文档库 最新最全的文档下载
当前位置:文档库 › 道路照明电缆截面优化计算

道路照明电缆截面优化计算

道路照明电缆截面优化计算
道路照明电缆截面优化计算

道路照明电缆截面的优化计算

摘要本文给出了计算道路照明电缆截面的几种方法,具有较强的理论性和实用性,对设计工作有一定的指导意义。

关键词电压降电缆阻抗路灯

------------------------------------------------------------------------------

1.引言:

道路照明是大型厂矿电气设计中的一项内容,在市政工程设计中更是一项重要的内容。《城市道路照明设计标准 cjj 45-91》第5.1.4条中明文规定,低压照明线路的末端电压不应低于额定电压的90%或不应低于始端电压的95%。在以往多年的设计中,许多设计人员在选择电缆时都是从一而终(根据路灯的数量算出总的计算电流,然后查表得出满足电压降的电缆最小截面),这样的算法(假设所有的路灯集中在线路的末端)没有考虑实际情况(路灯是在线路上均匀分布的),会造成很大的浪费。如果能有一种简便而且准确的计算方法,使得电缆的截面在满足电压降的前提下大为减小,可以节省大量的投资,下面把本人总结出的几种计算方法奉献给大家,供各位同行参考。

2.线路电压损失和阻抗的计算公式

三相平衡负荷线路电压损失的计算

单相交流荷线路电压损失的计算

式中uex------额定线电压(kv)

高压电缆截面选择计算书

技术资料 电缆截面选择计算 计算:黄永青 2005年7月28日 1.计算条件 A.环境温度:40℃。 B.敷设方式: ●穿金属管敷设; ●金属桥架敷设; ●地沟敷设; ●穿塑料管敷设。 C.使用导线:铜导体电力电缆 ●6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 ●380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 2.1导线的载流量 1)载流量的校正 A.温度校正

K1=√(θn-θa)/(θn-θc) 式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正 国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2=0.7 3)载流量的校正系数 K=K1×K2 2.2电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表

表2 0.6/1kV PVC绝缘电力电缆载流量表 表3 0.6/1kV XLPE绝缘电力电缆载流量表

2.3短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调 ●配电线路的短路保护协调 S≥I×√t/K 式中:S:电缆截面,mm2; I:短路电流有效值(均方根值),A; t:短路电流持续作用时间,秒。 K:PVC绝缘电缆K=115;XLPE绝缘电缆K=143 ●380V电动机回路短路保护协调 电缆的允许电流大于线路短路保护熔断器熔体额定电流的40%。

电线电缆截面积怎样计算

1、常用的电线、电缆按用途分有哪些种类? 答:按用途可分为裸导线、绝缘电线、耐热电线、屏蔽电线、电力电缆、控制电缆、通信电缆、射频电缆等。 2、绝缘电线有哪几种? 答:常有的绝缘电线有以下几种:聚氯乙烯绝缘电线、聚氯乙烯绝缘软线、丁腈聚氯乙烯混合物绝缘软线、橡皮绝缘电线、农用地下直埋铝芯塑料绝缘电线、橡皮绝缘棉纱纺织软线、聚氯乙烯绝缘尼龙护套电线、电力和照明用聚氯乙烯绝缘软线等。 3、电缆桥架适合于何种场合? 答:电缆桥架适用于一般工矿企业室内外架空敷设电力电缆、控制电缆,亦可用于电信、广播电视等部门在室内外架设。 4、电缆附件有哪些? 答:常用的电附件有电缆终端接线盒、电缆中间接线盒、连接管及接线端子、钢板接线槽、电缆桥架等。 5、什么叫电缆中间接头? 答:连接电缆与电缆的导体、绝缘屏蔽层和保护层,以使电缆线路连接的装置,称为电缆中间接头。 6、什么叫电气主接线? 答:电气主接线是发电厂、变电所中主要电气设备和母线的连接方式,包括主母线和厂用电系统按一定的功能要求的连接方式。 7、在选择电力电缆的截面时,应遵照哪些规定? 答:电力电缆的选择应遵照以下原则: (1)电缆的额定电压要大于或等于安装点供电系统的额定电压; (2)电缆持续容许电流应等于或大于供电负载的最大持续电流; (3)线芯截面要满足供电系统短路时的稳定性的要求; (4)根据电缆长度验算电压降是否符合要求; (5)线路末端的最小短路电流应能使保护装置可靠的动作。 8、交联聚乙烯电缆和油纸电缆比较有哪些优点? 答:(1)易安装,因为它允许最小弯曲半径小、且重量轻; (2)不受线路落差限制; (3)热性能好,允许工作温度高、传输容量大; (4)电缆附件简单,均为干式结构; (5)运行维护简单,无漏油问题; (6)价格较低; (7)可靠性高、故障率低; (8)制造工序少、工艺简单,经济效益显著。 9、固定交流单芯电缆的夹具有什么要求?为什么?

电缆截面估算方法

电缆截面估算方法一二 先估算负荷电流 1.用途 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。 电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。一般有公式可供计算。由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀 低压380/220伏系统每千瓦的电流,安。 千瓦、电流,如何计算? 电力加倍,电热加半。① 单相千瓦,4.5安。② 单相380,电流两安半。③ 3.说明 口诀是以380/220伏三相四线系统中的三相设备为准,计算每千瓦的安数。对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明。 ①这两句口诀中,电力专指电动机。在380伏三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将”千瓦数加一倍”(乘2)就是电流,安。这电流也称电动机的额定电流。 【例1】 5.5千瓦电动机按“电力加倍”算得电流为11安。 【例2】 40千瓦水泵电动机按“电力加倍”算得电流为80安。 电热是指用电阻加热的电阻炉等。三相380伏的电热设备,每千瓦的电流为1.5安。即将“千瓦数加一半”(乘1.5)就是电流,安。 【例1】 3千瓦电加热器按“电热加半”算得电流为4.5安。 【例2】 15千瓦电阻炉按“电热加半”算得电流为23安。 这句口诀不专指电热,对于照明也适用。虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。只要三相大体平衡也可这样计算。此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即时说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。 【例1】 12千瓦的三相(平衡时)照明干线按“电热加半”算得电流为18安。 【例2】 30千伏安的整流器按“电热加半”算得电流为45安(指380伏三相交流侧)。 【例3】 320千伏安的配电变压器按“电热加半”算得电流为480安(指380/220伏低压侧)。 【例4】 100千乏的移相电容器(380伏三相)按“电热加半”算得电流为150安。 ②在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每)千瓦4.5安”。计算时,只要“将千瓦数乘4.5”就是电流,安。 同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流。 【例1】 500伏安(0.5千伏安)的行灯变压器(220伏电源侧)按“单相千瓦、4.5 安”算得电流为2.3安。 【例2】 1000瓦投光灯按“单相千瓦、4.5安”算得电流为4.5安。 对于电压更低的单相,口诀中没有提到。可以取220伏为标准,看电压降低多少,电流就反过来增大多少。比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6*4.5=27安。比如36伏、60瓦的行灯每只电流为0.06*27=1.6安,5只便共有8安。 ③在380/220伏三相四线系统中,单相设备的两条线都是接到相线上的,习惯上称为单相380伏用电设备

电力电缆截面选择

电力电缆截面的选择 电力电缆截面 1 电力电缆缆芯截面选择的基本要求。 1.1 最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。持续工作回路的缆芯工作温度,应符合附录A的规定。 1.2 最大短路电流作用时间产生的热效应,应满足热稳定条件。对非熔断器保护的回路,满足热稳定条件可按短路电流作用下缆芯温度不超过附录A所列允许值。 1.3 连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。 1.4 较长距离的大电流回路或35kV以上高压电缆,当符合上述条款时,宜选择经济截面,可按“年费用支出最小”原则。 1.5 铝芯电缆截面,不宜小于4。 1.6 水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。 2 对10kV及以下常用电缆按持续工作电流确定允许最小缆芯截面时,宜满足附录B电缆允许持续载流量(建议性基础值)、以及由附录C按下列使用条件差异影响计入校正系数所确定的允许载流量。 (1)环境温度差异。 (2)直埋敷设时土壤热阻系数差异。 (3)电缆多根并列的影响。 (4)户外架空敷设无遮阳时的日照影响。

3 不属于本规范第2条规定的其他情况下,电缆按持续工作电流确定允许最小缆芯截面时,应经计算或测试验证,且计算内容或参数选择应符合下列规定: (1)中频供电回路使用非同轴电缆,应计入非工频情况下集肤效应和邻近效应增大损耗发热的影响。 (2)单芯高压电缆以交叉互联接地当单元系统中三个区段不等长时,应计入金属护层的附加损耗发热影响。 (3)敷设于塑料保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。 (4)敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。 (5)施加在电缆上的防火涂料、包带等覆盖层厚度大于1.50mm时,应计入其热阻影响。 (6)沟内电缆埋砂且无经常性水份补充时,应按砂质情况选取大于2.0℃·m/W 的热阻系数计入对电缆热阻增大的影响。 4 缆芯工作温度大于70℃的电缆,计算持续允许载流量时,尚应符合下列规定: (1)数量较多的该类电缆敷设于未装机械通风的隧道、竖井时,应计入对环境温升的影响。 (2)电缆直埋敷设在干燥或潮湿土壤中,除实施换土处理等能避免水份迁移的情况外,土壤热阻系数宜选取不小于2.0℃·m/W。 5 确定电缆持续允许载流量的环境温度,应按使用地区的气象温度多年平均值,并计入实际环境的温升影响。宜符合表5的规定: 电缆持续允许载流量的环境温度确定(℃)表5

电缆截面与电流对照表

电缆截面载流量对照表,初学者参考! 电线电缆截流量的速算法 在供配电系统中,电线电缆的作用是传输电流,联络供电点(变电所或配电箱)与用电设备之间的桥梁.正确选择电线电缆是保证负载可靠运行的重要环节.若选择电线电缆的截面积过小而负荷电流超载运行时,则会引起电线电缆表面温升加快,使绝缘层过热,导致事故的发生.若选择电线电缆的截面积过大,则会造成浪费,使投资增加. 电线电缆的栽流量取决于本身的构造形式,周围环境条件和敷设方式.电线电缆从材质上分为铜芯线和铝芯线,从绝缘上分为橡皮绝缘,塑料绝缘,塑料护套及铠装等形式.其敷设方式有明设和暗设(穿金属管或塑料管).可见电线电缆的载流量,除自身条件外,还要随外界条件的变化而改变:当环境温度升高时,载流量要减少;暗敷设比明敷设的载流量要降低;多根共管敷设时,根数越多,载流量越小;而相同截面积的铝线要比铜线的载流量小一级,等等. 在配电设计和施工中,如何快速检验电线电缆截面积能否满足计算负荷电流的要求,采用速算法可做到心中有数,有错必纠,避免返工和事故的发生.本文介绍截面积~185mm2的电线电缆速算法. 1.速算法 速算法是以计算标称截面积的载流量为基础的.速算表达公式为 IN = K1K2K3K4αS 式中:IN ——电线电缆的速算载流量,A; S ——线缆标称截面积,mm2; α——速算电流系数,见附表,A/ mm2; K1 ——温升折算系数,环境温度为25℃时,K1为1,当超过30℃时,九折; K2 ——导线折算系数,铜线K2为1,塑料铝线九五折; K3 ——管质折算系数,穿钢管K3为1,穿塑料管八五折.因穿塑料管后,散热差,故需打折; K4 ——穿线共管折算系数,明敷设K4 为1,穿2,3根七五折,4根共管为六折. 截面积S(mm2) 185,150 120,95 70 50 35 25 16 10 6 4 电流系数α(A/ mm2) 3 4 5 6 7 8 9 10 14 18 2.举例 [例1]已知橡皮绝缘铜线50 mm2;架空进户,环境温度为25℃,求其载流量.若改用塑料铝线时,载流量又为多少解:(1)橡皮绝缘铜线:α= ,K1=K2=K3=K4 =1.则 IN = × 50 =225(A) 查手册,橡皮绝缘铜线的载流量为230A. (2)塑料铝线:若改用塑料铝线,K2 = ,其计算公式为

电线电缆截面和重量计算方法

电线电缆截面和重量计算方法 1.圆单线的截面和重量计算: (1)单一材料的圆单线: 截面 F=0.25π*d12 (mm2) 重量 W1=F*r=0.25π*d12*r (kg/km) W1铜=6.982 d12 (kg/km) W1铝=2.121 d12 (kg/km) W1钢=6.126 d12 (kg/km) F—圆单线截面积 mm2 W1 --导线重量 kg/km d1—圆单线直径 mm r—所用材料比重 g/cm3 (2)双金属线: 1)重量系数法: W2=W1*K W2锡=W1铜*K=6.982d12 *K 2)综合比重法: W2=0.25π*d12*r2 *(r-r1)/(r2-r1) W2—镀层材料重量 kg/km K --镀层的重量系数见表1 d2—镀层单线的直径 mm r –有镀层材料的比 重 g/cm3 r1—内层材料的比重 g/cm3 r2—镀层材料的比 重 g/cm3 表1.

2.型线的截面和重量计算 1)裸扁线的截面和重量计算 (1) 截面 F=a*b - f=a*b-[(2R)2-πR2] = a*b - 0.358 R2 (mm2) (2) 周长 C=2(a+b) - L=2(a+b)-(8R-2πR) =2(a+b) - 1.72R (mm) (3) 重量 W1=F*r (kg/km) a—扁线厚度 mm b—扁线宽度 mm R—扁线的圆角半径 mm r—方角一圆角截面的差数 mm2 L—方欠与圆角周长的差数 mm F—扁线截面积 mm2 C—扁线的周长 mm r—所用材料比重 g/cm3 2)双沟形电车线截面和重量计算 双沟形是车线截面可用作图法分块计算,然后相加而得,或使用求积仪测得。但在计算重量时可用标称截面计算。 (1) 铜电车线 W=F*8.89 (kg/km) F—标称截面 mm2 (2) 铝合金电车线 W=F*r (kg/km) r—铝合金比重 g/cm3 (3) 钢铝电车线 W=W铜+W铝=F钢*r钢+F铝*r铝 (kg/km) (参照电线电缆手册第二册709页表12—5) 3)高压电缆用型线芯重量计算 (1) 空心绞合线芯直径D D=D0+2(tz+t弓) (mm)

电缆载流量的计算方法

电缆载流量计算——根据电流选电缆 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、 1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、 185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下: 1~10 16、25 35、50 70、95 120以上

﹀﹀﹀﹀﹀ 五倍四倍三倍二倍半二倍 现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的载流量是截面数值的二倍。截面为25与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除10以下及100以上之外,中间的导线截面是每两种规格属同一种倍数。 例如铝芯绝缘线,环境温度为不大于25℃时的载流量的计算: 当截面为6平方毫米时,算得载流量为30安; 当截面为150平方毫米时,算得载流量为300安; 当截面为70平方毫米时,算得载流量为175安; 从上面的排列还可以看出:倍数随截面的增大而减小,在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,它按口诀算为100安,但按手册为97安;而35则相反,按口诀算为105安,但查表为117安。不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可略为超过105安便更准确了。同样,2.5平方毫米的导线位置在五倍的始端,实际便不止五倍(最大可达到20安以上),不过为了减少导线内的电能损耗,通常电流都不用到这么大,手册中一般只标12安。 (2)后面三句口诀便是对条件改变的处理。“穿管、温度,八、九

电缆截面图

'. 金世纪电缆集团有限公司 煤矿用额定电压1.8/3kV及以下 聚氯乙烯绝缘电力电缆结构示意图 执行标准MT818.12-2009 图号JSJ-10 MVV22-0.6/1KV、MVV22-1.8/3KV(3芯)MVV-0.6/1KV、MVV-1.8/3KV(3芯) 1导体;2绝缘; 3填充;4垫层或绕包带;5铠装层; 6护套。 MVV-0.6/1KV、MVV-1.8/3KV(4芯、3+1芯) MVV22-0.6/1KV、MVV22-1.8/3KV(4芯、3+1芯) 1-导体;2-绝缘;3-包带;4-外护套 1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套 设计:审核:批准:日期:年月日

'. 金世纪电缆集团有限公司 煤矿用额定电压10kV及以下 交联聚乙烯绝缘电力电缆结构示意图 执行标准MT818.13-2009 图号JSJ-11 MYJV-0.6/1、MYJV-1.8/3 、MYJV22-0.6/1 、MYJV22-1.8/3 、MYJV32-0.6/1、MYJV32-1.8/3、MYJV42-0.6/1、MYJV42-1.8/3、MYJV-3.6/6、MYJV-6/6、MYJV-6/10、MYJV-8.7/10、MYJV22-3.6/6、MYJV22-6/6、MYJV22-6/10、MYJV22-8.7/10、MYJV32-3.6/6、MYJV32-6/6、MYJV32-6/10、MYJV32-8.7/10、MYJV42-3.6/6、MYJV42-6/6、MYJV42-6/10、MYJV42-8.7/10(3芯)1-导体;2-导体屏蔽;3-绝缘;4-绝缘屏蔽及铜带;5-填充;6-包带及内护套;7-铠装层;8-外护套 MYJV-0.6/1、MYJV-1.8/3(4芯、3+1 芯) MYJV22-1.8/3 、MYJV32-0.6/1、MYJV32-1.8/3、 1-导体;2-绝缘;3-包带;4-外护套 MYJV42-0.6/1、MYJV42-1.8/3(4芯、3+1 芯) 1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套设计:审核:批准:日期:年月日

电缆截面选择的注意事项(改).

关于电缆截面选择的注意事项 摘要:本文结合建筑电气设计的实践经验,详细探讨配电设计中对于低压电缆截面选择遇见的设计问题,并提出相应措施,以供类似工程的电气设计参考。 前言:据《低压配电设计规范》GB50054-2011第3.2.2条规定,选择导体截面,应符合1 按敷设方式及环境条件确定的导体载流量,不应小于计算电流; 2 导体应满足线路保护的要求;笔者根据自已多年工作实践中遇到的几个容易忽视的问题,谈谈以下自已的看法并对这些问题加以分析。 1、不同工作温度的电缆,电线共用电缆槽盒内敷设时导体截流量的降低系数的适用问题 实际工程中我们经常利用金属线槽作为电缆,电线的主要敷设方式,有的设计人员把低压电力电缆,电线共用金属线槽多回路成束敷设,然后把电缆、电线沿线槽敷设时初始载流量允许值乘以《民用建筑电气设计规范》JGJ 16-2008表7.4.4-1 多回路或多根多芯电缆成束敷设的校正系数,作为各回路的电缆,电线设计载流量。笔者认为这种载流量计算方法并不能符合《布线系统载流量》GB/T 16895.15-2002第523.4条“电缆束的降低系数适用于具有相同最高运行温度的绝缘导体或电缆束,含有不同允许最高运行温度的绝缘导体或电缆束,束中所有绝缘导体或电缆的载流量应根据其中允许最高运行温度最低的那根电缆的温度来选择,并用适当的电缆束降低系数来校正”这一规定。

例如BV导线或VV电缆与YJV电缆共用线槽敷设时,BV导线或VV电缆的最高运行温度为70度,而YJV电缆的最高运行温度为90度,那么YJV电缆的初始载流量应按最高运行温度70度时的载流量选取,然后再乘以“多回路或多根多芯电缆成束敷设的校正系数”。比如《建筑电气常用数据》04DX101-1图集6-6页查得YJV-4*35+1*16电缆单回路敷设在线槽内,环境温度35度时的载流量为122A,由于YJV电缆与BV或VV电缆共用线槽成电缆束敷设,所以YJV-4*35+1*16电缆载流量由04DX101-1图集6-9页查得仅为93A,即工作温度70时YJV电缆载流量仅为90度工作温度时的载流量的75%,导致了未能充分利用YJV电缆截面。 《布线系统载流量》GB/T 16895.15-2002表52-B2注释1)“表52-C1至52-C4的敷设方法B1和B2给出的载流量值仅指单回路而言,当在电缆槽盒内敷设多回路时,不论槽盒内有无隔板,表52-E1中的电缆束降低系数都是适用的”。由此条文可以得知,当YJV电缆与BV电线、VV电缆共用线槽敷设时,不论线槽内有无隔板分隔电缆与电线回路,YJV电缆应按允许最高运行温度70度时的载流量来选择,并用适当的电缆束降低系数来校正载流量。 2、沿电缆槽盒内敷设的电缆束含有不同导体截面的绝缘导体或 电缆时,应沿不同金属线槽敷设,以免小截面电缆过负荷 大多设计人员习惯将同一路径不同大小截面的电缆共用金属线槽成束敷设,并以电缆的初始载流量乘以“多回路或多根多芯电缆成束敷设的校正系数”,这种计算方式同样不符合《布线系

电缆截面计算公式

电缆截面计算公式 一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。 <关键点> 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2、5 mm2 BVV铜导线安全载流量的推荐值2、58A/mm2=20A4 mm2 BVV铜导线安全载流量的推荐值 48A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值 5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S=< I /(5~8)>=0、125 I ~0、2 I(mm2) S-----铜导线截面积(mm2) I-----负载电流(A) 三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种式电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI 对于日光灯负载的计算公式: P=UIcosф,其中日光灯负载的功率因数cosф=0、5。 不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0、8。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是I=P/Ucosф=6000/220*0、 8=34(A)

但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0、5。所以,上面的计算应该改写成 I=P*数/Ucosф=6000*0、5/220*0、8=17(A) 也就是说,这个家庭总的电流值为17A。则总闸空气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。 三五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表53可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如 2.5mm’导线,载流量为2.59=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即 48、 67、106、1 65、254。

常用电力电缆截面积与载流量之间的关系

常用电力电缆截面积与载流量之间的关系 截面与载流量表 载流量估算口决: 二点五以下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明:(1)以上口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数"来表示,通过心算而得。 (2)由上表可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走"说的是2.5mm2及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm2导线,载流量为2.5×9=22.5(A)。 (3)从4mm2及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五",说的是35mm2的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。 (4)从50mm2及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm2导线的载流量为截面数的3倍;95、120mm2导线载流量是其截面积数的2.5倍,依次类推。 (5)“条件有变加折算,高温九折铜升级"。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。 (注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!) 1 / 1

110kV电缆选型及截面选择

1.电缆选型 绝缘材料 考虑电缆线路安全以及施工管理方便,并考虑以往的运行维护经验、电缆选用交联聚乙烯电缆。 交联聚乙烯电力电缆具有较好的电性能和物理性能,耐热性能好、软化点高、热变形小,有优异的热稳定性和老化稳定性;随着制造技术的不断完善,如采用聚乙烯高纯净化、导体屏蔽、绝缘层、绝缘屏蔽三层同时共挤、干式硬化法,加上防水的纵向防水层,护套选用了具有防水性能良好的聚乙烯护套,表面有导电石墨涂层等措施对于防止早期的电缆由于绝缘气隙、杂质、水分等产生的水树生长起了良好的作用。同时XLPE电缆可耐小半径弯曲,重量轻、安装简便、安全可靠、与充油电缆相比,其接续与终端处理也比较容易。因此安装费用也较低廉,从安全及环境保护来看,交联聚乙烯绝缘没有油料渗漏,以及防暴性能较好的优点。 因此考虑到电缆线路的安全及施工,运行维护方便,并结合以往电缆线路的运行经验,本工程电缆选用交联聚乙烯绝缘电缆,绝缘标称厚度16.5mm。 金属护套 电缆的防水构造以铅包或皱纹铝包效果最好,铅套电缆的优点是柔软,弯曲性能、密封性和耐腐蚀性好,便于敷设,也便于电缆附件的安装,适用于防水、防潮以及防腐蚀性要求较高的场合。皱纹铝包的优点是机械强度高。铝包与皱纹铝包相比较,相同截面情况下铅套的电缆外经小,耐腐蚀性好,同时铅套对施工有利,缺点是电缆单位自重较重。根据福州局已有电缆工程运行情况及本工程的特点,推存采用化学稳定性好的铅包电缆。 外护套 规程规定在潮湿、含化学腐蚀环境或易受谁浸泡的电缆,金属护套上尚应有挤塑外套,以保护金属护套免受腐蚀。目前常用的电缆挤塑外护套材料有聚乙烯(PE)或聚氯乙烯(PVC)。 聚氯乙烯耐环境应力开裂性能比聚乙烯好,且在燃烧时分解的氯气有助于阻燃,故一般多采用聚氯乙烯,但聚氯乙烯对化学腐蚀的耐受性能不及聚乙烯,

电缆截面图

电缆截面图 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

金世纪电缆集团有限公司 煤矿用额定电压3kV及以下 聚氯乙烯绝缘电力电缆结构示意图 执行标准 图号JSJ-10 1KV、3KV(3芯)1KV、3KV(3芯) 1导体;2绝缘; 3填充;4垫层或绕包带;5铠装层; 6护套。 1KV、3KV(4芯、3+1芯) 1KV、3KV(4芯、3+1芯) 1-导体;2-绝缘;3-包带;4-外护套 1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套 设计:审核:批准:日期:年月日

金世纪电缆集团有限公司 煤矿用额定电压10kV及以下 交联聚乙烯绝缘电力电缆结构示意图 执行标准 图号JSJ-11 1、3 、1 、3 、1、3、1、3、 6、MYJV-6/6、MYJV-6/10、10、6、MYJV22-6/6、MYJV22-6/10、10、6、 MYJV32-6/6、MYJV32-6/10、10、6、MYJV42-6/6、MYJV42-6/10、10(3芯)1-导体;2-导体屏蔽;3-绝缘;4-绝缘屏蔽及铜带;5-填充;6-包带及内护套;7-铠装层;8-外护套 1、3(4芯、3+1 芯) 3 、1、3、 1-导体;2-绝缘;3-包带;4-外护套 1、3(4芯、3+1 芯) 1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套 设计:审核:批准:日期:年月日

金世纪电缆集团有限公司 额定电压450/750V煤矿用塑料绝缘控制电缆 结构示意图 执行标准Q/JSJ 08-2011 图号JSJ-01 MKVV、MKYJV、MKVVR、MKYJVR MKVVP、MKYJVP、MKVVP2、MKYJVP2 1、导体 2、绝缘层 3、包带 4、护套 MKVVP3、MKYJVP3、MKVVRP、MKYJVRP 1、导体 2、绝缘层 3、包带 4、屏蔽层 5、护套 MKVV22、MKVV32、MKYJV22、MKYJV32 MKVV2-22、MKYJV2-22 1、导体 2、绝缘层 3、内衬层 4、铠装层 5、护套 1、导体 2、绝缘层

电缆截面的选择方法及计算示例

电缆截面的选择方法及计算示例 1 按长期允许载流量选择电缆截面 为了保证电缆的使用寿命,运行中的导体电缆温度应不超过规定的长期允许工作温度:聚氯乙烯绝缘电缆为70℃,交联聚乙烯绝缘电缆为90℃。根据这一原则,在选择电缆截面时,必须满足下列条件: I max ≤I 0K 式中:I max ——通过的最大连续负荷载流量(A ); I 0 ——指定条件下的长期允许载流量(A ),见附表1; K ——长期允许载流量修正系数,见附表2. 举例:某工厂主变压器容量S 为12000KVA ,若以直埋35KV 交联电缆供电,试问应选择多大电缆截面?(土壤温度最高30℃,土壤热阻系数2.5) 解:按下列计算电缆线路应通过的电流值 I= U S 3=35 312000 =198(A ) 查附表1-12得:铜芯交联电缆8.7/10KV 3×95mm 2,最大连续负荷载流量为220A ,25℃。由于敷设土壤温度最高为30℃,应进行温度修正。 查附表2-2得修正系数为0.96. I 修=220(A )×0.96=211(A ) 通过土壤温度的修正后该电缆的连续负荷载流量虽只有211(A ),仍能满足电缆线路198(A )的要求。 2 按经济电流密度选择电缆截面 国际电工委员会标准IEC287-3-2/1995提出了电缆尺寸即导体截面经济最佳化的观点:电缆导体截面的选择,不仅要考虑电缆线路的初始成本,而且要同时考虑电缆在寿命期间的电能损耗成本。因此要从经济电流密度来选择电缆截面。 (1)经济电流密度计算式:

J= 1000 ]201[2020?-???)(+m B F A θαρ (2)电缆经济电流截面计算式: S j =I max /J 式中:J ——经济电流密度(A/mm 2); S j ——经济电流截面(mm 2); B=(1+Yp+Ys )(1+λ1+λ2),可取平均值1.0014; P 20————20℃时电缆导体电阻率(Ω·mm 2/m ) 铜芯为18.4×10-9,, 铝芯为31×10-9,计算时可分别取18.4和31。 d 20————20℃时电缆导体的电阻温度系数(1/℃)。铜芯为0.00393,铝芯为0.00403. (3)10KV 及以下电力电缆按经济电流密度选择电缆截面,宜符合下列要求: ①按照工程条件、电价、电缆成本、贴现率等计算拟选用的10KV 及以下铜芯或铝PVC/XLPE 绝缘电力电缆的经济电流密度值。(详见GB 50217—2007《电力工程电缆设计规范》附录B 《10KV 及以下电力电缆经济电流截面选用方法》)。 ②对备用回路的电缆,如备用的电动机回路等,宜按正常运行小时数的一半选择电缆截面。对一些长期不使用的回路,不宜按经济电流密度选择电缆截面。 ③当电缆经济截面比按热稳定、容许电压降或持续载流量要求的截面小时,则应按热稳定、容许电压降或持续截流量较大要求的截面选择。当电缆经济截面介于电缆标称截面档次之间,可视其接近程度、选择较近一档截面,且宜偏小选取。 (4)上述计算式及要求虽然精确但比较繁杂。为方便起见,推荐下列简化的经济电流密度计算方法: 首先应知道电缆线路中年最大负荷利用时间,然后从下表中查得我国目前规定的电缆导体材料的经济电流密度,再按下式计算电缆截面。 S j = J I max 式中:I max ——最大负荷电流(A ); J ——经济电流密度(A/mm 2)。 根据计算所得的经济电流截面,通常选择不小于这个计算值并靠近这个值的电缆标称截面。

高压电缆截面选择计算书

电缆截面选择计算 1.计算条件 A.环境温度:40℃。 B.敷设方式: 穿金属管敷设; 金属桥架敷设; 地沟敷设; 穿塑料管敷设。 C.使用导线:铜导体电力电缆 6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 导线的载流量 1)载流量的校正 A.温度校正 K1=√(θn-θa)/(θn-θc)式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正

国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2= 3)载流量的校正系数 K=K1×K2 电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表 表2 1kV PVC绝缘电力电缆载流量表

3×50mm2115813×300mm2375263表3 1kV XLPE绝缘电力电缆载流量表 电缆规格 空气中 40℃(A)电缆桥架中 40℃(A) 电缆规格 空气中 40℃(A 电缆桥架 中40℃(A) 3×4mm233233×70mm2176123 3×6mm241293×95mm2213149 3×10mm257403×120mm2246172 3×16mm276533×150mm2279195 3×25mm298683×185mm2319223 3×35mm2119833×240mm2374262 3×50mm21431003×300mm2426298 短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调 配电线路的短路保护协调 S≥I×√t/K

电线及电缆截面的选择及计算要点

低压导线截面的选择,有关的文件只规定了最小截面,有的以变压器容量为依据,有的选择几种导线列表说明,在供电半径上则规定不超过0.5km。本文介绍一种简单公式作为导线选择和供电半径确定的依据,供电参考。 1低压导线截面的选择 1.1选择低压导线可用下式简单计算: S=PL/CΔU%(1) 式中P——有功功率,kW; L——输送距离,m; C——电压损失系数。 系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V供电时,铜导线为14,铝导线为8.3。 (1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。 因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。 (2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2

-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得: ΔU=U1-U n-Δδ.U n (2) 对于三相四线制用(2)式:ΔU=400-380-(-0.07×380)=46.6V,所以ΔU%=ΔU/U1×100=46.6/400×100=11.65;对于单相220V,ΔU=230-220-(-0.1×220)=32V,所以ΔU% =ΔU/U1×100=32/230×100=13.91。 1.2低压导线截面计算公式 1.2.1三相四线制:导线为铜线时, S st=PL/85×11.65=1.01PL×10-3mm2(3) 导线为铝线时, S sl=PL/50×11.65=1.72PL×10-3mm2(4) 1.2.2对于单相220V:导线为铜线时, S dt=PL/14×13.91=5.14PL×10-3mm2(5) 导线为铝线时, S dl=PL/8.3×13.91=8.66PL×10-3mm2(6) 式中下角标s、d、t、l分别表示三相、单相、铜、铝。所以只要知道了用电负荷kW和供电距离m,就可以方便地运用(3)~(6)式求出导线截面了。如果L用km,则去掉10-3。 1.5需说明的几点 1.5.1用公式计算出的截面是保证电压偏差要求的最小截面,实际选用一般是就近偏大一级。再者负荷是按集中考虑的,如果负荷分散,所求截面就留有了一定裕度。

电线及电缆截面的选择及计算

1 低压导线截面的选择 选择低压导线可用下式简单计算: S=PL/CΔU%(1) 式中P——有功功率,kW; L——输送距离,m; C——电压损失系数。 系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V 供电时,铜导线为14,铝导线为。 (1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。 因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。 (2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得: ΔU=U1-U n-Δδ.U n(2) 对于三相四线制用(2)式:ΔU=400-380-(-×380)=,所以ΔU% =ΔU/U1×100=400×100=;对于单相220V,ΔU=230-220-(-×220)=32V,所以ΔU% =ΔU/U1×100=32/230×100=。 低压导线截面计算公式 三相四线制:导线为铜线时, S st=PL/85×=×10-3mm2(3) 导线为铝线时, S sl=PL/50×=×10-3mm2(4) 对于单相220V:导线为铜线时,

电线截面电流计算公式

电线截面电流计算公式 (供参考) 导线的阻抗与其长度成正比,与其线径成反比。请在使用电源时,特别注意输入与输出导线的线材与线径问题。以防止电流过大使导线过热而造成事故。导线线径一般按如下公式计算: 铜线:S= IL / 54.4*U` 铝线:S= IL / 34*U` 式中:I——导线中通过的最大电流(A) L——导线的长度(M) U`——充许的电源降(V) S——导线的截面积(MM2) 说明: 1、U`电压降可由整个系统中所用的设备(如探测器)范围分给系统供电用的电源电压额定值综合起来考虑选用。 2、计算出来的截面积往上靠. 绝缘导线载流量估算 铝芯绝缘导线载流量与截面的倍数关系 导线截面(mm 2 ) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流是截面倍数9 8 7 6 5 4 3.5 3 2.5

载流量 (A) 9 14 23 32 48 60 90 100 123 150 210 238 300

一般情况下: 铜线每平方毫米6安培。铝线是每平方毫米5安培(仅供快速估算) 4平方的铜线:4*6=24A 6平方的铜线:6*6=36A 10平方的铜线:10*6=60A 16平方的铜线:16*6=96A 4平方的铝线:4*5=20A 6平方的铝线:6*5=30A 10平方的铝线:10*5=50A 16平方的铝线:16*5=90A

一、低压配电室的要求 1) 门应向外开,门口装防鼠板; 2) 有采光窗和通风百叶窗,百叶窗应防雨、雪、小动物进入室内; 3) 电缆沟底应有坡度和集水坑; 4) 不装盘的电缆沟应有沟盖板; 5) 盘前通道大于1.3米,盘后通道大于0.8米,并有安全护栏; 6) 一层配电室地面标高应0.5米以上。 二、配电盘的安装 1) 配电盘应为标准盘,顶有盖,前有门; 2) 配电盘外表颜色应一致,表面无划痕; 3) 配电盘母线应有色标; 4) 配电盘应垂直安装,垂直度偏差小于5o; 5) 拉、合闸或开、关柜门时,盘身应无晃动现象; 6) 配电盘上电流表、电压表等按要求装全; 7) 配电盘上个出线回路应有标示; 8) 配电盘一次母线尽可能用铜排连接,压接螺丝两侧有垫片,螺母侧有弹簧垫片,如用多股塑铜线连接,应压接铜鼻子; 9) 配电盘二次控制线应集中布线,并用塑料带及绑带包扎固定,控制电缆备用线芯在控制电缆分支处螺旋缠绕好; 10) 配电盘的互感器、电动机保护器等小件也应牢固固定好。 三、电缆的安装 1) 电缆沟安装的应先检查电缆沟的走向、宽度、深度、转弯处和各交叉跨

相关文档
相关文档 最新文档