y A t u π ω=+-; (D)cos[()]x y A t u ωπ=++。 【提示:可画出过一点时间的辅助波形, 可见在4 T t = 时刻,0x =处质点的振动 为由平衡位置向正方向振动,相位为2 π-, 那么回溯在0t =的时刻,相位应为π】 10-4.如图所示,波长为λ的两相干平面简谐波在P 点相遇,波在点1S 振动的初相就是1?,到P 点的距离就是1r 。波在点2S 振动的初相就是2?,到P 点的距离就是2r 。以k 代表零或正、负整数,则点P 就是干涉极大的条件为( D ) (A)21r r k π-=; O O 1 S 2 S r

2018机械振动和机械波专题复习

知识点一:振动图像(物理意义、质点振动方向)与波形图(物理意义、传播方向与振动方向),回复力、 位移、速度、加速度等分析 1.悬挂在竖直方向上的弹簧振子 , 周期为2 s,从最低点的位置向上运动时开始计时,它的振动图像如图所示,由图可知?( ) = s时振子的加速度为正,速度为正 = s时振子的加速度为负,速度为负 = s时振子的速度为零,加速度为负的最大值 = s时振子的速度为零,加速度为负的最大值 2.如图甲所示,一弹簧振子在A、B间做简谐运动,O为平衡位置,如图乙是振子做简谐运动时的位移-时间图像,则 关于振子的加速度随时间的变化规律,下列四个图像(选项)中正确的是?( ) 3.如图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、 b两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知 A.振子的振动周期等于t1 B.在t=0时刻,振子的位置在a点 C.在t=t1时刻,振子的速度为零 D.从t1到t2,振子正从O点向b点运动 4.一简谐机械波沿x轴正方向传播,周期为T,波长为λ。若在x=0处质点的 振动图像如右图所示,则该波在t=T/2时刻的波形曲线为() 5.一列横波沿x轴正向传播,a、b、c、d为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图1所示,此后,若经过3/4周期开始计时,则图2描述的是 处质点的振动图象处质点的振动图象 处质点的振动图象处质点的振动图象 A y t O T/2T A y x Oλ/2λ A y x Oλ/2λ A y x Oλ/2λ A y x Oλ/2λ

6.如图所示,甲图为一列简谐横波在t=时刻的波动图象,乙图为这列波上质点P 的振动图象,则该波 A .沿x 轴负方传播,波速为0.8m/s B .沿x 轴正方传播,波速为0.8m/s C .沿x 轴负方传播,波速为5m/s D .沿x 轴正方传播,波速为5m/s 7.如图所示是一列沿x 轴传播的简谐横波在某时刻的波形图。已知a 质点的运动状态总是滞后于b 质点,质点b 和质点c 之间的距离是5cm 。下列说法中正确的是 A .此列波沿x 轴正方向传播 B .此列波的频率为2Hz C .此列波的波长为10cm D .此列波的传播速度为5cm/s 8.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P 、Q 到平衡位置的距离相等。关于P 、Q 两个质点,以下说法正确的是( ) A .P 较Q 先回到平衡位置 B .再经 4 1 周期,两个质点到平衡位置的距离相等 C .两个质点在任意时刻的动量相同 D .两个质点在任意时刻的加速度相同 9.在介质中有一沿水平方向传播的简谐横波。一质点由平衡位置竖直向上运动,经 s 到达最大位移处.在这段 时间内波传播了0.5 m 。则这列波( ) A .周期是 s B .波长是 m C .波速是2 m/s D .经 s 传播了8 m 10.如图所示,两列简谐横波分别沿x 轴正方向和负方向传播,两波源分别位于x=和x=处,两列波的速度大小均为v=0.4m/s ,两波源的振幅均为A=2cm 。图示为t=0时刻两列波的图象(传播方向如图所示),该时刻平衡位置位于x=0.2m 和x=0.8m 的P 、Q 两质点刚开始振动,质点M 的平衡位置处于x=0.5m 处。关于各质点运动情况的判断正确的是( ) A. t=0时刻质点P 、Q 均沿y 轴正方向运动 B. t=1s 时刻,质点M 的位移为-4cm C. t=1s 时刻,质点M 的位移为+4cm D. t=时刻,质点P 、Q 都运动到x= a b c O y /m x /cm x /10-1 m y /cm 0 -2 2 4 6 8 10 12 v 2 -2 v P Q M x /m y /m P t /s y /m

相关文档