概率论与数理统计
学习报告
学院
学号:
姓名:
概率论与数理统计学习报告
通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。
先简单地介绍一下概率论与数理统计这门学科。
概率论就是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其她分支的桥梁,使得人们可以利用已成熟的数学工具与方法来研究随机现象,进而也为其她数学分支与其她新兴学科提供了解决问题的新思路与新方法。数理统计就是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现
象,进而对所观察的问题作出推断与预测,直至为采取一定的决策与行动提供依据与建议。
概率论与数理统计就是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不就是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而就是承认在所研究的问题中存在一些人们不能认识或者根本不知道的随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。
至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论与方法。它们不仅就是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其她领域的新兴学科的相互交叉而产生了许多新的分支与边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。
概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件就是假设随机变量的概率分布就是已知的;而数理统计中作为研究对象的随机变量的概率分布就是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征就是未知的。概率论研究问题的方法就是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,
在方法上就是演绎式的。而统计学的方法就是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,就是归纳而得到结论的。因此掌握它特有的学习方法就是很重要的。
在学习的过程中,不论就是老师提出的一些希望我们课后讨论的问题还就是自己在做作业瞧书过程中遇到的一些问题都引发了我的一些思考,或许解答得并不全面甚至还可能就是不正确的,但确实就是自己的一点思考,提出来以后逐步地去解决完善吧。
<一>随机事件及其概率问题:
(1)事件A=Φ,那么
PΦ
(=
?A
)
)
(对不?
P0
?
=
=A
A
解析:此种说法不对。概率论里说了不可能事件的发生概率就是0,但0概率事件可能发生、比如在宇宙中抽一个人,抽到您的概率。这就就是一个0概率事件可能发生的例子!
随机变量分连续与离散两种,它们各自的分布描述就是不同的。对于离散随机变量,如果它的事件域就是有限个事件,则可以认为概率为0的事件一定不会发生,概率为1的事件必然发生。但若事件就是无限的,则还要具体分析。既然0概率事件都就是有可能发生的,那么概率趋近于零的事件果然有可能发生,只不过我们平时在处理问题的时候,把概率趋近于零的事件算作0概率事件,只就是算作,不就是绝对的就是。对于连续性随机变量,单个具体点的概率密度值为一有界常数,这个值可以就是任意的(包括0与1),但因为点就是没有长度的,所以该点的概率密度积分为0(因为该点概率密度值有界),即该点所对