文档库 最新最全的文档下载
当前位置:文档库 › 第3篇 风电润滑油脂及润滑系统(二)

第3篇 风电润滑油脂及润滑系统(二)

华创风机风电润滑系统温控阀维护更换操作指导书

润滑系统温控阀拆卸更换操作指导书 1.拆卸前准备: 2.确认电机处于停机状态,并关闭润滑系统与齿轮箱连接的进油口球阀。 3.准备内六角扳手1套、绸布若干、油盒一个。 一、拆卸步骤: 1.拆卸前必须确认系统处于停机状态,将润滑系统吸油管路阀门关掉, 确保吸油管路断开后,齿轮箱中的润滑油不会泻出 2.用内六角扳手打开润滑系统过滤器上的放油球阀堵头,并打开球阀, 将过滤器内的油液排出,用油盒接好流出的油,排油完毕后,关闭球 阀,并将堵头装回;

3.待油液放出后,用内六角扳手以逆时针方向旋转,拆下温控阀盖板上 的4颗内六角紧固螺钉,取下温控阀盖板(注意:在拆卸时会有部分残留在内的润滑油流出,请注意收集,防止污染机舱)。 4.依次取出温控阀、弹簧,如果温控阀被卡在阀孔里时,可借助其他工 具或用手扳动即可取出 温控阀盖板

5.用干净的绸布擦拭干净阀孔中的油污及金属颗粒物,保证阀孔的清 洁,确保下次安装温控阀不会出现卡滞现象 三、更换步骤; 1. 安装温控阀之前,检查温控阀盖板上的O型圈有无划伤裂纹和变形, 在温控阀体安装孔内沿孔壁竖直轻轻放入弹簧,并确保弹簧已紧贴阀 孔底部 2.将阀芯放置在弹簧之上,以正确方向塞入阀孔,并上下按压阀芯无卡 滞现象

3. 在温控阀盖O 型圈槽内重新放入Φ47.5×3.55 O 型圈,在温控阀盖安装螺栓两到三牙处均匀涂抹螺纹紧固胶来,并清洁干净; 4. 将温控阀盖四个螺栓安装孔对准温控阀块上四个螺栓孔,将四根螺栓旋入到底,然后对角上紧螺钉 顶杆向上

旗开得胜 5.安装完毕后,打开系统吸油管路球阀,启动润滑系统试车。

风力发电机组传动系统设计实习报告

目录 引言 (2) 一、风力发电机组简介 (2) 风力发电机原理 (2) 风力发电机组结构 (3) 二、风力发电机组传动系统 (5) 风力发电机组齿轮箱的概况 (5) 风力发电机组中的联轴器 (10) 三、风力发电机组的分类特点 (11) 垂直轴风力发电机组 (11) 水平轴风力发电机组 (12) 直驱型风力发电机 (12) 双馈式风力发电机 (12) 四、风力发电控制系统简述 (13) 风电控制系统基本功能 (13) 五、参考文献 (13)

风力发电机组传动系统设计 引言 随着科技的不断进步,社会的不断发展,能源问题将会成为未来人类必须解决的问题之一,同时可再生能源结构会成为未来能源的倾向之一。现如今风能作为一种无污染的可再生能源备受人们的关注,在一定程度上,风力发电将会成为未来最具潜力的新能源之一。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电在芬兰、丹麦等国家很流行;我国也在大力提倡。 一、风力发电机组简介 风力发电机原理 风力发电机是将风能转换为机械功的动力机械。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护

ZDRH-2000智能集中润滑系统说明书

目录 一、系统简介------------------------------------2 二、系统工作原理------------------------------3 三、系统主要部件的基本配置与技术 参数-----------------------------------------11 四、润滑系统工作制度-----------------------13 五、润滑系统操作规程-----------------------14 六、系统维护与注意事项--------------------22

一、系统简介 ZDRH-2000型智能集中润滑系统是我公司研制开发的新一代高新润滑技术产品(专利号:012402260.5),系国内首创。该润滑系统可根椐设备现场温度、环境等不同条件或设备各部位润滑要求的不同,而采用不同油脂,适应单台设备或多台设备的各种润滑要求。 润滑系统突出优点是在设备配置、工作原理、结构布置上都做了最大的改进,改变了以往以单线或双线为主的传统润滑方式,采用微电脑技术与可编程控制器相结合的方式,使设备润滑进入一个新的里程。系统中主控设备、高压电动油泵、电磁给油器、流量传感器、压力传感器等每一个部件都是经过精心研制并专为智能润滑系统所设计的。 设备采用SIEMENS S7-200系列可编程控制器作为主要控制系统,为润滑智能控制需求提供了最恰当的解决办法,可网络挂接与上位机计算机系统进行连接以实时监控,使得润滑状态一目了然;现场供油分配直接受可编程控制器的控制,供油量大小,供油循环时间的长短都由主控系统来完成;流量传感器实时检测每个润滑点的运行状态,如有故障及时报警,且能准确判断出故障点所在,便于操作工的维护与维修。操作员可根据设备各点润滑要求的不同,通过文本显示器远程调整供油参数,以适应烧结机的润滑要求。整个润滑系统的供油部分,通过公司最新研制的

干油润滑系统使用说明

宁波北仑DQ4200/4200.42堆取料机干油集中润滑系统 技术说明

目录 1系统技术参数及工作原理………………STI 2 2典型双线系统工作原理……………………STI 4 3FYK分油块…………………………………STI 6 4DRB泵………………………………………STI 8 5SSP双线分配器………………………………STI 16 6YCK-M5压差开关……………………………STI 19 1.系统技术参数及工作原理 宁波北仑DQ4200/4200.42堆取料机干油集中电动润滑系统润滑点部位包括:大车集中润滑系统和回转集中润滑系统.其余润滑系统均采用分油块润滑系统. 大车集中润滑系统原理图 回转集中润滑系统原理图 电动双线集中润滑系统:整个系统由电动干油润滑泵、双线分配器、连接管路和接头等组成。 2.典型双线系统工作原理 润滑泵开始工作后,泵不断地从贮油桶中吸入油 脂,从出油口压出油脂。泵排出的 压力油脂经液动换向阀进入主管1,送至各分配器。此 时,主管2通过XYDF型液动换向阀与回油管相连,处 图A

于卸荷状态。主管1中的油脂进入各分配器的上部进油口(图A所示),利用上部进油口处的压力油推动分配器中的所有活向下运动,并将活塞下腔的油经分配器的下出油口2,定量地送入各润滑点。当所有分配器的下出油口一次送油结束后(即所有分配器中的供油活塞下行到活塞行程的末端停止运动后),主管 1中的压力将迅速上升,当压力达到额定压力后,换 向阀换向。 换向阀换向后,润滑泵输出的压力油进入主管 2,同时主管1卸荷,各分配器的下进油口进油(图B 所示),分配器中的活塞向上运动,将活塞上腔的油 经分配器的上出油口1,定量地送入各润滑点。当所 有分配器的上出油口一次送油结束后,主管2的压力 上升,当压力达到额定压力后,换向阀换向。这样系 统就完成了一次循环,每个润滑点均得到了一次定量 的润滑油脂。 分油块示意图 3.FYK型分油块 用途及特点 分油块有结构紧凑、体积小、安装补脂方便的特点。FYK型分油块是我公司为手动集中供油而设计的一种给油装置。 FYK型分油块分为两种形式,按出油口数量分,又各有8种规格。该分油块通常与油枪或移动式加油泵车配合使用,广泛应用在港口机械、冶金设备等手动集中润滑系统中。 规格型号及技术参数 FYK-A型FYK-B型 规格型号出油口数L1 L2 重量Kg 安装螺钉规格进、出油口螺纹D FYK-A-1 1 80 — 1 GB 70-85 内六角圆柱头螺钉 M10X40 标准产品为Rc1/4 可根据用户要求定 制加工 FYK-A-2 2 110 80 1.3 FYK-A-3 3 140 110 1.7 FYK-A-4 4 170 140 2 FYK-A-5 5 200 170 2.5 图B

风力发电机机舱内部传动系统动画,直观!

风力发电机机舱内部传动系统动画,直观! ★ 风力发电机将风能转换为机械功的动力机械,将广义地说,它是一以大气为工作介质的能量利用机械。风力发电利用的是自然能源。风力发电机由机舱、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成,下面小编来详述详述风力发电机结构图,如下:机舱:机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风力发电机塔进入机舱。机舱左端是风力发电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20米, 而且被设计得很像飞机的机翼。 轴心:转子轴心附着在风力发电机的低速轴上。 低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风力发电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风力发电机被维修时。

发电机:通常被称为感应电机或异步发电机。在现代风力发电机上,最大电力输出通常为500至1500千瓦。偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风力发电机偏航。通常,在风改变其方向时,风力发电机一次只会偏转几度。 电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。 液压系统:用于重置风力发电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。 塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。

风力发电集中润滑系统(总体介绍)

您可 依赖的 技术
X

风力发电机组加装集中润滑系统的必要性
因:风力发电机受很高的机械载荷的制约,工作要求具 有绝对的可靠性,因缺乏润滑而导致的故障是可以避免 的。 所以:操作方、投资方和保险公司要求发电机具有确实 可靠的维护理念,其中包括自动润滑系统。
集中润滑系统应用于风力发电机 集中润滑系统适时、源源不断地给相关的润滑点 提供适量新鲜的润滑剂。这就是为什么只有自动 润滑系统才能为风力发电机提供可靠的润滑。
X

BEKA – wind
BEKA-wind 设计适用于各类型的风力发电机润滑; BEKA-wind 集中润滑系统的设计依风电机及其工作环境的不同而进行调整; BEKA-wind 所有的重要部件,如:轴承和调整装置都是定量精确、适时润滑; BEKA-wind 集中润滑系统可靠性高、耗油量小; BEKA-wind 集中润滑系统的部件可靠性已久经全球润滑行业的检验; BEKA 品牌在集中润滑行业已有超过80年的润滑经验。
X

风力发电机润滑方式:
单 线 润 滑 系 统
主轴承润滑
易于安装、操作和维护 使用全新的分配器UE 推荐采用单线系统,递进式系统进行润 滑.
电机部分润滑
可靠,灵活,按需要进行组合 易于监控
递 进 式 润 滑 系 统
推荐采用多线系统、单线系统和递进式系 统进行润滑.
带有堵塞监控,可靠性高
偏航部分润滑
润滑小齿轮用于润滑齿面 接触面出油,防止油飞溅 推荐采用单线系统和递进式系统对偏航轴 承进行润滑;采用带有润滑小齿轮的递进 式系统和喷射系统对偏航齿轮进行润滑.
喷 射 润 滑 系 统
使用带有高固成份的特殊润滑剂 高效,使用无接触技术 啮合时也能进行润滑 干净,润滑各类齿轮
变桨部分润滑
推荐采用单线系统和递进式系统对变桨轴 承进行润滑;采用带有润滑小齿轮的递进 式系统和喷射系统对变桨齿轮进行润滑.
X

第5章-风力发电机组机械传动系统-答案

风力发电技术与风电场工程 第五章练习题 习题答案 一、填空题 1、风力发电机组机械传动系统是指将风轮获得的空气动力以机械方式传递到发电机的整个轴系及其组成部分,由主轴、齿轮箱、联轴器、制动器和过载安全保护装置等组成。 2、传统的采用齿轮箱增速的风力发电机组传动系统形式按照主轴轴承的支撑方式,以及主轴与齿轮箱的相对位置来区分,主要有两点式、三点式、一点式和内置式四种。 3、直驱型风力发电机组的发电机分为外转子和内转子两种形式。 4、半直驱指采用比传统机组齿轮增速比较小的齿轮增速装置,使发电机的技术减少,从而缩小发电机的尺寸,便于运输和吊装。 5、主轴支撑风轮并将风轮的扭矩传递给齿轮箱,将轴向推力、气动弯矩传递给底座。 6、作用在主轴的载荷除了与风轮传来的外载荷有关外,还与风轮(主轴)的支撑形式的相对位置有关。 7、联轴器用于连接两传动轴,一般由两个半联轴节及连接件组成。 8、联轴器除了能传递所需的转矩外,还应具有补偿两轴线的相对位移或位置偏差,从而减小振动与噪声以及保护机器等性能。 9、常用的联轴器有刚性联轴器和弹性联轴器两种。 10、主轴与齿轮箱输入轴(低速轴)连接处应用刚性联轴器,在发电机与齿轮箱输出轴(高速轴)连接处应采用弹性联轴器。 11、机组制动包括机械制动、气动制动和发电机制动。 12、在风力发电机组中,最常用的机械制动器为液压盘式制动器。 13、常见的轮齿失效形式有轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形等。 14、在标准条件下齿轮箱的机械效率应达到大于97%。 15、齿轮箱的润滑方式有飞溅式、压力强制润滑式或混合式。 16、为了提高承载能力,齿轮一般都采用优质合金钢制造。 17、齿轮箱第一次换油应在首次投入运行500小时后进行,齿轮箱应每半年检修一次。 18、齿轮箱常见的故障有齿轮损伤、轴承损坏、断轴和油温高等。 19、齿轮箱油温最高不应超过80℃,不同轴承间的温差不得超过15℃。 20、偏航系统有被动偏航系统和主动偏航系统两种。 21、机舱可以两个方向旋转,旋转方向由接近开关进行检测。 22、偏航系统一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压装置等部件组成。 23、目前变桨系统执行机构主要有液压变桨距和电动变桨距两种,按其控制方式可分为统一变桨和独立变桨两种。 24、目前变桨距机组大多采用三个桨叶统一控制的方式,即三个桨叶变换是一致

润滑系统使用维护说明书

目录 前言 (3) 1致用户 (4) 2安全 (4) 2.1安全提示及标识 (4) 2.2操作人员安全说明 (5) 3主要技术规格 (6) 4润滑系统工作原理 (7) 5运输与装配 (7) 5.1运输及储存 (7) 5.2装配 (7) 6使用 (8) 6.1准备工作 (8) 6.2系统运行注意事项: (8) 6.3首次使用及注油 (8) 6.4清洗 (8) 7系统组件的使用维护 (9) 7.1电动泵组件 (10) 7.2机械泵 (11) 7.3冷却器 (12) 7.4过滤器阀块组件 (13) 7.5分流阀块组件 (14) 7.5.1压力传感器SCP-025-14-07 (15) 7.5.2温度传感器SCT-150-14-07 (15) 7.6液位指示器 (15) 7.7温度控制器 (16) 7.7.1油箱温度传感器 (16) 7.7.2轴承温度传感器 (16) 7.8浸没式加热器 (16) 7.9管路及管接头 (17) 7.10空气滤清器 (17) 8电气及电气接线 (17) 9润滑系统日常维护项目及内容 (18) 附件: (18)

前言 本手册为用户提供了济南1.5MW风电齿轮箱润滑系统的结构,使用维护及操作安全等信息。为运行及维护系统的人员提供了操作依据。通过对系统正确的运行及维护,能够保证系统在使用寿命内良好、高效率的工作。运行及维护操作均须同时符合其他相关操作规程。

1 致用户 在安装使用润滑系统之前,请认真阅读使用维护说明书,严格依照说明书内的要 求作业,注意安全事项详见 2 安全 ?系统使用维护时,请随身携带本手册。 ?具备从事润滑系统使用及维护资格的人员方能对本系统进行使用和维护。 ?购买备件、维修润滑系统须按照铭牌上的设备名称及编号订购。 ?更换的系统零部件,须采用原装备件。 ?制造商保留更改设备或操作维护说明的权利,不再另行通知。 ?本手册不得复制、公开或提供给第三方。 2 安全 2.1 安全提示及标识 本手册中使用以下安全提示及标识 人身的危险 未作安全预防措施有可能导致严重伤害甚至死亡。 设备及环境的危险 不正确使用或维护系统有可能导致设备的损坏,污染周边环境。 认真阅读使用维护信息 运行及维护系统之前请认真完整阅读手册内容,充分了解手册内容。

风电机组控制安全系统安全运行的技术要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 风电机组控制安全系统安全运行的技术要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5841-15 风电机组控制安全系统安全运行的 技术要求(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 控制与安全与系统是风力发电机组安全运行的大脑指挥中心,控制系统的安全运行就是保证了机组安全运行,通常风力发电机组运行所涉及的内容相当广泛就运行工况而言,包括起动、停机、功率调解、变速控制和事故处理等方面的内容。 风力发电机组在启停过程中,机组各部件将受到剧烈的机械应力的变化,而对安全运行起决定因素是风速变化引起的转速的变化。所以转速的控制是机组安全运行的关键。风力发电机组组的运行是一项复杂的操作,涉及的问题很多,如风速的变化、转速的变化、温度的变化、振动等都是直接威胁风力发电机组的安全运行。

一控制系统安全运行的必备条件 1、风力发电机组开关出线侧相序必须与并网电网相序一致,电压标称值相等,三相电压平衡。 2、风力发电机组安全链系统硬件运行正常。 3、调向系统处于正常状态,风速仪和风向标处于正常运行的状态。 4、制动和控制系统液压装置的油压、油温和油位在规定范围内。 5、齿轮箱油位和油温在正常范围。 6、各项保护装置均在正常位置,且保护值均与批准设定的值相符。

风力发电机组的传动装置

文章编号:100628244(2003)02235202 风力发电机组的传动装置 The D r ive system of the W i nd D r iven Generator 上海电力环保设备总厂 张 展 S hang ha i E lectric p o w er E nv iro m en ta l p rotection E qu ipm en t Ge m era l F actory ZH A N G Z han [摘要]本文简单介绍几种风力发电机增速箱的结构、原理和特点及其在风力发电机组中的应用。 [Abstract ]T h is paper b riefly in troduces structu re 、p rinci p le ,character of the w ind mo to r increaser and ap 2p licati on in w ind mo to r . 关键词:风力发电机 增速箱 Key w o rds :W ind mo to r Increaser 中图分类号:TM 315 文献标识码:B 风力发电机组是将风能转化为电能的机械。风轮是风力发电机组最主要的部件,由浆叶和轮毂组成。浆叶具有良好的空气动力外形,在气流作用下产生空气动力使风轮旋转,将风能转换成机械能,再通齿轮增速箱增速,驱动发电机转变成电能。 风力发电将是可再生洁净能源的自选,风力发电的优点:1)取之不尽可再生,我国幅员辽阔;2)洁净能源,随处可见;3)可不占地或少占地。 目前世界上风电机组在技术和工艺上比较发达,有良好质量保证体系的国家有美国、德国、丹麦、印度、荷兰、比利时等国。 我国风力发电以东北、西北、华北和东南沿海为主,地形平坦、运输条件和安装条件较好的新疆、内蒙及浅海地区以600k W 为宜;运输和安装条件不理想的沿海地区以300k W 为宜。但风机愈大,其经济效益愈明显。 国内主要应用地区有:内蒙、河北、浙江、山东、辽宁、吉林、黑龙江、广东、新疆 上述地区的60%安装600k W 机组为宜,40%安装300k W 为宜。 风力发电要求具有先进性、高可靠性、易维护性及经济性。增速箱是其主要部件之一,显然增速箱是保证上述要求的主要因素。本文将着重介绍风力发电机组中增速箱的有关问题。 1 10k W 风力发电增速箱 10k W 风力发电体能源部的科研项目,由水电 部杭州机械所主持,用于温州地区。 图1示10k W 风力发电增速箱的运动简图。采用两级2K —H (KG W )型行星传动,由行星架输入,太阳轮输出。输入转速n 1=88r m in 时,则输出转速 n 2=1500r m in ,即为发电机的转速,其增速比i =17 。 图1 2K —H 型两级增速箱简图 F ig .1 2K —H type tw o step increaser schem e 增速箱主要特点:1)高速级采用行星架浮动,低速级采用太阳轮浮动,这样使结构简化而紧凑,同时均载效果好。2)输入轴(即低速级行星架)的强度高、刚性大,加大支承,可承受大的径向力、轴向力和传递大的转矩,以适应风力发电的要求。3)行星架采用焊接结构,工艺简单,重量较轻。本增速箱系上海港联传动机械厂制造。 增速箱的测试是在上海交通大学内进行的,分别进行空载跑合,逐一加载至额定载荷,最后进行超载测试,共运行35h 。测得传动效率Γ=0.95左右。空载时的噪声不大于83.8dB (王点平均值),由于增 — 53—2003年6月DR I V E SYST E M T ECHN I QU E July 2003

新能源风力发电机组传动系统

风力发电机齿轮箱简介 摘要 随着全球经济的迅速发展和人类生活水平的日益提高,对能源的需求越来越大,环境的破坏也渐趋严重,新能源的开发及利用是当今社会发展的必然趋势。风能作为一种清洁环保的绿色能源受到世界各国的青睐,而将风能转化为电能的装置--风力发电机的研究也是现在的一大热门主题。本文主要介绍了风力发电机传动系统的主要部分--齿轮箱,对其设计要求、结构类型、零部件进行了介绍,同时结合自身专业知识进对其工作环境、存在的失效故障问题进行了简单研究。 关键词:新能源;风力发电机;齿轮箱;工作环境;失效问题 ABSTRACT With the rapid development of global economy and the increasing of human living standard, the demand for energy is more and more large, the destruction of the environment is also becoming more serious, thedevelopment of new energy and utilization is the inevitable trend of social development.Wind power as a kind of clean and environmental protection green energy is favored by countries around the world, and the device which changes wind energy into electrical energy--wind turbine, theresearch of it is now a hot topic. The paper mainly introduced the drive system of wind turbines--gearbox, the design requirements, structure types and main components of it are introduced. At the same time, according to the own professional knowledge,the work environment and the existing questionabout fault has been simply studied by according to the own professional knowledge. Keywords:new energy sources;wind turbine;gear box;the work environment;the failure problems

风电机组控制系统

风电机组控制系统 摘要:风电机组控制系统作为风电机组的重要组成部分,我们有必要对其进行详细的研究论述。本文主要介绍风电机组控制系统的组成结构和风电机组在运行时不同区域的基本控制策略,以及不同厂家在风电机组主要系统的实现上对软硬件采用情况。 关键词:风电机组 控制系统 构成 一、风电机组控制系统的组成结构 从实现功能的角度可以将控制系统分为:主控系统、变流控制系统、变桨距控制系统、偏航控制系统、液压控制系统及安全链保护。这些控制系统通常采用分布式控制系统,主控制器只有一个,且位于地面的塔筒柜里,而从控制器有好几个,这些从控制器之间是通过光纤、工业以太网、profibus 、CANbus 等进行通信的。为了能够更直观更清晰地了解控制系统的总体结构,以下将展示其结构图,具体如图1: 主控制器运行监控机组起停远程通信故障监测及保护动作电网、风况检测 人机界面 输入用户命令、变更参数 显示系统运行状态、统计 数据和故障 变桨距控制柜 桨距角调整 转速控制功率控制系统安全链系统紧急停机保护 偏航控制系统自动调向控制解缆控制液压站控制刹车机构压力控制机械刹车控制变流控制柜 交流励磁控制 并网控制 图1 控制系统的总体结构图 二、风电机组在运行时不同区域的基本控制策略 根据风速情况以及风力机功率特性,变速恒频风力发电机组的运行可以划分成很多区域,分别为:待机区、启动并网区、最大风能追踪区、转速限制区、功率限制区、切出保护区。 (1)待机区:控制系统的带电工作,保证所有执行机构和信号均处于正常状态。 (2)启动并网区:当风速达到切入风速时,风电机组起动,通过变桨距机

构调节桨距角使风力机升速,达到并网转速时,执行并网程序,使发电机组顺利切入电网,并带上初负荷。待发电机出口三相电压的电网电压满足同期条件时,接触器合闸,发电机并入电网。 (3)最大风能追踪区:风力发电机组运行在额定风速以下时,发电机输出功率未达到额定功率,此时控制目标为保持最佳叶尖速比,快速稳定的电机变速控制,尽可能将风能转化为输出的电能,实现风能最大捕获。 (4)转速恒定区:这一区域内发电机转速达到最大值,并保持恒定,风速逐步增大,机组功率因为发电机扭矩的增大而增加。而这个阶段,为了保护机组的安全运行,不再进行最大风能追踪,该区域的转速限制主要是通过调节发电机的电磁转矩实现的,功率曲线也较前一阶段平滑。 (5)功率恒定区:如果风速继续增大,发电机和变流器将达到其功率额定值,此时,只能减小风轮吸收的能量才能保障机组的安全,于是加入变桨距控制,增大桨距角,继续减小风能利用系数Cp,以维持机组的输出功率稳定在额定值。 (6)切出保护区:当风速继续增大,超过切出风速时,从保护机组的角度出发要将风力机叶片调至顺桨状态,风力发电机组切出电网,实现安全停机。 三、不同厂家在风电机组主要系统的实现上对软硬件采用情况 (1)关于主控系统 主控制器是电控系统的核心,要完成对机组运行参数和状态的检测和监控,同时要建立良好的人机交互界面和远程通讯的功能。 在主控系统的硬件上,几乎所有的厂家都选择PLC作为主控制器PLC系统因为构成灵活,扩展容易,以开关量控制为其特长,也能进行连续过程的PID回路控制,并能与上位机构成复杂的控制系统,实现生产过程的综合自动化;使用方便,编程简单,开发周期短,现场调试容易;能适应风电场恶劣的运行环境,可靠性强,所以完全适用于风电领域。 (2)关于变桨系统 变桨距是指风电机组安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力情况大为改善。 作为变桨系统,主要有两大技术路线,如下: 1.电动变桨方式:几乎所有的国内风机制造商以及GE、Enercon、Suzlon、Siemens都是采用该种变桨方式,驱动电机有直流电机和交流电机之分,传动方式有齿轮齿圈传动和齿形皮带传动(仅有金风一家)之分。 2.液压变桨方式:以Vestas和Gamesa两大国际风机巨头为代表。 两种变桨方式各有优缺点,两种系统在基本功能方面几乎是一致的,而在细节方面各有利弊,目前在电动型应用领域更为广泛。 (3)关于变流系统

DRB系列电动润滑泵使用说明书

DRB系列电动润滑泵使用说明 1、简介 DRB系列电动润滑泵是一种齿轮泵,具有结构合理,性能优良,功能齐全、适用范围广等特点,油罐容积2升、4升、6升、8升四种不同规格可供选择,该泵配有液位开关,根据不同需求还可配置压力开关、卸压阀、控制程序等。可与主设备上的PLC程控系统相连,实现对油罐内油液的液位,系统压力进行监控及润滑周期的设定。 DRB系列电动润滑泵可与定量分配器组成容积式润滑系统,对各润滑点进行定量注油润滑;也可与计量件组成反比例式润滑系统,对各润滑点进行按比例注油润滑;或与递进式分配器组成递进式润滑系统,对润滑点依序按量进行润滑。 DRB系列电动润滑泵可广泛用于机床、塑料机械、纺织机械、轻工机械、印刷机械、自动扶梯和输送机械等各种设备的各种润滑系统。 二、产品特点 1、润滑泵可配置单相或三相电机,电机电压可根据客户需要进行配置。 2、电机、液位开关或压力开关(选配)可与泵上的程控器相联,也可与用户的主设备上PLC系统相联,从而实现润滑周期的自动控制。 3、电动润滑泵用于容积式润滑系统时,需选用配卸荷规格的润滑泵,运行时间为泵运行时间的出油量大于或等于系统内各润滑点之和,再加5~10秒,停机时间可根据要求设定。 4、电动润滑泵用于比例式或递进式润滑系统时,可根据润滑周期要求设定开、停机时间。 5、电动润滑泵配有液位开关,油位到下限时开关动作,输出信号。开关可分为常开、常闭两种,泵的出厂状态为常开。如需常闭,在订货时注明。 6、电动润滑泵可根据需要选配卸荷阀,泵停机后,卸荷阀动作,使系统主油路压力下降,此时定量分配器完成卸压式分配器加油(加压式分配器贮油)的过程。通常管路长、管径小、油品粘度大会使卸压时间相对延长,一般3-6秒。

风力发电机组控制系统

风力发电机组控制系统

风力发电机组控制系统功能研究 风力发电机组控制系统简介 风力发电机组由多个部分组成,而控制系统贯穿到每个部分,其相当于风电系统的神经。因此控制系统的质量直接关系到风力发电机组的工作状态、发电量的多少以及设备的安全性。 自热风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对封以及运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是边远地区或是海上,分散布置的风力发电机组通常要求能够无人值班运行和远程控制,这就对风力发电机组的控制系统的自动化程度和可靠性提出了很高的要求。与一般的工业控制过程不同,风力发电机组的控制系统是综合性控制系统。他不仅要监视电网、风况和机组运行参,对机组进行控制。而且还要根据风速和风向的变化,对机组进行优化控制,以提高机组的运行效率。 控制系统的组成 风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。 风力发电控制系统的基本目标分为三个层次:这就是保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。 控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最

风力发电机组主控制系统

. 密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

. 编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。

5-第5章-《风力发电机组机械传动系统》

风力发电机组机械传动系统 1、 主轴是风轮的转轴,支撑风轮并将风轮的【扭矩】传递给齿轮箱, 将【轴向推力】和【气动弯矩】传递给底座。 2、 计算主轴直径常用【3n p d A 】,其中P 指的是【主轴传递的功率】,n 为【主轴的转速】,A 指的是与材料有关的系数,常取105-115。 3、 常用的主轴材料有【42CrMoA 】和【34CrNiMo6】。 4、 主轴的毛坯是【锻件】,经过反复锻打改善金属的【纤维组织】以 提高承载能力。 5、 主轴精加工后各台阶过渡段均为光亮【无刀痕】的圆角,以防止 【应力集中】发生。 6、 联轴器用于连接两传动轴,一般由两个【半联轴节】及【连接件】 组成。 7、 传统的采用齿轮箱增速的风力发电机组传动形式按【主轴轴承的 支撑】方式,分为【一点式】、【两点式】、【三点式】和【内置式】。 8、 三点式布置的机组,齿轮箱除了主轴传递的扭矩外,还要承受平 衡风轮重力等形成的【支反力】。 9、 膜片式联轴器的补偿范围为轴向小于【4mm 】,角向小于【1°】, 径向小于【6mm 】. 10、 对于标准联轴器而言,选用时主要确定联轴器【类型】和【型 号】。 11、 高弹性联轴器性能要求中,最大许用转矩为额定转矩的【3】 倍以上,必须具有【100Ω】以上的绝缘电阻,并能承受【2】kV

的电压。 12、膜片式联轴器的补偿原件是具有弹性的金属片,材料为 【1Cr18Ni9】,可补偿【轴向】、【径向】和【角向】的偏差。13、对于膜片式联轴器,当轴向的安装偏差接近1.4mm,角向偏差 接近0.25°时,径向的安装偏差就不能超过【2.4mm】。 14、在兆瓦级机组上髙速轴端应用较多的联轴器有【膜片式联轴 器】和【连杆式联轴器】。 15、连杆式联轴器利用【过载保护套】,当传递扭矩超过一定数值 时可自动打滑,保护轴系免受损伤,并可自动复位工作。连杆式联轴器利用连杆的绞接和橡胶及关节形非金属复合材料的可变形性补偿轴向、径向和角向偏差。 16、对于联轴器的耐压要求主要取决于发电机的【漏电】和【感应 电压】。 17、连杆式联轴器只能【单向】传递转矩,不适用与双向运转。 18、盘式制动器按制动钳的结构形式分为【固定钳式】和【浮动钳 式】两种。【浮动钳式】又分【滑动钳式】和【摆动钳式】两种。 19、风电机组必须有【一】套或多套制动装置能在任何运行条件下 使轴系静止或空转。机组制动包括【机械制动】、【气动制动】和【发电机制动】。 20、制动器按制动块的驱动方式可分为【气动】、【液压】、【电磁】 等形式;按制动块的工作状态可分为【常闭式】和【常开式】两种形式。

风电齿轮箱操作手册

1.5MW 风电齿轮箱操作维护手册 大连重工·起重集团 通用减速机厂

目录 1.用途与结构 2 2.辅助装置 3 3.性能参数 6 4.安装8 5.运行前的准备工作9 6.起动10 7.运行11 8.常见故障原因分析与处理方法13 9.维护15 10.运输、储存16 11.安全防护17 12.易损件明细18 13.附件1 润滑系统 14.附件2 恒温开关 15.附件3 电阻温度计 16.附件4 加热器

1.用途与结构 该齿轮箱用于PWE1570/1577 型风力发电机,其用途是将风轮在风力作用下所产生的动力传递给发电机,并通过齿轮箱齿轮副的增速作用使输出轴的转速提高到发电机发电所需的转速。 齿轮箱由两级行星和一级平行轴传动以及辅助装置组成。为了传动平稳和提高承载能力,齿轮采用斜齿并精密修形,外齿轮材料为渗碳合金钢,内齿轮为合金钢,一级行星架采用高合金铸钢材料,二级行星架和箱体采用高强度抗低温球墨铸铁。主轴内置于增速机,与第一级行星架过盈连接。齿轮箱通过弹性减震装置安装在主机架上。齿轮箱的轴向空心孔用于安装控制回路电缆。具体结构见图1。 图1

2 辅助装置 2.1 润滑供油系统:润滑供油系统由泵-电机组、过滤器、阀及管路等组成,用于润滑系统所需的压力和流量,并控制系统的清洁度。其工作原理见图2。 油泵上的安全阀设定压力为10bar,以防止压力过高损坏系统元件。 当润滑油温度低或当过滤器滤芯压差大于 4bar 时,滤芯上的单向阀打开,液压油只经过50μ的粗过滤;当温度逐渐升高,滤芯压差低于4bar 时,液压油经过10μ和50μ两级过滤。无论何种情况,未经过滤的液压油决不允许进入齿轮箱内各润滑部位。当油池温度低于30°C时,过滤器的压差发讯器报警信号无效;而当油池温度超过30°C时,当压差达到 3 bar 时,此时报警信号才有效,必须在两天内更换清洁的滤芯。 图2

风电齿轮箱传动系统的分析

风电齿轮箱传动系统的分析 摘要:伴随着国际能源市场石油、天然气等石油能源的不断消耗,能源行业逐 渐呈现危机;人们不断在寻找新的能源,代替石油、天然气等石油资源,同时对 生存的环境不会造成伤害,风电行业被重新重视起来。随着风电行业投入技术和 人力成本不断增加,风电行业持续不断的发展,技术日臻成熟。在装机规模和单 机容量上不断增大,随着风电场单机容量和规模的不断增大,风电齿轮箱作为风 电整机最脆弱的部件之一,在风电机组的运行过程中占有举足轻重的地位。但由 于国内风电齿轮箱技术设计较缓慢,设计结构和材料工艺相对薄弱,尤其是2- 3MW级风机齿轮箱,主要依靠引进国外的设计技术。因此,国内风电齿轮箱行 业的持续发展成为风电行业的必然。首先,根据GL指定的载荷参数表、风资源 提供的原始数据,确定风电机组齿轮箱的载荷参数,从而确定齿轮箱的结构设计,选取行星传动或平行轴传动的结构形式;根据每级齿轮的最大载荷系数,计算确 定各级传动的齿轮参数,对行星齿轮的传动进行受力分析,得出各级齿轮的受力 结果,依据标准进行静强度校核,然后根据计算结果,确定各级的传动比及齿轮 参数,并对疲劳点蚀、轮齿折断等安全性条件进行核准。然后,对齿轮的传动系 统进行齿面接触应力的计算,先利用常规算法进行理论分析计算。 关键词:风力发电;风机齿轮箱;结构设计 1.引言 1.1课题来源 随着世界经济规模的持续增长,世界能源消费量的不断增加。能源危机正日 益困扰着人类的生存。世界上许多国家逐步认识到,一个持续发展的国家将是一 个既能满足社会生产消费的需要,而又不会对子孙后代造成伤害的社会。节约能源,提高能源的可利用效率,充分利用洁净能源取代高碳含量的燃料,已经成为 新的能源的主题。 风力发电机组主要由风轮系统、主传动系统、变桨系统、偏航系统、主控系统、变流系统、齿轮箱、发电机等系统组成,发电机主要将风能转变为电能,是 风电机组的核心部件;随着风电整机技术的深入研究,发电机由最初的直流发电机、笼型异步发电机逐步演变为双馈异步发电机、直驱永磁发电机,随着风力发 电机组自身技术水平的提高,又促进了风电整机技术的不断完善,风电机组部件 与风电整机互为因果、相互促进。 本课题就是建立在对引进的兆瓦级风力发电齿轮箱结构技术消化吸收的基础上,对齿轮箱进行结构设计,为研发具有自主知识产权的风电机组和主传动齿轮 箱打下基础。 1.2国内发展趋势 风力发电发展的主要趋势: (1)?风电机组单机容量增大:有利于提高风能可利用率,降低风电场的实 际占地面积,减少风电场运行维护成本,从而提高风电产品的市场竞争力。目前,全球主流风电机组已经达到(2~?3)MW,?由德国Repower?研制的最大的5MW 风力发电机组已投入运行,其叶片直径达到126?米。 (2)变速恒频技术快速推广:现在恒速运行的风电机组一般采用双绕组结构的双馈异步发电机,高速运行在风资源较高风速段,发电机运行在相对较高转速;

相关文档
相关文档 最新文档