文档库 最新最全的文档下载
当前位置:文档库 › 关于任意角的三等分问题

关于任意角的三等分问题

关于任意角的三等分问题
关于任意角的三等分问题

关于任意角的三等问题

数学与计算机科学学院数学与应用数学专业

105012007016 张成娇

【摘要】本文立足于对高中数学《课标》选修系列3的《三等分角与数域扩充》中三等分角的探究,分别从三等分角的发展历史、证明、可三等分的

特殊角及在数学教学中的课题研究等四个主要方面进行探究.

【关键词】三等分角;数域;特殊角;课题研究;

一、前言

《三等分角与数域扩充》是高中数学新增加的内容,它所处的是《课标》中选修系列3,选修系列3的专题,主要是以通俗易懂的语言,深入浅出地介绍各专题的基本数学内容及其基本思想,用以开阔学生视野.三等分角、倍立方积、化圆为方、等分圆周等尺规作图问题,都是古希腊著名的作图问题,经过了长达几千年的时间才得以解决.解决这类问题的思想方法不仅在数学上,而且在人类思想史上都具有重大意义.

本文从三等分角的发展历史、证明、可三等分的特殊角及在教学中的研究性学习与数学实验等四个主要方面进行说明.

二、关于任意三等分角的历史

在欧洲巴尔干半岛的南端,有一个濒临地中海的文明古国——希腊,古希腊人在几何学的形成和发展上作出了巨大的贡献,人们习惯上把希腊称为几何学的故乡.古希腊人鄙视任何不明确或模棱两可的东西.他们认为,没有任何东西能够像直线和圆那样,明确得使人无可挑剔!况且这两者的获得又最为容易:用一个边缘平直的工具,便能随心所欲的画出一条直线;而用一端固定,另一端旋转的工具,便能得到一个圆.所以古希腊人认为,几何作图只许用直尺和圆规,这是天经地义的.大约在公元前六至四世纪,古希腊人,仍然热衷于三个貌似简单的作图题:给你一把圆规和直尺(无标记),经过有限次的步骤,能否:

①将一个给定角三等分?

②作一个立方体使它的体积是已知立方体体积的两倍?

③作一个正方形使它的面积等于已知圆的面积?

以上三个问题分别称为三等分角问题、倍立方积问题和化圆为方问题,这就是几何作图的三大问题.

其实这三个问题,于19世纪就被严格证明为不可能用直尺、圆规,经有限次的作图步骤来解决的问题. 自1637年笛卡尔(Rene Descartes ,1596 - 1650 )创立了解析几何学之后,尺规作图的可能性就有了判定准则. 1837 年万泽尔( Pierre hanrent Wantzel ,1814 - 1848)首先证明了“立方倍积”和“三等分任意角”不可能尺规作图. 1873 年埃尔米特(Charles Hennite ,1822 - 1901)证明了e 是超越数.1882年林德曼(Lindeman ,1852 - 1939) 证明了π也是超越数. 从而“变圆为方”的不可能性也得以确立.1895年克莱因( Felix Klein ,1849

- 1925) 总结了前人的研究成果,给出三大几何问题不可能用尺规作图的简明证法,从而彻底地解决了这三个古老的问题.

三、用数域扩充的方法证明

对于任意角不能三等分证明有许多的方法,如:1801年数学家高斯的证明方法:作圆的

n 等分,当n 满足如下特征j

1

k k

m 1j

n=2p p 其中,m 为非负整数,1p 、2p 、j p 为互不相

同的费马素数(前5个费马素数为3,5,17,257,65537),i k 01i j = 或(=1、2、、)

才可三等分角360n

?

.

在此主要是考虑到中学生的数学知识水平以及课程标准中对数域的要求,因而用采用数域扩充的方法来证明.

1.预备知识

(1)尺规作图的公法:①从任意一点到另一点,可作一直线;②任意有限长的线段,可顺着延长;③ 由一已知点及定距离,可作一个圆(说明的是圆规的用法).

(2)可构作的概念: 经过平面上的两点,用直尺可以画一直线;经过一点用圆规可以画一个半径等于给定线段的圆,直线与直线、直线与圆和圆与圆都可能相交,这样的交点称为是用尺规可以构作的点,若交点在数轴上,也称对应的长度(实数)是可以构作的. (3)相关定理、概念

定理1 设F 是R 的一个子域,则实数a 可由F 构作的充要条件是存在R 的子域链,使得

0F F =,a F ∈ 且i i+1[F :F ]=2, i=12n 、、

、. 推论2 设F 是R 的一个子域, a R ∈,如果a 可由F 构作,则必存在整数r ≥0,使得

[F(a):F]=2r

.

定理3 设θ是一个角,另cos a θ=,则角θ可用尺规三等分的充要条件是多项式

3

()32()[]f x x x a Q a x =--∈,在()[]Q a x 中是可约的.

2.证明

证: 设θ是一个经过原点以x 轴为一条边的角,过原点作一半径为1的圆,圆与角的另一条

边的交点的横坐标为cos θ

∴ 角θ可构作的充要条件是实数cos θ可构作

令3

θ

?=

,cos a θ=,2cos b ?=,则问题化为能否由()Q a 构作b

有三倍角公式: 3cos 4cos 3cos θ??=-

∴ b 是多项式3()32()[]f x x x a Q a x =--∈的一个根

假设()f x 在()[]Q a x 中可约,则由于b 是()f x 的根,而()f x 是3次的,所以()

b Q a ∈或是()Q a 上的一个二次不可约多项式的根.若是前者,显然b 可以由()Q a 构作;若是后者, 则有[()():()]2Q a b Q a =,于是b 是可以由()Q a 构作的

∴ 当()f x 在()[]Q a x 中可约时, b 可以由()Q a 构作的,从而θ可构作

假设()f x 在()[]Q a x 中不可约,则()f x 就是b 在()Q a 上的极小多项式,从而有

[()():()]3Q a b Q a =

∴ b 不可由()Q a 构作,即θ不可构作 ∴ 三等分任意角是不可能的

3.举例说明

例如,角3

π

是不能用尺规三等分的,因为此时12

a =

,3

()31f x x x =--在[]Q x 中不可约

四、可三等分的特殊角

用尺规将三等分一个任意角是不可能的, 但对于一些特殊角则可以利用尺规三等分,例说如下:

1. 180?可以三等分

简析:根据上述的证明过程,因为此时

cos 1a θ==-,32()32(1)(2)f x x x x x x =-+=-+-在[]Q x 中可约,从而可三等分.

这时把一平角三等分,每一份的度数是60?而等边三角形的每一内角是60?,故可以利用作等边三角形的方法把平角三等分.

作法:

(1)如图1,A O B ∠为平角,分别在角的两边O A 、O B 上取两点C D 、. (2)分别以O O C D 、为边,作两个等边三角形(E C O FD O ??、).

则O E O F 、为平角A O B ∠的三等分线,即O E O F 、把平角A O B ∠三等分.

2. 45?角三等分

简析: 因为把一个45?的角三等分,每一份是15?,而15?恰好是30?的一半,或者是

604515?-?=?,故仍可采用先作等边三角形的方法把45?的角三等分.

作法:

(1)如图2, 45A O B ∠=?.在O A 上任取一点C,以O C 为边,在A O B ∠内部作等边三角形O C D ?.

(2)作D A O ∠的平分线OE. (3)作E A O ∠的平分线OF. 则OE 、OF 把45?的A O B ∠三等分

3. 90?角三等分

简析: 根据上述的证明过程,因为此时cos 0a θ==, 32

()3(3)f x x x x x =-=-在

[]Q x 中可约,从而可三等分.

此时把一直角三等分,每一份的度数是30?,而906030?-?=?,可用作等边三角形的方

法把直角三等分.

4. 还有135?、36?等可转化为形如180

n ?(n不为3的倍数, *

n N

∈)的角都可以三

等分.此为俄国数学家罗巴切夫斯基经过多年努力得到的结论.因此根据这个结论也可以得到60?、120?等是不可三等分的.

五、在高中数学教学中的研究课题

现今的教育要求丰富学生的学习方式,改进学生的学习方法是高中数学追求的基本理念.独立自主、自主探索、动手实践、合作交流等都是学习数学的重要方式.随着三等分角这部分内容进入高中数学课程,这使得三等分角成为一个很好的研究课题.下面简述两个.

1. 在已有的数学知识水平上开展研究性学习

比如参考文献[5]中对三等分角的研究,该文中作者在学生学了二倍角公式并逆用二倍角公式推得半角公式后,让学生推导三倍角公式.利用三倍角公式,从特殊的60?角的三等分角20?的可作性来尝试三等分角的问题.作者将课题分为4步:

探索1 能否用尺规三等分60?角?

探索2 在0?~180?的几个特殊角中有哪些是可三等分?哪些是不可三等分?

探索3 探索0?~180?的几个特殊角中可三等分角与不可三等分角的特点,能得出什么结论?

探索4 证明形如180

()

k

k N

?

∈形式的角中,若k是3的倍数,则不可以三等分;否则就

可以三等分.

通过对三等分角的研究,让学生体会了其中蕴含的数学思想方法,从一般到特殊,再从特殊到一般,提高了分析问题和解决问题的能力.同时通过以上四个探索,可使同学们感到“三等分角”问题不再是那么的神秘、高不可攀,更不会再在三等分任意角的问题上作徒劳的努力.

2. 将“三等分角问题”与数学实验相结合

参考文献[6]一文中,作者试着从三等分角问题出发,在前人研究的基础上,结合自己的想法,设计了一个三等分角演示仪. 作者通过五个步骤:

步骤1 研读课标,确定研究题目;

步骤2搜寻课题的有关资料和研究现状;

步骤3 确定研究题目的基本原理;

步骤4 认真分析并解决遇到的问题;

步骤5 动手操作设计三等分角演示仪;

在进行实验的过程中,不仅了解了三等分角的相关知识,并将三等分角应用于数学实验中,激发了学生的学习兴趣和强烈的动手制作愿望,而且能使学生在学会知识的同时,掌握分析问题,解决问题的方法.既促进了学生自身的发展,也带动了数学实验的发展.

六、结束语

任意角的三等分问题是几何作图三大问题之一,并且在课改中,《三等分角与数域扩充》成为了高中数学选修系列3的一部分内容.选修系列3的内容相对新颖前沿,反映了某些重要的数学思想,并且具有一定的挑战性.可见对该问题的学习有利于扩展学生的数学视野,提高学生对数学的科学价值,文化价值,应用价值的认识,并且在培养学生的思维能力,数学素养等方面有着重要作用.

参考文献

[1]王忠华.用尺规作图不可能三等分任意角[J].数学通讯,2001年第19期

[2]曹亮吉.三等分任意角可能吗?[J].科学月刊,1978年第4期

[3王美香.高中《三等分角与属于扩充》的数学探讨[J].中学数学杂志,2009年第7期

[4]侯国兴.尺规作图三等分角[J].今日中学生,上旬版,2007年第12期

[5]楼许静.我把嫦娥请下凡——一堂三等分角的研究课[J].高中数学教与学,2008年第6期

[6]田晓娟.从“三等分角问题”浅谈数学实验[J].科学教育,2008年第3期

[7]郭熙汉.数学知识探源[M].武汉:湖北教育出版社,1999

[8]唐忠明.抽象代数基础[M].北京:高等教育出版社,2005

任意锐角的三等分

任意锐角的三等分 【摘要】:任意角的三等分问题是几何学的三大难题之一,数学家们认为用尺规三等分任意角是不可能的.本文试图用初等几何知识证明任意角是可以三等分的.角有锐角和 钝角之分,而钝角都可以等分成锐角,所以锐角的等分问题如果得到解决,则钝角和圆(360°)的等分问题也就会得到解决.所以,本文先从锐角的等分开始进行了研究. 【关键词】三等分;圆周角;圆心角;弦切角任意角的三等分问题是几何学的三大难题之一,两千八百年来,数学家们都认为用尺规三等分任意角是不可能的(特殊角除外),认为这是一个“作图不能”的问题.近百年来,数学界的老前辈们还是认为只要是任意角,仅用尺规三等分是不可能的.这些前辈们是用解析几何作解的(即用公式做题). 为什么用解析几何作解呢?是因为“惊讶之处是初等几何没能对此问题提供解答” ,所以“我们必须求助于代数和高等分析”(引自:高等教育出版社出版,丘成桐主编《初等几何的著名问题》2005 年版第2 页). 实际上,如果用上述数学方法解几何问题,有些问题只 能以近似的方式来解决?比如,以a为直径作一个圆,会容易

做出来;但如果是计算一下周长S,这时候问题就来了,因为我们要使用n值来计算,所以计算出来的周长S计只能是S~ S计且 S z S计,或表示为S=S计土8 , 3可以很小,但是毕竟是个“差”呀.再比如,1 m=3 市尺,那么1尺等于多少厘米呢?计算不出来,只能表示为:1市尺=33 cm,而这是一个近似值.计算不出来,如何分开呢?但用几何的方法就分开了.所以用几何的方法解决几何问题,才是真正的可行之道. 本文试图用初等几何知识证明任意角是可以三等分的. 在作图之前,首先要明确一下任意角的概念:任意角是 指0° < a < 360 °,不包含负角和超过360 °的角.另外,角 有锐角和钝角之分,而钝角都可以等分成锐角,所以锐角的等分问题如果得到解决,则钝角和圆(360°)的等分问题也就会得到解决.所以我先从锐角的等分开始进行了研究. 下面即将以初等几何知识以及纯几何的手工操作,通过尺规作图来三等分任意锐角. 题给条件:0< a = / xOy<90 °(参照图1). 求解:三等分a . 一、作图(参照图2) (1 )在Ox 边上任取一点A ,然后在Ox 边上取 OA=AA2=A2A3. (2)以O 为圆心,以OA 为半径,作AB ,此时OA=OB

尺规作图三大几何难题教学提纲

尺规作图三大几何难 题

安溪六中校本课程之数学探秘 尺规作图三大几何问题 一、教学目标 1.让学生了解尺规作图三大几何问题如何产生的? 2.经历探索尺规作图三大几何问题如何解决的过程,进一步体会数学方法思想。 3.学生通过自主探究、合作交流体会尺规作图三大几何问题有什么教育价值? 二、问题背景 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个著名问题是三等分任意角和化圆为方问题。古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是

“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。数学家们在这些问题上又演绎出很多故事。直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。 2.化圆为方,即作一正方形,使其与一给定的圆面积相等。 3.三等分角,即分一个给定的任意角为三个相等的部分。 三、问题探秘 1.立方倍积 关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟

论创客教育和折纸

浅谈学校创客教育和现代折纸 常州市西夏墅中学 213135 赵燕杰 摘要:创客教育的盛行,是当今社会和国家对创新型人才和工匠型人才需求的体现。然而,创客教育并不仅仅指以信息技术为核心的开源硬件的学习和教育,我们应当关注创客精神的本质,因地制宜的,开创性的开发和实施多领域的多种形式的创客教育。现代折纸就是这样一种具备创客精神的,又极具特色的创客教育新领域。 关键词:创客教育创客精神现代折纸工匠精神 几年前,“创客教育”还只是一个属于极少数老师讨论的话题,但现在,创客教育已经成为众多学术专家和教育人士研究的课题。 创客教育是从国外创客运动引入的,最先由从事信息技术教学的一批热心教师尝试并推动的,国内各类媒体上面的介绍往往是从机器人大赛、三维打印、Scratch编程等话题进入读者的视野,这就给普通读者形成了第一印象,觉得创客就是运用信息技术制造有创意的实物电子作品。目前许多学校考虑建设“创客空间”,首先想到的就是需要配置多少台三维打印机、多少套机器人设备等问题。 江苏师范大学教育科学学院副教授杨现民在一篇学术论文中写到,创客教育在我国已经悄然兴起,并在大踏步地摸索前进。杨现民在归纳总结创客教育的定义时写到:创客教育是一种融合信息技术,秉承“开放创新、探究体验”教育理念,以“创造中学”为主要学习方式和培养各类创新人才为目的的新型教育模式。 但这仅仅是“创客教育”的其中一个定义,创客也不应该仅仅指那些运用信息技术、工程技术的人。事实上,创客和创客教育的定义都有狭义和广义之分。 关于创客的概念,狭义的说法是那些对计算机、机械、技术、科

学、数字艺术、电子技术等有着共同兴趣而在一起社会化协作的人群。广义的说法是指那些出于兴趣与爱好,努力把各种创意转变为现实的人。因此,对创客成果往往也有着狭义和广义的不同理解,狭义的创客成果大多指利用电子技术、计算机、机器人、3D打印、数控设备,以及传统的金属加工、木材加工、传统手工艺等加工制作的产品。广义的创客成果包括一切创新的物质文明产品和非物质文明产品。 创客在美国和欧洲,包括了社会维度和文化维度。在社会维度,比如具有创新精神的社会活动家组织新型的社会团体或活动,高效地解决社会问题,他就是创客。再比如具有创新精神的政治家,提出新的社会制度,促成新型的社会生产关系以更好地推动社会发展,他也是创客。在文化维度,艺术家就是创客,文化创意同样体现着创客精神。 关于创客教育,国内教育界的祝智庭教授及其团队有着深入系统的研究。祝智庭教授指出:“创客有广义和狭义两层概念,创客教育也应有广义和狭义两层理解。广义上创客教育应是一种以培育大众创客精神为导向的教育形态。狭义上的创客教育则应是一种以培养学习者,特别是青少年学习者的创客素养为导向的教育模式。” 作为一名中学教师,本文讨论的创客教育主要是指学校为提升学生创客素养的一种教育模式,是狭义概念上的创客教育,然而其内含的创客概念可以是广义的。学校创客教育除了机器人、3D打印、Scratch编程之外,完全可以因地制宜的、创新性的开发多种领域的内容和形式。

利用渐开线三等分任意角的方法和证明

利用渐开线三等分任意角的方法和证明 要求:如果所示,以园心为A,半径为AC的园的渐开线作为辅助线,现在要把∠CAB三等分。 操作:利用渐开线三等分任意角∠CAB的尺规作图步骤: 1、以B点做切线,和渐开线相交于E; 2、在BE线段上做三等分点F,即BF=BE/3; 3、以A点为圆心,AF长为半径,相交渐开线于G; 4、以G点为圆心,BF长为半径,相交基圆于D; 5、连接AD,∠CAD即为∠CAB的三等分角。

证明: 1、先证明△BAF与△DAG全等 根据作图,BE是垂直于AB的圆上点B的切线,所 以∠FBA是直角,BF2=FA2-AB2,DG是垂直于AD的圆上点D的切线,所以∠ADG是直角,DG2=GA2-AD2,其中,AB=AD为园A的半径,且AF=AG,所 以BF=DG,△BAF与△DAG全等。 2、根据渐开线的性质,直线BE的长度=园弧BDC的长度,直线DG的长度 =园弧DC的长度,又因为DG=BF=BE/ 3,所以园弧DC的长度=园弧BDC的长度/3,因 此,∠CAD即为∠CAB的三等分角 总结: 伽罗瓦所证明的是,在不使用任何辅助线或用到除尺规外其他工具的前提下,不能在有限次操作内,使用尺规作图法三等分任意角,也就是说这三个限制只要有一个不成立,那么不能三等分任意角就不成立。 实际上只要引入渐开线,在有限次操作内,使用尺规作图法N等分任意角都是可行的,而且这种方法也同样可以解决化圆为方的问题。这样,通过引入渐开线就一举解决的三大几何作图问题中的两个“不可能”的难题,并且渐开线在物理上是很容易得到的,它的本质是绕基圆展开的线,或者说大家常用的卷尺,就是渐开线所对应的物理实物。

关于三等分任意角的方法探究

三等分任意角的方法探究 西工大附中 孙开锋 三等分任意角的方法探究 摘要:三等分角是古希腊几何三大作图问题之一,本文 关键词: 只准用直角和圆规,你能将一个任意的角进行两等分吗?这可太简单了,几千前的数学家们就会做。 纸上任意画一个角,以其顶点O为圆心,任意选一个长度为半径画弧,找出弧与角的两边的交点,分别命名为A和B。然后分别以A点和B点为圆心,以同一个半径画弧,这个半径要大于A、B之间距离的一半。找出两段弧的相交点C,用直尺把O和C连接起来,那么直线OC就将角AOB 平分成了两部分。 用同样的方法,我们可以把一个角任意分成4等分、8等分、16等分……,也就是说,只要你有耐心,可以把任意一个角等分为2的任意次方。 但是,如果只用直尺和圆规,并且,这直尺还不能有刻度,你能将任意一个角三等分吗? 早在公元前5世纪,古希腊的巧辩学派就提出了在只用直尺画直线、圆规画弧的限定下,将任意给定的角三等分的命题。很多伟大的数学家如阿基米德、笛卡儿、牛顿等都试图拿起直尺和圆规挑战自己的智力,但终于都以失败告终。直至公元1837年,法国数学家闻脱兹尔宣布:“只准使用直尺与圆规,想三等分一个任意角是不可能的!”, 才暂时了结了这宗长达几千年的数学悬案。 但是,如果没有几何作图法的限制,任意角三等分问题当然可以解决,不妨举几个例子以共享。 一、利用工具三等分任意角

如图1所示,叫做“三等分仪” 吧 , CE=EG=DG,ME ⊥CD,弧ED 是以G 为圆心的半圆,故ME 与半圆G 相切于点E. 具体操作:将该仪器置于 ∠AOB 的内部,使得点C 落在OA 上,ME 经过点O,半圆G 与OB 相切于点F,则OE,OG 为∠AOB 的三等分线。 数理证明:分别连接OG,GF,故GF ⊥OB,而EG ⊥OE,所以易证:△GOE ≌△GOF;同理可证△GOE ≌△COE;故可得到:∠COE=∠GOE=∠FOG.所以,OE 、OG 为∠AOB 的三等分线。 二、中考中的三等分角 题目:(广东佛山市)三等分一任意角是数学史上一个著名的问题,用尺规不可能“三等分一任意角”。下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法:将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上,边OA 与函数y x =1的图象交于点P ,以P 为圆心,以2OP 为半径作弧交函数y x =1的图象于点R ,分别过点P 和R 作x 轴和y 轴的平行线,两直线交于点M ,连结OM 得到∠MOB ,则∠=∠MOB AOB 13 。要明白帕普斯的方法,请研究以下问题。 (1)设P (a a ,1),R (b b ,1)求直线OM 对应的函数表达式(用含a b 、的代表式表示); (2)分别过点P 和R 作y 轴与x 轴的平行线,两直线相交于点Q ,请证明点Q 在直线OM 上,并据此证明∠=∠MOB AOB 1 3 ;

简述三大几何难题

三大几何难题 古希腊是世界数学史上浓墨重彩的一笔,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。其中,几何是希腊数学研究的重心,柏拉图在他的柏拉图学院的大门上就写着“不懂几何的人,勿入此门”。历史上第一个公理化的演绎体系《几何原本》阐述的也基本上为几何内容。 古希腊的几何发展得如此繁荣,但有一个问题一直没有得到解决,那就是著名的尺规作图三大难题。它们分别是化圆为方、三等分任意角以及倍立方问题。这三个问题首先是“巧辨学派”提出并且研究的,但看上去很简单的三个问题,却困扰了数学家们两千多年之久。 这些问题的难处,是作图只能用直尺和圆规这两种工具,其中直尺是指只能画直线,而没有刻度的尺。在欧几里得的《几何原本》中对作图作了规定,只有圆和直线才被承认是可几何作图的,因此在这本书的巨大影响下,尺规作图便成为希腊几何学的金科玉律。并且,古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值。因此,在作图中对规、矩的使用方法加以很多限制,在这里,就是要在有限的次数中解决这三个问题。化圆为方 圆和正方形都是常见的几何图形,人们自然会联想到可否作一个正方形和已知圆等积,这就是化圆为方问题。 三等分任意角 用尺规二等分一个角很容易就可以作出来,那么三等分角呢?三等分180,90角也很容易,但是60,45等这些一般角可以用尺规作出来吗? 倍立方 关于倍立方问题是起源于一个祭祀问题,第罗斯岛上流行着一种可怕的传染病,一时人心惶惶,不可终日.人们来到阿波罗神前,请求阿波罗神像的指示.阿波罗神给了祈求人这样一个指示:“神殿前有一个正方体祭坛,如果能不改变它的形状而把它的体积增加1倍,那么就能消灭传染病.”人们连夜赶造了一个长、宽、高都比正方体祭坛大一倍的祭坛,可是,那传染病传播得更加厉害了.人们又来到阿波罗神像前祈求.神说:“我要你们增加一倍的是祭坛的体积,你们把长、宽、高都增加1倍,祭坛的体积不是要比原来体积大7倍了吗?”人们绞尽脑汁想找出一个答案,可是始终没有人能解答这个难题. 由三大问题的起源,可以看出,化圆为方和三等分角是人们在已有知识的基础上,向更深层次,更一般的方向去思考、探索,这也是希腊数学的理论性的演绎推理与抽象性的表现。而倍立方则是起源于建筑的需要,这也反应了数学的发展是离不开现实社会的推动的。 三个几何难题提出后,有很多人都为之做了不懈的努力。可以说,但凡是数学史上称得上是数学家的人,都研究过这个问题。由三大难题引出的各种结论与发现也数不胜数,例如割圆曲线、阿基米德螺线等。但这些解法并没有完全遵从尺规作图的要求,因此也不算解决了三大难题。但是由19世纪所证出的三大几何难题的不可解,可以发现,只有冲破尺规的限制才能解决问题。正如很多事情,我们觉得无论如何也找不到解决的办法,就是因为有太多的枷锁罩在我们身上,只有打破这些桎梏,才会豁然开朗,找到一片新天地。 三大几何问题的真正解决是在19世纪解析几何创立之后,人们知道了直线与圆分别是二元一次方程和二元二次方程的轨迹,交点则是方程组的解,因此一个几何量是否能用尺规作出,则是它能否由已知量经过有限次加、减、乘、除、开平方运算得到。那么三大难题就可以转换成代数的语言来表示: 1化圆为方设圆的半径为一个单位,要作一面积等于单位圆的正方形,设这个正方形连长为x,则x2=π.集能否用尺规作出一条长为π的线段?

北师大版初三数学中考模拟试题及答案

初三数学综合测试题(1) (考试时间90分钟,满分100分) 一、选择题:(本大题共10题,每小题3分,共30分) 每小题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在下面的答题表一内,否则不给分. 答题表一 1、下列计算正确的是 A. 236333=? B. -(-a +1)= a -1 C. 3m 2-m 2=3 D. (-3)2= -3 2、由几个小正方体所搭成的几何体的俯视图如下面左侧图形所示.(正方形中的数字表 示该位置叠放的小正方体的个数),那么这个几何体的正视图是 3、根据右图提供的信息,可知一个热水瓶的价格是 A .7元 B .35元 C .45元 D .50元 4、如果分式 1 x 1x +-的值为零,那么x 的值为 A. -1或1 B. 1 C. -1 D. 1或0 第3题 共52元

5、已知α为等腰直角三角形的一个锐角,则cosα等于 A . 2 1 B .22 C .23 D .33 6、若一个正多边形的外角等于30°,则这个多边形的边数是 A. 6 B. 8 C. 10 D. 12 7、四张完全相同的卡片上,分别画有:线段、等边三角形、平行四边形、圆,现从中随 机抽取一张,卡片上画的恰好是中心对称图形的概率是 A . 43 B .21 C .4 1 D .1 8、已知二次函数y = x 2的图象向右平移3个单位后,得到的二次函数解析式是 A.2)3x (y -= B. 2)3x (y += C. 3x y 2-= D. 3x y 2+= 9、如图,已知⊙O 的半径为5,弦AB=8,M 是AB 上任意一点,则线段OM 的长可以是 A .1.5 B .2.5 C .4.5 D .5.5 第9题 10、如图,圆锥底面直径为6cm ,母线长为12cm ,则其侧面展开为扇形的圆心角为 A. 30o B. 45o C. 60o D. 90o 二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则 不给分) 答题表二 第10题

三等分角帕普斯函数( 答案)

数学家帕普斯“三等分角” “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图): 将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R 作x轴和y轴的平行线,两直线相交于点M ,连接OM得到∠MOB,则∠MOB= ∠AOB.要明白帕普斯的方法,请研究以下问题: (1)设、,求直线OM对应的函数表达式(用含的代数式表示). (2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q 点在直线OM上,并据此证明∠MOB=∠AOB. (3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明). 解:(1)设直线OM的函数关系式为.……………1分则∴.……………2分 ∴直线OM的函数关系式为.……………3分

(2)∵ 的坐标满足,∴点在直线OM上. (或用几何证法,见《九年级上册》教师用书191页)……………4分∵四边形PQRM是矩形,∴SP=SQ=SR=SM=PR. ∴∠SQR=∠SRQ.……………5分 ∵PR=2OP,∴PS=OP=PR.∴∠POS=∠PSO.……………6分 ∵∠PSQ是△SQ R的一个外角, ∴∠PSQ=2∠SQR.∴∠POS=2∠SQR.……………7分 ∵QR∥OB,∴∠SOB=∠SQR.……………8分 ∴∠POS=2∠SOB.……………9分 ∴∠SOB= ∠AOB.……………10分 (3)以下方法只要回答一种即可. 方法一:利用钝角的一半是锐角,然后利用上述结论把锐角三等分的方法即可. 方法二:也可把钝角减去一个直角得一个锐角,然后利用上述结论把锐角三等分后,再将直角利用等边三角形(或其它方法)将其三等分即可. 方法三:先将此钝角的补角(锐角)三等分,再作它的余角.……………

三等分角器

“三等分角器”是利用阿基米德原理做出的。如图,∠AOB为要三等分的任意角,图中AC,OB两滑块可在角的两边内滑动,始终保持有OA=OC=PC. 求证:∠APB=13∠AOB. 考点: 等腰三角形的性质 已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC. 考点: 等腰三角形的性质,线段垂直平分线的性质 如图所示,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.证明:延长AO交BC于D 在△ABO和△ACO中?????AB=AC()OB=OC()AO=AO() ∴△ABO≌△ACO(___) ∴∠BAO=∠CAO 即∠BAD=∠CAD(___) ∴AD⊥BC,即AO⊥BC(___)

考点: 全等三角形的判定 如图,已知△ABC的面积为12,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积是() A. 10 B. 8 C. 6 D. 4 考点: [角平分线的性质] 如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE=AC. (1)求证:AD⊥BC.

(2)若∠BAC=75°,求∠B的度数。 考点: 等腰三角形的性质,线段垂直平分线的性质 如图,在△ABC中,∠BAC=120°,AB=AC,点D在BC上,且BD=BA,点E在BC 的延长线上,且CE=CA. (1)试求∠DAE的度数。 (2)如果把题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗? (3)若∠BAC=α°,其它条件与(2)相同,则∠DAE的度数是多少? 考点: [等腰三角形的性质, 三角形内角和定理, 三角形的外角性质]

古希腊三个著名问题之一的三等分角

古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢? 用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角. 在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则 EG=GF=GA=BA, 从中得到:

∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC, 并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点. 如果与欧几里得的假定相反,允许在我们的直尺上标出一线段 E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC 上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the insertion principle)的一种应用.这一原则的其它应用,参看问题研究4.6. 为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB 为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.

尺规法三等分任意角到底可行吗

尺规法三等分任意角到底可行吗? 1965年以前,数学家华罗庚曾写文章告诫青少年——用直尺和圆规三等分任意角是不可能的,不要为这道难题花费精力。近日在2013年出版的文集中见到《尺规作图破解世界千古三大几何难题》一文,该文是作者(简称黄先生)历时七年的研究成果。该文所说难题之一就是用尺规三等分任意角(另两道难题是倍立方和画圆为方)。为了证明他的方法是近似的,我用他的方法三等分100°角,看看误差有多大。 如图,DG长度为AD的二分之一,G点到E点的直线距离为AG的二分之一,穿过A、E两点的直线与圆弧相交于F点,黄先生认为D、F两点连线所对圆心角θ一定等于图中100°角的六分之一。我们来计算一下θ角的度数(计算过程保留8个有效数)。 设圆半径为1,借助三角函数和勾股定理可算出A、G、E三点坐标。 A点坐标(?0.76604444,?0.64278761) G点坐标(0.38302222,1.8213938) E点坐标(0 ,0.51700505)

设连接A、E两点的直线方程为 y = ax + b,根据A、E两点坐标可求出该直线方程为 y = 1.5140018x + 0.51700505 根据该直线方程与圆方程x2 + y2 =1,可求出F点横坐标x = 0.29052884 所以sinθ= 0.29052884,θ角不小于16.8896°,误差大于 0.2229° 用该方法三等分100°角,误差大于0.4458° 令CE = AE可算出C点坐标。黄先生认为C、B两点连线与圆弧的交点就是F点,其实不然。根据C、B两点坐标可算出C、B两点连线与圆弧的交点坐标。该交点横坐标x = 0.2849388,将该交点视为F点,可算出θ角为16.5552°,少了0.1115°,用该方法三等分100°角,误差大于0.2229°

九年级数学三等分角问题

“三等分角”是数学史上一个著名问题,但仅用尺规不可能“三等分角” .下面是数学家帕普斯借助函数给出的一种“三等分锐角“的方法(如图),将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数1y x = 的图象交于点P ,以P 为圆心,以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到得到∠MOB ,则13MOB AOB ∠=∠. 要明白帕普斯的方法,请你研究以下问题: (1)设1(,)P a a 、1(,)R b b ,求直线OM 相对应 的函数解析式(用含a,b 的代数式表示). (2)分别过P 和R 作y 轴和x 轴的平行线,两直 线相交于点Q ,请说明Q 点在直线OM 上,据此证明13 MOB AOB ∠=∠. (3)应用上述方法得到结论,你如何三等分一个 钝角(用文字简要说明). 解:(1)设直线OM 的函数关系式为 )1,(),1,(,b b R a a P kx y =. 则),1,(a b M ∴ab b a k 11=÷=. ∴直线OM 的函数关系式为x ab y 1=. (2)∵Q 的坐标)1,(b a 满足x ab y 1=,∴点Q 在直线OM 上. (或用几何证法,见《九年级上册》教师用书191页) ∵四边形PQRM 是矩形,∴SP=SQ=SR=SM=2 1PR . ∴∠SQR=∠SRQ . ∵PR=2OP ,∴PS=OP=2 1PR .∴∠POS=∠PSO . ∵∠PSQ 是△SQR 的一个外角, ∴∠PSQ=2∠SQR .∴∠POS=2∠SQR . ∵QR ∥OB ,∴∠SOB=∠SQR . ∴∠SOB=3 1∠AOB . (3)以下方法只要回答一种即可. 方法一:利用钝角的一半是锐角,然后利用上述结论把锐角三等分的方法即可. 方法二:也可把钝角减去一个直角得一个锐角,然后利用上述结论把锐角三等分后,再将直角 利用等边三角形(或其它方法)将其三等分即可. 方法三:先将此钝角的补角(锐角)三等分,再作它的余角

书法的折纸方法自制作图解

书法的折纸方法自制作图 解 Prepared on 21 November 2021

书法的折纸方法(自制作图解)五言绝句折纸法: 四尺宣先裁掉一尺 剩下三尺对裁 对折 再对折 再对折 留一方格位折 再折留边框 再折中线和对角线成米字格 七言诗折纸法: 四尺整纸对裁 留出一字格 对折为所留一格的一倍 按所留一格的尺寸折 再折 留出一方格折 再折 再折留出边框 折后为3乘11格 一.四尺开四(66㎝×33㎝) 1.以10字诗句为例 先竖折三等分,但左右留出边线(即:留适当的空白);再横折五等分(上、下也要留出边线,即:“天地”留适当的空白)。第一、二行各5个字,第三行落款。 2.以14字诗句为例 先竖折三等分,但左右留出边线(即:留适当的空白);再横折六等分(先対折,再三等分折,上、下也要留出边线,即:“天地”留适当的空白)。第一、二行各6个字,第三行2个字,接下的空格落款。 3.以20字的“五绝”为例

先竖折四行,但第四行为半行,左右留出边线(即:留适当的空白);再横折七等分(上、下也要留出边线,即:“天地”留适当的空白)。第一、二行各7个字,第三行6个字,第四行落款。 二.四尺开三(66㎝×45㎝) 1.以20字的“五绝”为例 先竖折五行,但第五行为半行,左右留出边线(即:留适当的空白);再横折六等分(上、下也要留出边线,即:“天地”留适当的空白)。第一至三行各6个字,第四行2个字,第五行落款。 2.以28字的“七绝”为例 先竖折五行,但第五行为半行,左右留出边线(即:留适当的空白);再横折七等分(上、下也要留出边线,即:“天地”留适当的空白)。第一至四行各7个字,第五行落款。 3.以33字的“长短句”为例 先竖折五等分,但左右留出边线(即:留适当的空白);再横折八等分(上、下也要留出边线,即:“天地”留适当的空白)。第一至四行各8个字,第五行1个字,接下的空格落款。

三等分角

题目:三等分任意角 地点:北京师大二附中 主讲人:徐超 主持人:我们从上午九点四十到下午三点钟结束,在整个报告过程中,因为我了解到今天参加报告的同学大部分是高一的,在听报告过程中有些地方会觉得稍稍困难些,但是我们学数学的就是这样的,我们会经历些我们感觉会比较困难的过程,我们只要坚持下去,就会在数学中发现许多乐趣,发现数学内在让我们感动的东西,希望大家能够珍惜我们今天讲座的机会,认真的体会,在听的过程中会有些问题留下来,将来通过大家的努力,一定能很好的解决。下面我们就有请徐超先生。 徐超:三等分任意角教科书上写清楚是不可能的,我们今天给出严格的证明是不可能的,而且这个证明是高一学生所能接受的。在过去在没有找到这个证明之前所有人都认为是大学二年级学完所谓的抽象代数这门课后才能理解为什么是不可能的,实际这个证明可以很初等的给出来,为什么三等分角这件事情惹了这么多麻烦呢?我举一个例子,我是1956年到的中科院数学研究所,这个时候,不断的有各个地方的人写信来,说我解决了三等分角,这种信每个月都有一沓,作者当初给的证明实际上是错的,实际上他要证明三等分任意角都可以,他以为用平面几何的知识就可以解决,但实际上很难,这个问题偶尔到现在还能收到所谓的人民来信说他解决了三等分角,原因在哪里?就是一直没有一个初等证明使得能说服他,现在讲的证明是从分析三等分角究竟是怎么回事开始的。那么我从历史讲起。三等分角是什么意思呢?首先我们先讲尺规作图。先下定义,尺规作图就是用不带刻度的尺画直线,用不带度量的圆规画圆,用的这两个东西不能量大小,不能够我给你60度的角,量一量画出两条线,这是不允许的,所以说一般的直尺和圆规不带刻度有限次作图,给它画出来。什么叫作图,举个例子给了一条直线BB ’和线外一点A ,作它的平行线,这就叫作图。那么怎么作呢?以B 为圆心以r (r 可以为任意长度)为半径画圆,连接BA 并延长至C ,再以A 为圆心r 为半径画圆,用圆规在A 点作'CAA ∠,令'2CAA ∠=∠,使21∠=∠,利用同位角相等可以知道'//'AA BB 。(注意这两个圆的半径是一样的) 21 这就叫圆规直尺作图,现在教科书中关于作图题极少,关于作图题几乎是没有的,我念中学的时候作图是重要的,最后讲的一个作图题和一个轨迹题,平面几何的。尺规作图就是用不 带刻度的尺画直线,用不带度量的圆规画圆,有限次作图,在给出基础点以后画图做出来。 尺规作图有多少年历史呢?有四千年历史,提出三个问题,这三个问题在历史上是可以查出来的。中国是发明造纸的,希腊是把草压扁了在上面写,就叫做草书。两千五百年前草书上,记载的三大问题,尺轨作图的三大问题。刚才我已经把尺规作图的定义讲清楚了。

几何三大问题为尺规作图不能问题的证明

1.立方倍积问题 假设已知立方体的棱长为c,所求立方体的棱长为x.按给定的条件,应有 x3=2a3. 令a=1,则上述方程取更简单的形式 x3-2=0. 根据初等代数知识,如果上述的有理系数三次方程含有有理根,不外是±1,±2.但经逐一代入试验,均不符合.可见方程x3-2=0必 不能用尺规作出,这就证明了立方倍积问题是尺规作图不能问题. 2.三等分任意角问题 对于已知的锐角∠O=θ,设OP、OS是它的三等分角线. 以O为圆心,单位长为半径画弧,交∠O的两边于点A、B,交三等分角线OS于点C.过点C作CD⊥OA,交OA于点D.这样,OS能否用尺规来作出,就等价于点C能否用尺规作出,也就是点D能否用尺规来作出. 令OD=x,则有

4x3-3x-cosθ=0. 如果能证明上述三次方程的根一般不能仅用尺规作出,则点D不可得,于是射线OS也就不能作出.欲证明此事,可选一特例考察之. 8x3-6x-1=0. 以2x=y代入此方程,可得较简单的形式 y3-3y-1=0. 根据代数的知识,如果有理系数一元三次方程y3-3y-1=0含有有理根,不外是±1.但经逐一代入试验后,均不符合,可见此方程没有有理根.于是,根据本书第14页定理2可知,方程y3-3y-1=0的任何实根不能用尺 规作图来完成,即60°角不能用尺规三等分.三等分60°角尚且不能,这就表明了三等分任意角属于尺规作图不能问题. 当然,这个结论是对一般情形而言的,假如θ等于某些特殊值,则作图未必就不可能.例如,当θ=90°时,便有cos90°=0,此时方程 4x3-3x-cosθ=0就变为 4x3-3x=0. 解之,得

部分特殊角和任意角简易角三等分尺规作图

部分特殊角和任意角简易角三等分尺规作图 上次我用尺规作图已将120°角三等分了,下面我用一本180例简易大小各不相等的角三等分尺规作图中的部分特殊角和任意角三等分尺规作图来验证角三等分确实有解。 一. 用尺规作图将30°角三等分(一) 以O点为圆心,以任意长为半径画弧,在弧上任取一点为D,连接OD,在弧上作OD=DE,连接OE,∠EOD=60°,作∠COE=∠EOA=∠AOH=∠HOB=∠BOD=∠DOK=15°,∠AOB=∠α=30°,将∠α=30°角三等分。连接CK交OA线上G点,连接BG並延长交OC线上P点,连接AP交CK线上F点,连接BC交OH线上H1点,连接BF交OH线上b2点,连接GH1、Gb2、AH1、 AB、AC,ABGC为菱形,H1G=AH1=H1B,则∠H1BG=∠H1GB=1/2∠α=15°,∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=1/3×1/2∠α=5°,证明省略,∠AOm=∠mON=∠NOB=1/3∠α=1/3∠AOB=∠a1Ga3=10°,即将30°角三等分。该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。图号和页号是3-1-15 , 15。应该注意的是如果∠α大于或等于60°时,必须将大于或等于60°的角缩小偶数倍的角小于60°后才能进行角三等分。如果60°≤∠α<120°时,∠α缩小两倍,如果120°≤∠α<240°时,∠α缩小四倍。值得注意的是角的所在区域相同,角的尺规作图方式也应相同。∠α缩小偶数倍的角已被分成三等分的角扩大同样偶数倍后的角才是∠α被分成三等分的角,∠α是否需要缩小和缩小多少偶数倍可用圆的半径来确定。 一. 用尺规作图将60°角三等分(二) 以O点为圆心,以任意长为半径画弧,在弧上任取一点为A,连接OA ,在弧上作AB=OA,连接OB, ∠AOB=∠A1OA4=60°=∠α,∠α应该缩小两倍方可以进行角三等分。作∠CO A=∠AOE=∠EOH=∠HOD=∠DOB=∠BOK=15°=1/4∠α,将∠AOB=∠α=60°角三等分。连接CK交OE线上G点,连接DG並延长交OC线上P点,连接EP交CK 线上F点,连接CD交OH线上H1点,连接DF交OH线上b2点,连接GH1、Gb2、EH1、 ED、EC, CEDG为菱形,H1G=H1E=H1D, ∠H1DG=∠H1GD=1/4∠α=15°,则∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=∠a4Ga6=1/3×1/2×1/2∠α=5°,证明省略,∠A1OA2=∠A2OA3=∠A3OA4=1/3∠A1OA4=1/3∠AOB=∠a1Ga6=1/3∠α=20°.即把∠α=60°角三等分。该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。图号和页号是3-2-1 ,61。 一. 用尺规作图将120°角三等分(三) 用尺规作图将120°角三等分上次已作过了,这里就不重复了。 二. 用尺规作图将任意角三等分(一) ∠α为任意一个角,用尺规作图将∠α角三等分,以∠α角顶点O为圆心,以任意长为半径画弧交∠α两边分别是A点和B点,即∠α=∠AOB=∠A1OA4。用半径OA来确定∠α是否需要缩小和应该缩小多少偶数倍,而120°<∠α<240°,∠α应该缩小四倍。所以该角三等分尺规作图方式与120°角三等分尺规作图方式相同,只是角的大小之别。作∠AOE=∠EOC=∠Com=∠moH=∠HON=∠NOD=∠DOK=∠KOB=1/8∠α=1/8∠AOB,将∠AOB=∠α角三等分。连接EK交Om线上G点,连接NG並延长交OE线上P点,连接Pm交EK线上F点,连接NE交OH线上H1点,连接NF交OH线上b2点,连接GH1、Gb2、mH1、 mE、mN, mNGE为菱形,H1G=H1m=H1N,∠H1NG= ∠H1GN=1/8∠α,∠H1Gb2=∠a1Ga2=∠a2Ga3=∠a3Ga4=1/3×1/2×1/4∠α,证明省略,则∠A1OA2=∠A2OA3=∠A3OA4=∠a2Ga5=1/3∠AOB=1/3∠A1OA4 =1/3∠α,即将∠α角三等分。该图和编号就是一本180例简易大小各不相等的角三等分尺规作图中的一张图和编号。图号和页号是3-4-51 ,171。

葫芦岛市2020年中考数学试卷(I)卷

葫芦岛市2020年中考数学试卷(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)(2017·三门峡模拟) 的倒数是() A . ﹣ B . C . D . 2. (2分) (2020七下·太原月考) 下列运算正确的是() A . a2÷a﹣5=a7 B . (-3a2)3=-9a5 C . (1-x)(1+x)=x2﹣1 D . (a-b)2=a2-b2 3. (2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=() A . 6 B . 4 C . 3 D . 2 4. (2分) (2015八上·海淀期末) 使分式有意义的x的取值范围是() A . x≠3 B . x>3 C . x<3 D . x=3 5. (2分) (2018八上·下城期末) 已知3a>﹣6b ,则下列不等式一定成立的是() A . a+1>﹣2b﹣1 B . ﹣a<b C . 3a+6b<0

D . >﹣2 6. (2分)如图,在△ABC中,AB=AC,D为BC上一点,连接AD,点E在AD上,过点E作EM⊥AB,EN⊥AC,垂足分别为M,N.下面四个结论: ①如果AD⊥BC,那么EM=EN;②如果EM=EN,那么∠BAD=∠CAD; ③如果EM=EN,那么AM=AN;④如果EM=EN,那么∠AEM=∠AEN. 其中正确有() A . 1个 B . 2个 C . 3个 D . 4个 7. (2分) (2017八下·东城期中) 已知一个的两边长分别为和,则第三边长的平方是(). A . B . C . D . 或 8. (2分) (2020八上·张店期末) 已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为() A . y=1.5x+3 B . y=1.5x-3 C . y=-1.5x+3 D . y=-1.5x-3 二、填空题 (共10题;共11分) 9. (1分)(2017·建昌模拟) 某地连续九天的最高气温统计如下表: 最高气温(℃)22232425 天数1224 则这组数据的中位数与众数分别________. 10. (1分)(2020·连云港) “我的连云港” 是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1600000”用科学记数法表示为________.

尺规三等分任意角画法和证明

〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉 (1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。 (2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。 (3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。 (4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。 (5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。

(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。 (7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。 (8)在圆心角AOB中,依据圆心角、弧、弦的关系定理: 因为:小圆心角AOH对应AH弧, 小圆心角HOM对应HM弧, 小圆心角MOB对应MB弧, AH弧=HM弧=MB弧=1/3AB弧, 所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1], 所以,任意角AOB被尺规三等分了。 博客地址:Htttp://https://www.wendangku.net/doc/7f7643001.html,/u/2530018671,我解开了《尺规三等分任意角》这道难题,我把画法和证明发在我的微博上,敬请广大《尺规三等分任意角》的爱好者批评指正,我的,邮箱:xbm66828@https://www.wendangku.net/doc/7f7643001.html,。关注我的微薄! .

相关文档