文档库 最新最全的文档下载
当前位置:文档库 › 太阳能电池的测定原理

太阳能电池的测定原理

第五章太阳能电池的测定

太阳能电池的输出特性除了与所用

的光的辐照强度有关外,还与使用时的光

源种类、温度以及外接电路等因素有关。

本章将要介绍太阳能电池在使用和测试时

的光照、温度等特性。

在介绍本章内容之前,我们先来复习一下

光强的概念。

人们一般用辐射通量来表示光强,指的是单位

时间里通过单位面积的能量,单位是W/cm2。

另外,由于人的眼睛只对可见光有视觉,所

以也有用光能与人的视觉灵敏度结合起来表示光强

的,也即用在单位时间里入射的可见光的量对人的

视觉所产生的亮度来表示,可见光的量叫光通量,单位用流明。在受光照的面上,单位面积的光通量

叫照度,单位用勒克司表示。

因此,在太阳能电池的应用中,光强一般用

W/cm2表示,但在电子产品中,有时也用lx(勒克

司)表示。

一、用于太阳能电池的光源

一般用于太阳能电池的光源在室外是太

阳光,在室内主要是荧光灯和白炽灯。

1、太阳光

我们前面言中已经介绍过:太阳是一个有炽热

气体组成的球体,其巨大的热能是由发生在球心的核聚变产生的,其中心附近温度估计可达两千万度,其

表面的温度大约为6000K。

太阳光作为光源有以下特点:

1、与室内光相比能量密度大;

在地球表面上每一平方米最大约有1KW 的光能,这相当于通常荧光灯的光强的一百多

倍。

2、能量的频谱分布很宽;

正如前面所介绍的,太阳光谱具有紫外光-可

见光-红外光这样分布很宽的光谱。

3、光照特性随时间和季节的变化大;

太阳光强度不仅在地球的各个地方不一样,

而且就是在同一个地方,随时间(例如:早上和中午和晚上)和四季的不同也有很大的差别。

在涉及到太阳光做光源时,常用到Air Mass

(AM)的概念。

AM0:表示太阳光通过的大气量为零,即为大气层

以外的太阳光。其值就是太阳常数,为

140mW/cm2。宇宙用的太阳能电池的特性,通常是

对AM0的太阳光而言的。

AM1:表示太阳在正上方、恰好是赤道上海拔为零米处正南中午时的垂直日射光。晴朗时的光强约为

100mW/cm2,该值有时被称为一个太阳。所谓太阳

的单位多半用于聚光型的太阳能电池,例如三个太

阳意味着300mW/cm2。

AM1.5和AM2:分别指天顶角为48度和60度时的太

阳光,光强是100mW/cm2和75mW/cm2。

2、荧光灯

室内最一般的照明光源是荧光灯,其特点是大部

分的辐射能量分布在波长400-700纳米的可见光范围。

3、标准光源

如果能够得到与标准太阳光谱一致的

并且光照强度又可以任意改变的人工光源

当然是最理想的太阳能电池的测试光源,

但是目前而言还是很困难的,只能在某些

方面满足要求。

现在的标准照明电源主要采用Xe灯光

源以及充气钨灯泡(A光源)等。其余的所

谓B、C、D光源都是由A光源加上不同的光

学滤光片组合而成,从而改变了色温度。

Xe灯作为标准光源有以下特征:

1、色温度为6000K,与太阳表面温度(5762K)非

常接近;

2、亮度高,用适当的光学装置就可以得到平行

性很好的光束;

但是,Xe灯也有不足之处,主要是在近红外区域(800-1000nm)存在着较强的发光线,必须要

进行补正。

下图是Xe灯的分光光谱,可以看出在近红外

区域的强发光线并随灯丝电流的增加而变强。

上图是补正后的标准光源与AM1.5太阳光谱的比较。

这是各种光源,包括钨灯A光源的辐射光谱的比较。

二、太阳能电池的光谱特性和温度特性

1、光谱特性的意义

太阳能电池并不能把任何一种光都同

样地转换成电。例如:通常红光转变为电的

比例与蓝光转变为电的比例是不同的。

由于光的颜色(波长)不同,转变为

电的比例也不同,这种特性称为光谱特性。

光谱特性通常用收集效率来表示;所谓收

集效率就是用百分数(%)来表示一单位的光

(一个光子)入射到太阳能电池上,产生多少

电子(和空穴)。一般而言,一个光子产生的

电子(和空穴)数目是小于1的。

光谱特性的测量是用一定强度的单色光照

射太阳能电池,测量此时电池的短路电流,然

后依次改变单色光的波长,再重复测量以得到

在各个波长下的短路电流,即反映了电池的光

谱特性。

2、各类太阳能电池的光谱特性

单晶硅太阳能电池的光谱特性:

单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p型单晶硅为衬底,其

上扩散n型杂质的太阳能电池与n型单晶硅为衬底的

太阳能电池相比,其光谱特性的峰值更偏向左边

(短波长一方)。另外,对于前面介绍过的紫外光

太阳能电池,它对从蓝到紫色的短波长(波长小于

0.5 μm)的光有较高的灵敏度,但其制法复杂,成本

高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特

性。

太阳能EL检测仪是如何实现电池片缺陷检测的

太阳能EL检测仪是如何实现电池片缺陷检测的? EL检测仪,又称场致发光测试,是跟据硅材料的电致发光原理对组件进行缺陷检测及生产工艺监控的专用测试设备。利用红外测试方式对电池片组件进行测试,达到EL成像模式,从而可以查看是否有电池片组件内部有电池片破裂、隐裂、黑心片、烧结断栅严重、虚焊、脱焊等情况再进入下道工序,因为通电发的光与PN结中离子浓度有很大的关系,也因此可以根据EL的电脑反映出来的图像来判断硅片内部的是否异常。从而保证太阳能电池组件的质量。 然而硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低以及电池组件发电效率。太阳能电池片的是否有缺陷需要通过EL缺陷检测仪来判断,这样一道检测和分选的工序可以大大减少市面上不良太阳能电池片的流通和销售,从而较小层面的降低组件功率受损。因此对太阳能电池硅片质量检测在生产和实验中显得尤为重要。 我们日常所能用得到的太阳能电池硅片有单晶硅片和多晶硅片,硅片在生产过程中由于制作条件的随机性,生产出来的电池性能不尽相同或多或少地存在一些缺陷。多晶硅片常见的缺陷有边缘不纯、位错缺陷,单晶硅片常见的缺陷有漩涡缺陷。硅片缺陷的存在会极大地降低电池片的发电效率,减少电池组件的使用寿命,甚至影响光伏发电系统的稳定性。为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,从而生产出质量合格的电池组件。 日常实验和应用中,我们较常用的电池硅片缺陷检测就是采用EL缺陷检测仪。EL缺陷检测仪通过1-1.5倍Isc的电流后硅片会发出1000-1100nm的红外光对太阳能电池硅片进行缺陷检测,那么太阳能电池硅片会有哪几种缺陷情况存在呢?跟着小编一起往下看: 缺陷种类一:黑心片 通过EL照片反映出的黑心片主要形成原因是该区域没有1150红外光发出,故导致红外相片中反映出黑心片的效果图。这种黑心片的形成是由于其中心部位的电阻率偏高。和它硅衬底少数载流子浓度有关。 缺陷种类二:黑团片 在生产过程中,由于硅片厂家一再在强调缩短晶体定向凝固时间,熔体潜热释放与热场温度梯度失配,晶体生长速率加快,过大的热应力导致硅片内部位错缺陷。 缺陷种类三:短路黑片(非短路黑片) 组件单串焊接过程中造成的短路;组件层压前,混入了低效电池片造成的后果形成的短路黑片;而边缘发亮的黑片我们称之为非短路黑片,它主要是由于硅片使用上错用N型片,造成PN结反,短路的电池片不能对外提供功率,输出功率和IV测试曲线也随之降低。造成整个组件功率和填充因子受影响。 缺陷种类四:断栅片

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

太阳能电池板原理

太阳能电池板原理

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。

一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。 制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下

面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理 性能及特点: 太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。) 太阳能发电原理: 太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反

射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。 太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 太阳能发电原理图如下:

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

太阳能电池测试原理

太阳能电池测试原理 太阳电池的测量与太阳辐照度测量密切相关。地面上的太阳辐照每时每刻都在变化,这一变化不仅体现在总辐照度上,而且其内在的光谱辐照度细节也在不断的变化,这给最初的太阳电池测量带来了极大的困难。由于太阳电池是光谱选择性元件,其光电灵敏度随太阳光谱分布变化而变化,在总辐照度相同而光谱辐照度不同的光源下,太阳电池的电性能输出会有很大的不同。为了实现太阳电池测量量值的统一,国际电工委员会首先对标准太阳光谱辐照度进行了规定。所有地面用太阳电池的计量标准条件是采用AM1.5标准太阳光谱分布。 太阳电池的主要技术参数是太阳电池的光谱响应,短路电流和开路电压以及太阳电池的光电转换效率。作为太阳电池计量项目,通常进行如下两方面内容的测试工作:标准太阳电池在标准太阳光谱条件下的短路电流标定和在太阳模拟器下测量太阳电池的伏-安特性测量,进而计算出标准太阳光谱条件下太阳电池的光电转换效率。由于无法得到与标准AM1.5太阳光谱分布相一致的人工模拟光源,因此无法直接测量出太阳电池在标准太阳辐照条件下的短路电流。 太阳电池的I-V特性测量方法是,首先采用与被测太阳电池光谱响应相似的标准太阳电池来设定太阳模拟器的标准测试条件下的辐 照度,然后在太阳模拟器下测量被测太阳电池的I-V特性曲线。由于被测太阳电池与标准太阳电池的光谱响应相似,因此这种替代测量方

法可以克服掉由于太阳模拟器的光谱分布与标准AM1.5太阳光谱分布不匹配造成的光谱失配误差。 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars. The furthest distance in the world Is not between life and death But when I stand in front of you Yet you don't know that I love you.

太阳能电池板原理(DOC)

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。 一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

太阳能电池的工作原理

太阳电池吸收太阳光就能产生一般电池的功能。但是和传统的电池不一样,传统电池的输出电压和最大输出功率是固定的,而太阳电池的输出电压、电流,功率则是和光照条件及负载的工作点关。正因如此,要应用太阳电池来产生电力,必须了解太阳电池的电流-电压关系,及工作原理。 太阳光的频谱照度: 太阳电池的能量来源是太阳光,因此入射太阳光的强度(intensity)与频谱 (spectrum)就决定了太阳电池输出的电流与电压。我们知道,物体置放于于阳光下,其接受太阳光有二种形式,一为直接(direct)接受阳光,另一为经过地表其它物体散射后的散射(diffuse)阳光。一般情况下,直接入射光约占太阳电池接受光的80%。因此,我们下面的讨论也以直接着实阳光为主。 太阳光的强度与频谱,可以用频谱照度(spectrum irradiance)来表达,也就是单位面积单位波长的光照功率(W/㎡um)。而太阳光的强度(W/㎡),则是频谱照度的所有波长之总和。太阳光的频谱照度则和测量的位置与太阳相对于地表的角度有关,这是因为太阳光到达地表前,会经过大气层的吸收与散射。位置与角度这二项因素,一般就用所谓的空气质量(air mass, AM)来表示。对太阳光照度而言,AMO是指在外太空中,太阳正射的情况,其光强度约为1353 W/㎡,约等同于温度5800K的黑体辐射产生的光源。AMI是指在地表上,太阳正射的情况,光强度约为925 W/m2〇 AMI.5足指在地表上,太阳以45度角入射的情况,光强度约为844 W/㎡。一般也使用AM 1.5来代表地表上太阳光的平均照度。 太阳电池的电路模型: 一个太阳电池没有光照时,它的特性就是一个p-n结二极管。而一个理想的二极管其电流-电压关系可表为 其中I代表电流,V代表电压,Is是饱和电流,和VT=KBT/q0, 其中KB代表BoItzmann常数,q0是单位电量,T是温度。在室温下,VT=0.026v。需注意的是,P-n二极管电流的方向是定义在器件内从P型流向n型,而电压的正负值,则是定义为P 型端电势减去n型端电势。因此若遵循此定义,太阳电池工作时,其电压值为正,电流值为负,I-V曲线在第四象限。这里必须提醒读者的是,所谓的理想二极管是建立在许多物理条件上,而'实际的二极管自然会有一些非理想(nonideal)的因素影响器件的电流-电压关系,例如产生-复合电流,这里我们不多做讨论。 当太阳电池受到光照时,p-n二极管内就会有光电流。因为p-n结的内建电场方向是从n型指向p型,光子被吸收产生的电子-空穴对,电子会往n型端跑,而空穴会往p型端跑,则电子和空穴二者形成的光电流会由n型流到p 型。一般二极管的正电流方向是定义为由p型流到n型。这样,相对于理想二极管,太阳电池光照时产生的光电流乃一负向电流。而太阳电池的电流-电压关系就是理想二极管加上一个负向的光电流IL,其大小为: 也就是说,没有光照的情况,IL=0,太阳电池就是一个普通的二极管。当太阳电池短路时,也就是V=0,其短路电流则为Isc=-IL.也就是说当太阳电池短路,短路电流就是入射光产生光电流。若太阳电池开路,也就是你I=0,其开路电压则为:

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能电池特性及应用实验仪实验指导说明书

太阳能电池应用实验仪实验指导及操作说明书

太阳能电池应用实验仪 电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年的能量消费。可以说,太阳能是真正取之不尽,用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为最理想的能源。从太阳能获得电力,需通过太阳能电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净;③不受资源分布地域的限制;④可在用电处就近发电;⑤能源质量高;⑥获取能源花费的时间短。要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低成本;二是要实现太阳能发电同现在的电网联网。 太阳能发电虽受昼夜、晴雨、季节的影响,但可以分散地进行,所以它适合于各家各户分散进行发电,而且要联接到供电网络上。应用举例:1.光伏并网发电。其应用范围十分广阔,覆盖着从几瓦、几十瓦的小型便携式电源直到几兆瓦的并网发电系统,同时在太阳能照明以及通信系统、水文观测系统、气象和地震台站等中得到了广泛的应用。2.太阳能路灯3. 太阳能电话。巴黎伏德瓦特公司制作的太阳能收费公用电话,耗电量极低,只要在阳光下充电几小时,便足够使用10多天。4. 太阳能冰箱。印度研制出一种仓库用的大型太阳能冰箱,上部装的抛物线镜面将阳光集中在半导体网孔上,把光转换成电流,箱内温度保持在-2℃,可冷藏500公斤食品,每天还可制出25公斤冰来。5. 太阳能空调器。日本夏普电器公司制造的这种空调装置,当天气晴朗时,全部动力都由阳光供给,多云或阴天时才使用一般电源。期间的转换由控制系统自动完成,用它可使一间18平方米的居室室温保持在20℃左右,并较一般空调器节约电费60%以上。6. 太阳能电视机。芬兰研制的太阳能电视机只要白天把半导体硅光电池转换器放在有阳光的窗台上,晚上不需电源便可观看电视。转换器贮存的电能,可供工作电压为12伏的电视机使用3至4小时。7. 太阳能照相机。日本制作的世界上第一架太阳能照相机,重量仅有475克,机内装有先进的太阳能电池系统,其蓄电池可连续使用4年。 实验目的 1、在熟悉太阳能电池基本特性的基础上,学习并掌握太阳能电池的应用原理。 2、了解并掌握太阳能发电系统的组成及工程应用方法。 实验内容 1、太阳能电池板输出伏安特性测试。 2、太阳能电池带载应用实验。 3、太阳能电池充电储能应用实验。 4、太阳能电池实时输出应用实验。 5、太阳能电池电网应用实验。 实验仪器 实验装置如下图1所示:有3部分组成:光源、实验仪和测试仪组成。

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者 A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高

太阳能电池的原理及制作(精)

太阳能电池的原理及制作 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能 源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光 电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩 目的项目之一。 制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光 电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。 一、硅太阳能电池 1.硅太阳能电池工作原理与结构 太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。 当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。

同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N (negative)型半导体。黄色的为磷原子核,红色的为多余的电子。如下图。 N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。 当P型和N型半导体结合在一起时,在两种半导 体的交界面区域里会形成一个特殊的薄层),界面的P型 一侧带负电,N型一侧带正电。这是由于P型半导体多 空穴,N型半导体多自由电子,出现了浓度差。N区的 电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。 当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)

太阳能电池的基本原理

太阳能电池的基本原理 光-电直接转化是目前将太阳能转化为电能的最佳途径,它是将太阳辐射的光能直接转化为电能,实现这种转化的装置称为太阳能电池。太阳能电池具有清洁性和灵活性等优点,它可大到百万千瓦的中型电站,也可小到只供一家之需的电池组,这是其他电源很难做到的。本文举例介绍两类太阳能电池的基本结构及原理:无机硅太阳能电池和有机聚合物双层异质结太阳能电池。 一、硅太阳能电池 硅太阳能电池的基本结构如图1所示,它的核心结构是N型硅/P型硅构成的活性层。通过特殊工艺向硅晶体中掺入少量的三价硼(一般107个原子·cm-3~1019个原子·cm-3)就可以构成P(positive)型硅。未掺杂的硅晶体中,每个硅原子通过共价键与周围4个硅原子相连。掺入少量硼后,硼原子取代某些硅原子的位置,并且在这些硅原子的位置上也与周围4个硅原子形成共价键。因为硼原子只有3个价电子,与周围4个硅原子成键时缺少1个电子,它需要从硅晶体中获取1个电子才能形成稳定结构。结果,硼原子变成负离子,硅晶体中形成空穴(空穴带一个单位的正电荷)。如果向硅晶体中掺入少量五价磷或者砷就构成了N(negative)型硅,例如掺入磷(107个原子·cm-3~1019个原子·cm-3)。掺入的磷原子同样取代硅原子的位置,并与周围的4个硅原子形成共价键。因为磷原子有5个价电子,成键后剩下1个价电子,这个电子受到的束缚力比共价键上的电子小得多,很容易脱离磷原子,成为自由电子,结果该磷原子成为正离子。需要说明的是,P型和N型硅都是电中性的。 当把P型硅与N型硅通过一定方式结合在一起时,发生如图2所示的PN结形成过程。在N区(N型硅一侧)与P区(P型硅一侧)的交界面附近,N区的自由电子较多空穴较少,P区则是空穴较多自由电子较少,这样在P区和N区之间出现空穴和自由电子的浓度差。浓度差导致空穴从P区向N区扩散,自由电子从N区向P区扩散,二者在界面附近复合。P区界面附近带正电荷的空穴离开后,留下带负电荷的硼,因此形成1个负电荷区。同理,在N区界面附近出现1个正电荷区。通常把交界面附近的这种正、负电荷区域叫做空间电荷区。空间电荷区中的正、负电荷产生1个由N区指向P区的内建电场。在内建电场的作用下,空穴和电子发生漂移,方向与它们各自的扩散方向相反,即电子从P区漂移到N 区,空穴从N区漂移到P区。显然,内建电场同时又起着阻碍电子和空穴继续扩散的作用。随着扩散的进行,空间电荷逐渐增多,内建电场逐渐增强,空穴和电子的漂移也逐渐增强,但空穴和电子的扩散却逐渐变弱。无外界影响时,空穴和电子的扩散和漂移最终达到动态平衡。此时,空间电荷的数量一定,空间电荷区不再扩展,内建电场的大小就确定下来。 当具有一定能量的光子入射到PN结表面时,光子在硅表面及体内激发产生大量的电子-空穴对。由于入射光的强度因材料的吸收而不断衰减,因而沿着光照方向,材料内部电子-空穴对的浓度逐渐降低,这导致电子–空穴对向内部扩散。当电子-空穴对扩散到PN结边界时,在内建电场的作用下,空穴、电子被分别

相关文档