文档库 最新最全的文档下载
当前位置:文档库 › 图论例讲问题解答

图论例讲问题解答

图论例讲问题解答
图论例讲问题解答

图论例讲(问题解答) 陶平生

1、设有2n 阶简单图G ,若其每个顶点的度数皆不小于n ,证明:从G 中必可选出n 条边,其端点互不相同.

证:我们最大限度地选出k 条两两无公共端点的边,若k n =,则命题已得证; 现在设k n <,这k 条边记为1234212k k PP P P P P - ,,

,,在剩下的其它边中,必须是每条边至少有一个端点与122,k P P P ,

,中的一个点重合,不然的话,我们又可以将这样的一条边添加进去,使得这种边数多于k 条,与k 的最大性矛盾!

今考虑图G 在上述端点集{}122,k P P P ,,之外的一对顶点,A B ,它们本身不会相连,由于每个顶点的度数皆不小于n ,而1n k ≥+,即点,A B 共同向点集{}122,k P P P ,,至少发出了22k +条边(称这种边为红边),于是k 条边1234212k k PP P P P P - ,,

,中必有一条,它的两个端点关联了至少三条红边(如果这k 条边中的每一条边都至多关联两条红边,那么红边的总条数将不超过2k ,矛盾!).

现在设,边212k k P P -关联了三条红边,

得到两种关联模式,如图所示.

每种模式下,我们都可以去掉边212k k P P -以及一条红边,而保留两条无公共端点的红边,这样,图G 中两两无公共端点的边成为1k +条,又与k 的最大性矛盾!

因此k n <的假设被否定,所以k n =,结论得证.

2、某地网球俱乐部的20名成员举行14场单打比赛,每人至少上场一次,证明:必有六场比赛,其中的12名参赛者各不相同.(美国1989)

证:用20个点1220,,,V V V 表示这20名成员,如果两名成员比赛过,则在相应的两点之间连一条边,于是得到图G .

据题意,G 有14条边,设顶点i V 的度数为i d ,则1,1,2,,20i d i ≥= ,

而122021428d d d +++=?= .在每个顶点i V 处抹去1i d -条边(或者说,在每点i V 所发出的边中取1i d -条染成红色),由于同一条边可能被其两个端点所抹去(染红),所以抹去的边(红边)至多有1220(1)(1)(1)28208d d d -+-++-=-= 条,因此在抹去这些边后,所得的图G '中至少含有1486-=条边,且图G '中每个顶点的度数至多是1,从而这6条边所邻接的12个顶点各不相同,即这6条边所对应的6场比赛,其中的12名参赛者各不相同.

3、设G 为n 阶图,且没有长为4

的圈;证明:其边数(14n q ??≤????

. 证明:设G 的顶点为12,,,n V V V ???,且设顶点j V 的度为j a ,1,2,,j n =???,则12n j j a

q ==∑.现考察与顶点j V (1,2,,j n =???)相邻的任两个顶点所构成的顶点对,则对

B

2k-12k

2k 2k-1

于每个顶点j V ,这样不同的顶点对有2j

a C 个,并且任两个顶点对互不相同(事实上,若对于i j ≠,顶点i V 的某顶点对与j V 的某顶点对相同,则存在,k l V V k l ≠与,i j V V 均相邻,这样

i k j l VV V V 形成一个长度为4的圈,与题意矛盾.),而总的顶点对至多为2n C 个,故

221

j n a n j C C =≤∑,故()222211111122n n n n j j j j j j j j n n a a a a q q n n ====??-≥-≥-=- ???∑∑∑∑ 即

(

(1144

n n q ≤≤, 而q 为整数,故

(14n q ??≤????. 4、任意给定() 2n n ≥个互不相等的n 位正整数,证明:存在{}1,2,,k n ∈ ,使得将它们的第k 位数字都删去后,所得到的n 个1n -位数仍互不相等.

证:设这n 个n 位数为12,,,n a a a .

用反证法,若对于每个{}1,2,,k n ∈ ,删去这组数的第k 位数字后,所得到的n 个1n -位数12,,,k k nk a a a 中,都至少有两个数相等,设ik jk a a =,因原来相应的两数i j a a ≠,则

, i j a a 被删去的第k 位数字必不相同,称这样的一对数, i j a a 为“具有性质k P ”

(, i j a a 只有第k 位数字不同,其它位置上的数字对应相同).

今用n 个点12,,,n v v v 分别表示这n 个数,若某一对数, i j a a 具有性质k P ,{}1,2,,k n ∈ ,则令相应的点, i j v v 相邻,于是得n 阶图G .

据反证法所设知,图G 中至少有n 条边,故必有圈,不妨设此圈为121r v v v v ,(否则可将这n 个数重新编号;又对于互不相等的若干个n 位正整数,同时将每个数的第, i j 位数字对换位置,并不改变本题的性质),那么前r 个数为:

112341 r r n a x x x x x x x -=

212341 r r n a y x x x x x x -=

312341 r r n a y y x x x x x -=

412341 r r n a y y y x x x x -=

…… …… …………

112341r r r n a y y y y x x x --=

12341 r r r n a y y y y y x x -=

这里,不同的字母表示不同的数字,据此知,删去各数(自左向右)的第r 位数字后,所得

的两个1n -位数rr a 与1r a 并不相等,其中,

123411 rr r r n a y y y y y x x -+= ,1123411r r r n a x x x x x x x -+=

也就是说,圈121r v v v v 中的边1r v v 并不存在,矛盾.

因此,图G 中不可能有圈,故图G 中的边至多有1n -条,这与反证法的假设相矛盾,从而结论得证.

5、设G 为n 阶图()5n ≥,其边数4e n ≥+,证明G 中存在两个无公共边的圈. 证:对n 归纳,当5n =时,9e ≥,这相当于从5k 中至多去掉一条边,结论显然成立. 设()6n k k <≥时结论成立,当n k =时,k 阶图G 的边数4e k ≥+,由于G 的边数≥顶点数,其中必有圈.

若G 中存在一个长为3或4的圈1C ,则从图G 中删去圈1C 上所有的边,剩下的k 阶子图1G 中,依然满足:边数≥顶点数,其中又有圈2C ,显然,1C 与2C 都是G 中的圈,且无公共边.

以下假设,G 中的每个圈长至少为5.

若G 中有点0v ,其度数()01d v ≤,则删去点0v 以及它所关联的边,剩下的1k -阶子图2G 中,有1k -个顶点,至少()14k -+条边,据归纳假设,2G 中有不含公共边的两个圈,它们当然也是G 中的圈.

若G 中有点0v ,其度数()02d v =,设与0v 邻接的两个点是12, v v ,显然12, v v 不相邻(因G 中无三角形),此时,删去点0v 及其所发出的两条边,同时添加边12v v ,所得的图3G 中,有1k -个顶点,至少()14k -+条边,据归纳假设,3G 中有不含公共边的两个圈1C 与

2C . 再将边12v v 去掉,

恢复被删去的点0v 及其所发出的两条边0102, v v v v ,回到图G ,则G 中也有不含公共边的两个圈(这是由于,若3G 中的这两个圈1C 与2C 都不含边12v v ,则这两个圈1C 与2C 也是G 中的圈;若3G 中的这两个圈中有一个,例如2C ,含有边12v v ,从该圈中去掉12v v ,并代之以边0102, v v v v ,得到圈0C ,则0C 与1C 是G 中不含公共边的两个圈).

若G 中所有的点i v ,其度数()3i d v ≥,1,2,,i k = ,如果G 的边数4k >+,我们就从G 中删去一些边,使得边数恰好为4k +,记此图为4G .

在图4G 中,若4G 中有一顶点的度数3<,则据前面的讨论,结论已经得证;

若4G 中每个顶点的度数皆3≥,则4G 中各顶点的度数之和3k ≥,故4G 中的边数32k ≥,即有342

k k +≥,由此得,8k ≤. 而在此时,只要能证得,在4G 中必有三角形或四边形,这种三角形或四边形当然也在G 中,这将与原先的假设(G 中的每个圈长至少为5)相矛盾.

事实上,由于4G 中的边数4k +≥顶点数k ,故4G 中必有圈,设C 为极小圈,则圈C 的点与点之间不能再有其它边相连,否则圈C 将被分成更小的圈,矛盾;设极小圈C 的长为r ,则2r k ≤-.(由于每个顶点的度数皆3≥,若r k =,则圈C 的点与点之间将有其它边相连,于是圈C 被分成更小的圈,矛盾;若1r k =-,圈121r C vv v v = 上的每个点都要与圈外的一点0v 相邻,于是得到三角形012v v v ,矛盾);于是,当5k =或6k =时,4G 中的极小圈C 的长4r ≤.

当7k =时,有5r ≤,若极小圈C 为五边形12345v v v v v ,另两点为,u v ,五边形的五个顶点共向,u v 发出至少5条边,则,u v 中必有一点,例如u ,要向五边形的顶点发出至少3条边,其中必有两个相邻顶点,例如12v v 都与u 相邻,于是得到三角形12uv v (更小的圈),矛盾,因此4r ≤;当8k =时,有6r ≤,若极小圈为六边形123456v v v v v v ,六个顶点共向圈外的两点,u v 发出至少6条边,则其中有一点,例如u ,要向六边形的顶点发出至少3条边,于是点u 要向顶点组{}{}135246,,, ,,v v v v v v 中的一组发出至少2条边,设u 与13,v v 相邻,则得到四边形123v v v u ,矛盾;若极小圈C 为五边形12345v v v v v ,另三点为,,u v w ,五边形的五个顶点共向,,u v w 发出至少5条边,必有一点,例如u ,要向五边形的顶点发出至少2条边,由于五边形的任两个顶点,要么相邻,要么中间只隔一个顶点,因此得到一个含有点u 的三角形或者四边形,矛盾,因此4r ≤.

综合以上讨论,可知本题结论成立.

6、若简单图G 有21n +个顶点,至少31n +条边(2)n ≥,证明:G 中必有偶圈. 证:由于图G 的边数不小于顶点数,则G 中必有圈,今逐次这样地去掉图中的一些边: 使得每去掉一条边,就破坏一个圈,这样的操作至少可以进行1n +次,也就是至少可以去掉1n +条边,破坏至少1n +个圈,即是说,图G 中的圈至少有1n +个.

这1n +个圈中,必有两个圈有公共边,事实上如果任两个圈都无公共边,由于每个圈至少有3条边,则图G 至少有3(1)33n n +=+条边,矛盾!

今设12,C C 是图G 中两个有公共边的圈,则1C 至少有一条边不在2C 中,2C 至少有一条边

不在1C 中,若12,C C 含有公共边e 的最长公共道路为0()C A B = ,若设道路0C 有r 条边,圈1C 有1r 条边(包括公共路),圈2C 有2r 条边(包括公共路),(即圈12

,C C 的长分别是12,r r )

. 若去掉道路0()C A B = 间的所有的边(即圈12,C C 的上述公共边),则圈12,C C 的剩下部分仍可合并为一个圈,记为*C ,圈*C 的长为122r r r +-;

注意三个圈*12,,C C C 长的和等于122()r r r +-,它是一个偶数,故三个加项

12,r r 和122r r r +-中必有一个是偶数,即G 中有偶圈.

7、一次足球邀请赛共安排了n 支球队参加,每支球队预定的比赛场数分别是

12,,,n m m m ,如果任两支球队之间至多安排了一场比赛,则称12(,,,)n m m m 是一个有效安排;证明:如果12(,,,)n m m m 是一个有效安排,且12n m m m ≥≥≥ ,则可取掉一支球队,并重新调整各队之间的对局情况,使得112312(1,1,,1,,,)m m n m m m m m ++--- 也是一个有效安排.

证:设预定比赛i m 场的队为i A ,1,2,,i n = ;

(01)、如果1A 的1m 场比赛,其对手恰好就是1231,,,m A A A + ,那么,直接去掉1A (当然1A 所参与的所有比赛也就被取消了),则剩下的队23,,,n A A A 之间的比赛,以 112312(1,1,,1,,,)m m n m m m m m ++--- 为有效安排.

(02)、如果球队23,,,n A A A 中,有些队并未安排与1A 比赛,设在1231,,,m A A A + 中,

自左至右,第一个未安排与1A 比赛的队是j A ,由于1A 要赛1m 场,那么在1231,,,m

A A A + 之外必有一个队安排了与1A 比赛,设为1,(1)k A m k n +<≤,

由于j k m m >,故必有一个队s A ,它被安排了与j A 比赛而未安排与k A 比赛,如图所示. 今对原安排作如下调整:

取消1,k A A 两队间、,j s A A 两队间的比赛,

改为1,j A A 两队间,,s k A A 两队间进行比赛,

其它比赛安排不变;

s j k j

s k

经过这一次调整之后,所有球队的比赛场数不变,且是一个有效安排.而第一个不与1A 比赛的队的序号,至少后移了一个位置;故经有限次这样的调整之后,就化成了情形(01),因此结论得证.

8、十个城市之间有两个航空公司服务,其中任意两个城市之间都有一条直达航线(中间不停),所有航线之间都是可往返的.

证明:至少有一个航空公司可以提供两条互不相交的环形旅行线路,其中每条线路上的城市个数都为奇数.

(与其等价的图论说法是:10阶完全图10K 的边红蓝2-染色,则必存在两个无公共顶点的同色奇圈(顶点个数为奇数的圈,且这两个圈的边或者同为红色,或者同为蓝色)).

证:首先注意,六阶完全图的边红蓝2-染色,据拉姆赛定理,必存在单色三角形123VV V ,除去这个三角形外,在余下的七点之中,又有一个单色三角形456V V V ,若这两个三角形具有相同的颜色,证明已经完成;不然的话,若这两个三角形,一个是红色的,一个是蓝色的,在这两个三角形的顶点之间有9条连线,其中至少有5条同色,设为蓝色;因此,有一个红色三角形,从它的某个顶点发出两条蓝边,蓝边的端点是蓝色三角形的两个顶点;

这样,我们找到两个三角形,其中,一个是红色边的,一个是蓝色边的,它们具有一个公共的顶点,(总共佔用了5个顶点);今考虑剩下的5个顶点:

若它们组成的完全图5K 中含有一个单色三角形,则证明已经完成;

若此完全图5K 中不含单色三角形,我们来证明,此时5K 的10条边,必定形成一个红色五边形和一个蓝色五边形.这是由于,5K 中不含单色三角形,则每

点必定都是发出两条红边,两条蓝边;因为,若点A 发出三条蓝边 ,,AB AC AD ,则点,,B C D 之间便不能再有蓝边,于是得到红色三角

形BCD ,矛盾! 现在设点发出的两条蓝边是,AB AE ,则边BE 必为红色;而点B 还需再发出一条蓝边,一条红边,设BC 为蓝,BD 为红;由此即推得,AC 必为红,DE 必为蓝;于是AD 为红, CD 为蓝,CE 为红.于是得蓝色五边形ABCDE 和红色五边形ACEBD .

从而命题得证.

9、在一次学术讲演中有五名数学家参加,会上每人均打了两次旽,且每两人均有同时在打旽的时刻,证明:一定有三人,他们有同时在打旽的时刻.

证:以1210,,,V V V 这10个点表示五位数学家的十次打旽,当,i j V V 两个旽有共同的时刻,则令点,i j V V 相邻,这样我们就得到一个10阶图G ,由于每两个数学家都有同时打旽的时刻,从而图G 的边数至少是2

510C =,而G 的顶点数为10,故G 中必有圈. E

设在此圈中,k V 是最先结束的一个旽,

与k V 相邻的两个顶点是11,k k V V -+,因11,k k V V -+这两个旽与k V 有共同的时刻,故当旽k V 结束的前一瞬间,11,k k V V -+这两个旽还在继续,这表明,三个旽11,,k k k V V V -+有共同进行的时刻,而这三个旽显然是属于三个人的(若两个旽属于同一个人,又有共同的时刻,只能算成一个旽,矛盾!).

10、() 2n n n ?≥矩阵A 中,每行及每列的元素中各有一个1和一个1-,其余元素皆为0;证明:可以通过有限次行与行的交换以及列与列的交换,化为矩阵B ,使得 0A B +=.(即A 中的每个数都变成了其相反数)

证:2n =时结论显然成立;以下考虑3n ≥时的情况.记n n ?矩阵第i 行、j 列交叉位置上的元素为{} ,0,1,1ij ij a a ∈-,又用i V 表示矩阵的第i 行,j e 表示第j 列,( ,i j V e 仅表示位置,不代表具体元素与向量),

今构作一个以12,,,n V V V 为顶点,12,,,n e e e 为边的有向图G 如下:当第k 列的1在第i 行,1-在第j 行,(即 1, 1ik jk a a ==-),则连一条由点i V 指向点j V 的有向边k e ,于是,G 的每个顶点都恰好具有1个出度和1个入度(即发出一个箭头和收到一个箭头),因此,从图G 的任一顶点出发,沿箭头方向前进,必将回到原出发点,(这是由于,除出发点外,每经过一个点,就将耗去一个入度和一个出度,因此不能回到途经的点). 这样,图G 或者本身是一个n 阶有向圈,或者是若干个不交的有向圈的并,(其中k 个点的有向圈恰有k 条有向边,3k ≥.当3n ≥时,这种图G 与适合条件的矩阵A 一一对应). 若后者情况出现时,如果删去某个圈所涉及的行和列,并不影响其余圈的状态;或者说,若仅对某个圈所涉及的行和列进行所述的变换,不会改变其它行和列中1和1-的位置. 于是我们仅须考虑只有一个圈(即G 为n 阶圈)的情况.示例如下:

对应的圈1C 为:

我们注意到:()

1. 每当交换矩阵中的两行位置,等价于圈中仅交换相应两个顶点的位置,

(边的位置保持不动); ()11

. 每当交换矩阵中的两列位置,等价于圈中仅交换相应两条边的位置,(仅交换两条边的代号,边的箭头方向以及顶点的位置保持不动).

于是,我们可先对圈1C 的顶点作两两对换,得到圈2C ,使得沿箭头方向前进时,所经历的各点恰与圈1C 中各点的方向相反.(例如在圈1C 中,诸点的顺序为1243651VV V V V V V ;而

6V 534 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 11 0 0 0 0 1A -? - -=---????? ? ? ? ? ??

在圈2C 中,诸点的顺序为1563421VV V V V V V ).

圈2C : 圈3C :

再对圈2C 的边作两两对换,(每次仅交换一对边的代号,边的箭头方向及顶点的位置保持不动).使得每条边所关联的顶点与圈1C 中的情况相同.于是得到圈3C .与圈3C 所对应的矩阵B ,其每个元素恰为矩阵A 中相应位置上元素的相反数.

因此 0A B +=. 即所证的结论成立.

11、有七种颜色的珍珠,共计14颗,其中每种颜色的珍珠各两颗;今把这些珍珠分装于七个珠盒中,使得每个珠盒中各有一对不同颜色的珍珠;

(1)、证明:不论各盒中的珍珠怎样搭配,总可以将这七个珠盒分别放置于一个正七边形的七个顶点之上,使得七边形的任两个相邻顶点处所放置的盒中,四颗珍珠互不同色.

(2)、如将以上条件与待证结论中的“七”一律改为“五”,14改为10,则情况如何?

(1)、证:用点127,,,v v v 分别表示这七种颜色,如果一个i v 色的珍珠和一个j v 色的珍珠装在同一盒中(i j ≠),则在点i v 与j v 间连一条边,这样就得到一个图G ,(点i v 与j v 之间有可能连出两条边),由于同一色的珍珠有两颗,每颗珠都需与一颗其它颜色的珍珠共盒,则图G 的每点恰好发出两条边;

自G 的任一点A 出发,沿一条边走到点B ,再由B 沿另一条边走到C ,…,如此下去,最后必定回到出发点A ,(这是由于,途中经过的每个点P 都有两条边,若能沿一条边进入点P ,则必沿另一条边可离开点P ,而由点P 不能再回到途中已经过的点,因为这种点所发出的两条边都已走过,因此只能到达新点或回到出发点,而新点终将逐渐耗尽,最后必定回到出发点A ),这样就得到一个圈.

去掉这个圈,若剩下还有点,依上述方法,又将得到新的圈,若称两点的圈为“两边形”,则图G 的结构只有如下四种情况:

()01、一个七边形: ()0

2、一个五边形,一个两边形: B 6v 4754

3v 74V 364V 36

()03、一个四边形,一个三角形: ()0

4、一个三角形,两个两边形: 对于每种情况,我们都对相应的边作出适当编号,并将这些边所对应的珠盒放置于七边形的顶点之上,如右图所示.

因此所证结论成立. (2)、当14颗七色珠改为10颗五色珠后,结论不成立,例如,

对于五色12345,,,,v v v v v ,我们若将10颗珠这样装盒: ()()()()()112223331445545,,,,,,,,,e v v e v v e v v e v v e v v =====,

则无论怎样摆放于正五边形的顶点上,都不能满足条件.(因为123,,e e e 中,任两盒都有同色的珠,无论怎样摆放于正五边形的顶点上,必有两盒相邻).

12、给定31个正整数1231,,,a a a ,若其中至少有94对数互质,证明:其中必存在四个数,,,a b c d ,满足:(,)(,)(,)(,)1a b b c c d d a ====.

证:用点1231,,,A A A 分别代表这31个正整数,若(,)1i j a a =,则令相应点,i j A A 相邻,于是得31阶简单图G ,设点i A 的度数为i d ,据条件,图G 至少有94条边,不妨设,图G 恰有94条边,否则我们就去掉其中一些边,并不影响问题的性质; 与点i A 相邻的点有i d 个,它们构成2(1)2

i i i d d d C -=个“点对”,据条件, 1231294188d d d +++=?= ;若记 312

1

i d i M C ==∑,则 31312111122i i i i M d d ===-∑∑ 3121

1942i i d ==-∑,由柯西不等式,31312222111112()1889422316231i i i i d d ==≥=?=??∑∑, 因此,223129415793155313094943131312M C ???≥?-=>==, 故在1231,,,A A A 中必有两个点,A C ,其所邻接的点中, 具有相同的一个“点对”,设为,B D ,即ABCD 为四边形,从而,

(,)(,)(,)(,)1a b b c c d d a ====.

6e 4

6e 7

3v 43

67

37

6467

2C

13、奥运会排球预选赛有n 支球队参加,其中每两队比赛一场,每场比赛必决出胜负,如果其中有k (3k n ≤≤)支球队12,,,k A A A ,满足:1A 胜2A ,2A 胜3A ,…,1k A -胜k A ,k A 胜1A ,则称这k 支球队组成一个k 阶连环套;

证明:若全部n 支球队组成一个n 阶连环套,则对于每个k (3k n ≤≤)及每支球队i A ()1i n ≤≤,i A 必另外某些球队组成一个k 阶连环套.

证明:以12,,,k A A A 为顶点,如球队i A 胜j A ,则在两点间连一有向边:i j A A →,如此得n 阶竞赛图G .据条件,G 的n 个顶点可以排成一个n 阶有向圈,设为: 121n A A A A →→→→ ,于是G 的任两点可沿箭头方向相互到达.

先证明,任一球队i A 必在某个三阶连环套中,用,i i S T 分别表示被i A 击败了的球队集合和击败了i A 的所有球队集合,由于G 双向连通,必有,j i k i A S A T ∈∈,使j k A A →,于是,,i j k A A A 组成三阶连环套;

假若已证得,对于()3k k n ≤<,图中存在以i A 为一顶点的k 阶连环套

()121i k C A A A A A = ,圈C 之外的点的集合为M ;

若M 中有一点P ,它所表示的球队既击败了圈C 中的某个队k A ,又被圈C 中的另一个队j A 所击败,点,k j A A 把圈C 分成两条有向路12,C C ,其中一条,

例如1C ,它与有向路j k A P A →→组成有向圈,如图所示.

依次考虑路2C :12,,,,j j j k A A A A ++ 上各点与点P 间的邻接情况,必有相邻的两点1,j r j r A A +++,满足j r A P +→而1j r P A ++→,今去掉边1j r j r A A +++→,而将路1j r j r A P A +++→→插入其间,便得到一个含有顶点i A 的1k +阶连环套;

若M 中的任一点P ,它所表示的球队要么击败了圈C 中的每个队,要么被圈C 中的每个 队所击败,则集M 可分为两个不交的子集S 与T ,其中S 中的任一队,战胜了圈C 中所有的队,而T 中的任一队,负于圈C 中所有的队;由于图G 双向连通,故在集T 中必有点u ,集S 有点v ,使v u →,今在圈C 中任意去掉一个点j A ,()

j i A A ≠,而用路v u →代替,便得到一个含有顶点i A 的1k +阶连环套;故结论对于1k +成立,由归纳法,结论成立. 14、某公司有17个人,每个人都正好认识另外的4个人,证明:存在两个人,他们彼

j

此不相识且没有共同的熟人.(第26届独联体数学奥林匹克)

证明:以17个点表示公司的17个人,如果两人,x y 相识,则令其相邻,于是得到17阶简单图G ;据条件,对于每个顶点x ,()4d x =,我们需证明,存在顶点,P Q ,满足: ,P Q 不相邻,且不同与第三顶点相邻.

反证法,假设G 中的任意两点,或者相邻,或者同与第三点相邻,今考察其中任一点x , 因为()4d x =,故有点,,,A B C D 与x 相邻,讨论不同的情况:

01、如果,,,A B C D 四点之间有某两点相邻,例如AB 相邻,因()4d x =,与A 相邻的另

两点是,E F (允许是,C D ),此外至少有10个点与A 不相邻,它们构成集合M ,

P M ?∈,因,P A 不相邻,则由假设,它们应同与第三点相邻,但与A 相邻且度数尚未满4的点只有,,B E F ,故P 必与,,B E F 之一相邻;

因为P 是M 中的任意点,故M 中的10个点必与,,B E F 之间至少连出10条边,从而 ,,B E F 中有一点至少向M 中的点发出4条边,这样,该点的度数5≥(因该点也与A 相邻),发生矛盾!

02、据01的讨论知,,,,A B C D 中的任两点不相邻,又若,,,A B C D 四点中有某两点,例如,A B ,它们除了都与x 相邻外,还都与另一点y 相邻,因为()4d A =,与A 相邻的另外两点是,E F ,此外至少有9点与A 不相邻,它们构成集合M ,P M ?∈,P 必与,E F , Y 之一相邻,但()4d Y =,故与Y 相邻的点,除,A B 外,至多还有M 中的两点,因此,M 中至少有7点要向,E F 之一发出边,于是,E F 中必有一点向M 引出至少4条边,则该点的度数大于4,矛盾!

据01,0

2的讨论可知,,,,A B C D 四点之间两两不相邻,且除与x 相邻外,它们两两

22

F

x M y x

也不同与另外的点相邻,但,,,A B C D 的度数皆为4,因此除与x 外,它们各与另外三个不同的点相邻,如图二,这样已有16条边,其余还有

17416182?-=条边,并且图中已有17个顶点,不会再有另外的顶点,而且据与01相同的讨论可知,与A 相邻的四点(包括x 及

另三个未标记号的点123,,A A A ),彼此之间不能相邻.

因此,这18条边的每一条,只能在,,,i i i i A B C D 间连结,每连一条,便得到一个含有5条边,且经过x 的圈,这样共得18个圈(每圈都过x ),

由于顶点x 的任意性,经过其余16个点中任一个点也有18个那样的圈(共1718?个),每一个圈过5个顶点,因此每个圈重复计算了五遍. 于是圈的个数等于17185

?,这不可能,故所设不真,从而证得了命题. 15、若8阶简单图不含四边形,那么,其边数的最大值是多少?(92CMO -) 解一:右图是具有八个顶点,十一条边的简单图,其中没有四边形,

今证明,11便是合于条件的最大值.

为此,只要证,具有12条边的简单图中必存在四边形.

先指出两个事实:

01、如果点A 与点12,,,k V V V 都相邻,B 是异于A 的一个顶点

(B 也可以是{}12,,,k V V V 中的点),如果在{}12,,,k V V V 中有某一“点对”与B 相邻,则图中有四边形.

02、四个顶点的图中,如有五条边,就必有四边形.(相当于一个四面体中去掉一条边). 现在设,G 具有八个顶点,十二条边的简单图,我们来证明,G 中必有四边形. 反证法,假若G 中没有四边形,用128,,,d d d 分别表示G 中八个顶点的度数, 注意到,8121224i i d

==?=∑,则有{}128max ,,,3d d d ≥ .讨论不同的情况:

情形一、若{}128max ,,,3d d d = ,这时G 中每个顶点的度数都是3,任取一个顶点1A , 与1A 有边相邻的顶点设为234,,A A A ,其余四个顶点为1234,,,B B B B ;

据01及反证法假设,{}1234,,,B B B B 中的点与{}

234,,A A A 中的点之间相连的边至多只有四条,而{}234,,A A A 中的点相连的边至多只有一条,,所以在{}1234,,,B B B B 这些点中相连的边至少有123414---=条(由02可知,也只能有四条),我们只考虑这四个顶点以及连结它们的4条边,这时其中必有某一顶点的度数是1(如果这四个顶点的度数都是2,

就成为一个四边形),从而有顶点度数为3,即{}1234,,,B B B B 中必有一点(不妨设为1B ),与其它三点都有边相连,而{}1234,,,B B B B 中的点与{}234,,A A A 中的点相连的边数为4,

1B 必与{}234,,A A A 中的某一点有边相连,这样,图G 中1B 的度数将是4,这与假设矛盾!

情形二、{}128max ,,,4d d d = ,取一个度数为4的顶点A ,设与A 有边相连的顶点为 1234,,,A A A A ,其余三顶点为123,,B B B ,据01及反证法假设,{}1234,,,A A A A 内部的边至多是2条,点集{}123,,B B B 与{}

1234,,,A A A A 之间的边至多3条,而{}123,,B B B 内部的边也显然至多3条,由于总的边数是12条,因此上述各种边数恰为2,3,3;于是,在

{}1234,,,A A A A 内部的边恰好是2条,且这两条边不能有公共顶点(否则将出现四边形),不妨设这两条边为112l A A =,234l A A =;{}123,,B B B 中的每一点都与{}1234,,,A A A A 中的某一点有边相连,这种边有三条,称为“红边”,

且因121323,,B B B B B B 都是G 的边,这三条红边中,

必有两条的端点同时落在12,l l 两边之一上,设为1l 上, 它收到来自12,B B 发来的边;如果这两条红边都关联1l 上的同

一点(例如1A ),那么1123A B B B 构成四边形;如果这两条红

边关联1l 上的不同点12,A A ,那么1212A A B B 构成四边形;都与所设矛盾!

情形三、{}128max ,,,4d d d > ,取一个度数最大的顶点A ,与A 邻接的点集记为S ,其余顶点集记为T ,令{}128max ,,,k S d d d == ,m T =,,S T 之间的边数至多m 条,

T 内部的边至多2m C 条,S 内部的边至多2k ??????

条,这样,图G 的边数不超过 22722m m k k k m C C ????+++=++????????

,当5,6,7k =时,都不可能使边数为12. 综上,知所求的最大值为11.

解二、将n (4)n ≥阶简单图中,没有四边形的图的边数的最大值记为n S ,易见44S =, 下面考虑5n =的情况,在有5个顶点,6条边的简单图中,由于各顶点的度数之和为12, 必有某顶点的度数不大于2,如果其中有一个顶点的度数为1,则可去掉这个顶点,化为有

2

3

A

4

4个顶点以及5条边的图,其中必有四边形;所以只要考虑每个顶点的度数皆不小于2的情况;如果图中有某顶点A 的度数为3,由A 引出的边为,,AB AC AD ,另一顶点E ,因其度数不小于2,则与,,B C D 三点中至少两点相邻,可见也有四边形,

如果图中有某顶点P 的度数为4,由P 引出的四条边为,,,PA PB PC PD ,因,,,A B C D 各点的度数皆不小于2,由于度数总和为12,则,,,A B C D 各点的度数皆等于2,这时的确可以没有四边形;如图所示:

在5n =时,如果一个图至少有7条边,则必有一个顶点的度数不大于2;去掉这个顶点(及其所发出的边)化为4个点,至少5条边的情况,据前所知,其中必有四边形; 因此56S =,并且具有6条边而没有四边形的5阶图只有上图所示的情况.

进而可推出,67S =;因为在具有6个顶点,8条边的图中,总有一个顶点的度数不大于2,设为P ;若()1d P =,去掉点P ,化为有5个顶点,7条边的图,据上知,其中有四边形;若()2d P =,去掉点P ,化为有5个顶点,6条边的图,且在这种情况下,没有四边形的图只有一种形式:

(其余情况都有四边形)

在此基础上恢复所去掉的那个顶点及两条边,这两条边不论如何作,也总会产生四边形, 即具有6个顶点,8条边的图必有四边形;

因此67S =;

另外,具有6个顶点,7条边而无四边形的图存在,例如,进而可推出,79S =;因为在具有7个顶点,10条边的图中,总有一个顶点的度数不大于2,

去掉此顶点,化为具有6个顶点,至少8条边的图,据67S =可知,其中必有四边形, 因此7顶10边的图中必有四边形;

而对于7顶9边的图,没有四边形的图是存在的,例如:

因此79S =.

今证明,811S =,首先,具有8个顶点,11条边而无四边形的图存在,例如,

再证,具有8个顶点,12条边的图必有四边形.

反证法,若存在这样的图没有四边形,如果有一点的度数不大于2,去掉该

点,化为具有7个顶点,至少10条边的图,据以上,其中必有四边形;与所设矛盾, 因此各点度数不小于3,因为8个顶12边的图,度数总和为24,于是每顶点度数恰为3,

这时图中必有三角形(事实上,若无三角形,任取点A ,若A 发出的三边为,,AB AC AD , 则,,B C D 间不能有边,与B 相邻的另两顶点将是其余的点,异于,,,A B C D 的点集设为 {}1234,,,E E E E E =,即与B 相邻的另两顶点在E 中,对于,C D 也是如此,也就是说,集 {},,B C D 与集E 间的边有6条,故E 中必有一点,例如1E ,至少向点集{},,B C D 发出了两条边,设为11,E B E C ,于是1ABE C 为四边形,矛盾!)

设ABC 是图中的一个三角形,由于每顶点度数恰为3,则,,A B C 每点各向形外还发出了一条边,今去掉三角形ABC ,总共去掉6条边,剩下5顶6边的图,若没有四边形,据前所述,只有唯一的形式:

然而这时有一顶点的度数为4,这与图中“每顶点度数恰为3”矛盾!故所设不真,因此 8顶12边的图必有四边形.从而本题所求的边数最大值为11.

16、10名选手参加乒乓球赛,每两个选手对赛一局.如果选手i 胜选手j ,选手j 胜选手k ,选手k 胜选手i ,则称为有一个三角形.设i W 和i L 分别表示第i 个选手胜和败的局数,又如果选手i 胜选手j 时,总有8i j L W +≥.求证:这次球赛恰有40个三角形.

解:用点1210,,,v v v 表示这10名选手,如果i v 胜j v ,则在相应两点间连一条有向弧:

i j v v →,如此得10阶有向图G ,()(),i i i i d v w d v L +-==,且9,1,2,,10i i W L i +== .

不妨设,1210W W W ≥≥≥ ,则 1210L L L ≤≤≤ ;由于图G 共有45条边,每条边产生一个出度和一个入度,故101011

45i i i i W L ====∑∑,从而 1105,4W W ≥≤,1104,5L L ≤≥.

据条件,当i v 胜j v ,有8i j L W +≥,则10i j W L +≤.

今证明,1210,,,W W W 只在5和4两个数中取值.

()1、先证明,15W =;

反证法,假若16W ≥,则13L ≤,若j v 是被1v 击败的任一人,由18j L W +≥得,5j W ≥, 又由104W ≤知,10v 不属于被1v 击败的人,从而10v 击败了1v ,于是被1v 击败的选手(至少6人),属于集合{}239,,,v v v ;又由10104,5W L ≤≥,击败10v 的人(至少5个)必在集

合{}239,,,v v v 中,其中必有一人r v ,他既被1v 击败,又击败了10v ,由“1v 击败r v ”知, 5r W ≥,故4r L ≤;由“r v 击败10v ”知,108r L W +≥,得104W ≥,结合前面104W ≤得 104W =.这样,1210,,,W W W 的取值情况是,{}1296,,,W W W ≥ 中至少有六数5≥,其余的数4≥,104W =,所以101

48i i W =≥∑,矛盾.故所设不真,从而1

5W ≤,前面已有, 15W ≥,所以15W =.

用同样的方法可得,105L =,从而104W =.

由121054W W W =≥≥≥= ,设其中有k 个5,10k -个4,据()455410k k =+-得5k =,所以1256105,4W W W W W ======= .进而有

1256104,5L L L L L ======= .

()2、称题意中的三角形为“连环套三角形”

,由于在图G 中,“连环套三角形”个数+“非连环套三角形”个数310120C ==;先求“非连环套三角形”个数:

因为从一点发出的每一对“出度”(或者每一对“入度”)确定一个“非连环套三角形”,而对于图G 中任一点P ,它或者有5个“出度”、4个“入度”;(或者有5个“入度”、4个

“出度”),共组成25C 个“出度对”,24C 个“入度对”(或者25C 个“入度对”,24C 个“出度

对”),共得以P 为一顶点的225416C C +=个“非连环套三角形”

,如不计重复,则10个点共产生160个“非连环套三角形”;

由于每个“非连环套三角形”,含有一个“出度对”和一个“入度对”,故被计算了两遍,因此,“非连环套三角形”共有160802

=个,从而“连环套三角形”个数为1208040-=个. 17、一次体育比赛共设有()2 2n n ≥个项目,每个选手恰好报名参加其中的两个项目,而任两个人都至多有一个相同的项目,假定对于每个{}1,2,,1k n ∈- ,不超过k 人报名的项目少于k 个.

证明:存在2n 个选手,使得每个项目都恰好有其中的两人参加.

证:用2n 个点表示这2n 个项目,若其中某两个项目被同一人选报,则令相应的两点相邻(即一条边表示一个选手),于是得到2n 阶简单图G ,且图G 满足“性质P ”:{}1,2,,1k n ?∈- ,度数k ≤的顶点至多1k -个.

只要证,图G 含有哈密顿圈(经过图G 每个顶点的圈),即G 为哈密顿图.

反证法,若图G 中不含哈密顿圈,则集合

H ={G G 是具有性质P 的2n 阶非哈密顿图}

不是空集,从而H 中有极大元0G (边数最多的),于是:

()1.因为0G 非哈密顿图,故其中必有不相邻的顶点,而对于任一对不相邻顶点,u v ,由0G 的极大性,添加边uv 后所得的图1G 便成为哈密顿图,即图1G 中有一个含有边uv 的哈密顿圈,于是在0G 中有一条以u 、v 为起、终点的哈密顿路:

122n v v v (其中12,n u v v v ==).

()2.对于0G 中任一对不相邻顶点,u v ,度数()(), d u d v 中至少有一个1n ≤-. 事实上,因顶点,u v 不相邻,据()1知,0G 中有一条以u 、v 为起终点的哈密顿路:

122n v v v (其中12,n u v v v ==),假若()(), d u n d v n ≥≥,若()d u r n =≥,

与u (即1v )相邻的r 个顶点记为12,,,r k k k v v v ()1222r k k k n =<<<< ,则对于每个1,2,,j r = ,顶点1j k v -都不与2n v (即v )相邻,否则在0G 中就有哈密顿圈:

1212211j j k n n k v v v v v v v -- ,这与0G 的选择矛盾.

所以 ()()()21211d v n r n n n ≤--≤--=-,而这又与()d v n ≥的假设矛盾.

()3.据()2知,0G 中必有度数1n ≤-的顶点,即集合

()(){},1v v V G d v n E =∈≤-不是空集,设1v 是集E 中度数最大的一个点,

记()(){}

1max 1d v m d v v n ==∈E ≤-,据性质P 知,集E 中至多有2n -个点,从而在0G 中至少有2n +个点的度数皆n ≥,于是在这2n +个点中必有一个不与1v 相邻的点(因为与1v 相邻的点只有m 个,而1m n ≤-),设该顶点为2n v ,(于是()2n d v n ≥).

既然1v 与2n v 不相邻,据0G 的极大性,有一条经过0G 所有顶点的哈密顿路:

122n v v v ,在这条哈密顿路上,与1v 相邻的m 个点记为12,,,m k k k v v v ,

()1222m k k k n =<<<< . 据()2的证法知,对每个11,2,, , j

k j m v -= 都不与2n v 相邻,而据性质P 中1k m n =≤-的情形知,在12111,,,m k k k v v v --- 这m 个点中,至少有一个

点的度数1m ≥+(因1m n ≤-,据性质P ,度数m ≤的顶点至多1m -个),设1t k v -是这样一个点,即()11t k d v m -≥+,又由m 的定义(m 是集E 中所有点的最大度数,而集E 中含有0G 中度数1n ≤-的所有点),既然()

11t k d v m -≥+,故该点不在集E 中,故进而知()1t k d v n -≥,又据前所选择,()2n d v n ≥,于是得到两个不相邻的顶点,其度数皆n ≥,从而与()2矛盾.

故原假设不真,因此图G 中有哈密顿圈,即本题的结论成立.

18、在一个九人小班中,已知没有4个人是相互认识的;求证:这个班能分成4个小组,使得每个小组中的人是互不认识的.

证:以九个点表示这九个人,如果某两人相识,则在相应两点间连红线,如不相识,则连蓝线,如此得九阶两色完全图G .

引理一:九阶红蓝两色完全图G 中,若不存在红色4K ,则必存在蓝色3K .

引理一证明:若G 中有一点1V 发出的蓝线4≥条,设为1,2,3,4,5i VV i =,据条件,2345,,,V V V V 之间至少有一条蓝边,例如23V V ,则123VV V 构成蓝色3K ,

若G 中每点发出的蓝线3≤条,即每点发出的红线5≥条,由于G 中“红度”奇顶点个数为偶数,其中必有一点1V 发出的红线6≥条,设1j VV 为红线()2,3,4,5,6,7j =,而由234567V V V V V V 组成的两色6K 中,据Ramsey 定理,必有单色3K ,且必是蓝色的.(若234V V V 为红色3K ,则1234VV V V 组成红色4K ,不合条件).

引理二:六阶红蓝两色完全图1G 中,有5条蓝边,且构成蓝

色5-圈,其余的边皆为红边;2G 为蓝色三角形,现将1G 的六

点与2G 的三点间两两连线红蓝染色,如此得九阶红蓝两色完全

图G ,如果G 中不存在红色4K ,则必可将G 中的九个点分为

四组,在每一组的点中,两两连线皆为蓝色.

引理二的证明:为表述方便,将红、蓝边分别用虚、实线表示,并将1G 的蓝色5-圈画成正五边形12345A A A A A ,2G 为蓝色三角形123VV V ,

(如图所示). 五边形的五条对角线与五边形的中心0A ,共作成五个红色3K ,2G 的每个顶点i V ,向这每个红色3K 顶点发出的三条边中,必有一条蓝边.

3

2121

()1.若2G 的每个顶点i V 都与0A 有蓝边相邻,则分组{}0123,,,A V V V ,{}12,A A , {}{}345,,A A A 合于条件;

()2.若2G 中只有两个顶点12,V V 与0A 有蓝边相邻,而3V 与0A 无蓝边相邻,由于上述五边形的每个顶点只能控制两个红色3K ,则3V 至少要与12345A A A A A 中的三点有蓝边相邻,于是必有两个相邻顶点,例如12A A 向3V 发出蓝边,这时分组

{}{}{}{}123120345,,,,,,,,A A V V V A A A A 合于条件;

()3.若2G 中只有一个顶点1V 与0A 有蓝边相邻,而23,V V 与0A 无蓝边相邻,则 23,V V 各至少要与12345A A A A A 中的三点有蓝边相邻,其中必有一点,例如1A 向23V V 发出蓝边,则分组{}{}{}{}011232345,,,,,,,,A V A V V A A A A 合于条件;

()4.若2G 中的每一顶点都不与0A 蓝边相邻,则123,,V V V 各至少要与12345A A A A A 中的三点有蓝边相邻,则或者有一点,例如1A 向123VV V 都发出蓝边,这时有分组 {}{}{}{}112323450,,,,,,,,A V V V A A A A A ;或者一点例如1A ,向2G 中的一边例如 12VV 发出蓝边,另有两个相邻顶点,例如23A A 向3V 发出蓝边,这时有分组 {}{}{}{}112233450,,,,,,,,A V V A A V A A A .引理得证.

回到本题,据引理一,设123VV V 为蓝色3K ;其余六点记为,,,,,A B C D E F ,在由,,,A B C D 组成的4K 中,必有蓝边,设为AB ;在由,,,C D E F 组成的4K 中,必有蓝边,设为CD ;其余两点,E F ,如连有蓝边,则有分组{}{}{}{}123,,,,,,,,V V V A B C D E F ; 今设EF 为红边,考虑由ABCDEF 六点组成的图0G :

()i 如在0G 中,自,E F 发出的边都为红边,由于四点组

{}{}{}{},,,ACEF ADEF BCEF BDEF 中都有蓝边,

则,,,AC AD BC BD 都是蓝边,因,AB CD 为蓝边,

于是{},,,A B C D 为蓝色4K , F

B

这时有分组{}{}{}{}123,,,VV V ABCD E F

().ii 若,E F 都向{},,,A B C D 发出蓝色边,据对称性,本质不同的情况有三种:(甲).,EA FB 为蓝边,这时有分组{}{}{}{}123,,,VV V EA

FB CD (乙).,EA FD 为蓝边,考虑四点组{}EBFC ,如BC 为蓝边,则有分组

{}123,VV V {}{}{},,EA DF BC ;如BE 为蓝边,则有分组{}123,VV V {}{}{},,ABE CD F ; 如EC 为蓝边,化为情形(甲).

(丙).,EA FA 为蓝边,考虑四点组{}{},EBFC EBFD ,当,BC BD 为蓝边,则有分组{}123,VV V {}{}{},,BCD FA

E ,其它蓝边情况前面均讨论过. ().iii 若,E

F 中,F 不发蓝边,止有E 发蓝边,本质不同的情况有三种:

(甲).E 只发一条蓝边,不妨设为,EA 考虑四点组{}{},EBFC EBFD ,得,BC BD 为蓝边,此时有分组 {}123,VV V {}{}{},,BCD AE F

(乙).E 只发两条蓝边,本质不同的情况有两种:若,EA EC 为蓝边,考虑四点组{}EBFD ,得BD 为蓝边,则ABDCE 为蓝色五边形,据引理二及前面的讨论,知结论成立;若,EA EB 为蓝边,则有分组 {}123,VV V {}{}{},,ABE CD F

(丙).E 至少发出3条蓝边,则必有蓝色三角形ABE (或CDE )此时有分组 {}123,VV V {}{}{},,ABE CD F .综上,得结论成立.

19、图G 中,若某四点之间恰有一条边,则称这样的四点组为G 的一个“单纯组”,对于所有的50阶图G ,求“单纯组”数目的最大值.

解:任取G 中的一条边ab ,并另行复制G 的两个版本12, G G ;

在1G 中关注点a :对于1G 中异于,a b 的每个点c ,作如下调整,如果ca 间已连有边,则补连cb 边,(若cb 已连边,则不必再施该步骤);如果ca 间未连边,则撤销cb 边,(若cb 未连边,则不必再施该步骤);对每个点c 都作这样的处理后,1G 便化为图A ,称A 为G 的“A -型替换图”;

在2G 中关注点b :对于2G 中异于,a b 的每个点c ,作如下调整,如果cb 间已连有边,则补连ca 边,(若ca 已连边,则不必再施该步骤);如果cb 间未连边,则撤销ca 边,(若ca 未连边,则不必再施该步骤);对每个点c 都作这样的处理后,2G 便化为图B ,称B 为G 的“B -型替换图”;

今用()S G 表示图G 中“单纯组”的个数,我们来证明:

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

图论张先迪李正良课后习题答案

习题一 作者---寒江独钓 1.证明:在n 阶连通图中 (1) 至少有n-1条边; (2) 如果边数大于n-1,则至少有一条闭迹; (3) 如果恰有n-1条边,则至少有一个奇度点。 证明: (1) 若G 中没有1度顶点,由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 若G 中有1度顶点u ,对G 的顶点数作数学归纳。 当n=2时,结论显然;设结论对n=k 时成立。 当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k. (2) 考虑G 中途径: 121:n n W v v v v -→→→→L 若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。于是: 1i i j i v v v v +→→→→L 为G 中一闭途径,于是 也就存在闭迹。 (3) 若不然,G 中顶点度数至少为2,于是由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 这与G 中恰有n-1条边矛盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1 (3) 2n?2 。 证明 :u 1的两个邻接点与v 1的两个邻接点状况不同。所以, 两图不同构。 4.证明下面两图同构。 u 1 v 1

证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。 (a) v 2 v 3 u 4 u (b)

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

一笔画问题是图论中一个著名的问题

一笔画问题是图论中一个著名的问题。一笔画问题起源于柯尼斯堡七桥问题。数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题[1]。一般认为,欧拉的研究是图论的开端。 与一笔画问题相对应的一个图论问题是哈密顿问题。 目录[隐藏] 1 问题的提出 2 一笔画定理 2.1 定理一 2.2 定理二 3 例子 3.1 七桥问题 3.2 一个可以一笔画的例子 4 一笔画问题与哈密顿问题 5 参见 6 参考来源 [编辑] 问题的提出 一笔画问题是柯尼斯堡问题经抽象化后的推广,是图遍历问题的一种。在柯尼斯堡问题中,如果将桥所连接的地区视为点,将每座桥视为一条边,那么问题将变成:对于一个有着四个顶点和七条边的连通图G(S,E),能否找到一个恰好包含了所有的边,并且没有重复的路径。欧拉将这个问题推广为:对于一个给定的连通图,怎样判断是否存在着一个恰好包含了所有的边,并且没有重复的路径?这就是一笔画问题。用图论的术语来说,就是判断这个图是否是一个能够遍历完所有的边而没有重复。这样的图现称为欧拉图。这时遍历的路径称作欧拉路径(一个圈或者一条链),如果路径闭合(一个圈),则称为欧拉回路[1]。 一笔画问题的推广是多笔画问题,即对于不能一笔画的图,探讨最少能用多少笔来画成。 [编辑] 一笔画定理 对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1]。 [编辑] 定理一 有限图G是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2。有限连通图G是圈当且仅当它没有奇顶点[2]。 证明[2][3]: 必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数。要么两者相差一:这时这个点必然是起点或终点之一。注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2。 充分性: 如果图中没有奇顶点,那么随便选一个点出发,连一个圈C1。如果这个圈就是原图,那么

经典图论问题

5经典图论问题 5.1 一笔画问题 一笔画算法即是从起点a开始选择关联边(第一这条边不是往回倒,第二这条边在前面延伸路上没有出现过)向前延伸,如果到达终点b,得到a—b迹,判断路上的的边数是否为图的总边数,是就终止,否则选择迹上某个关联边没有用完的顶点v,用同样方式再搜索v—v的闭迹,添加到a—b迹上,即得到a—v---v—b迹,如果这个迹的边数还没有达到总边数,则再选择迹上某个关联边没有用完的顶点。。。。。。逐步扩展即可。

二、弗罗莱(Fleury )算法 任取v 0∈V(G),令P 0=v 0; 设P i =v 0e 1v 1e 2…e i v i 已经行遍,按下面方法从中选取e i+1: (a )e i+1与v i 相关联; (b )除非无别的边可供行遍,否则e i+1不应该为G i =G-{e 1,e 2, …, e i }中的桥(所谓桥是一条删除后使连通图不再连通的边); (c )当(b )不能再进行时,算法停止。 5.2 中国邮递员问题(CPP ) 规划模型: 设ij x 为经过边j i v v 的次数,则得如下模型。 ∑∈= E v v ij ij j i x z ?min ∑ ∑ E ∈E ∈∈=j i i k v v i v v ki ij V v x x , E ∈∈≤j i ij v v N x ,1 ..t s

5.3旅行推销员问题(TSP,货郎担问题)(NPC问题) 定义:包含图G的所有定点的路(圈)称为哈密顿路(圈),含有哈密顿圈得图称为哈密顿图。 分析:从一个哈密顿圈出发, 算法一:(哈密顿圈的充要条件:一包含所有顶点的连通子图,二每个顶点度数为2) 象求最小生成树一样,从最小权边加边,顶点度数大于3以及形成小回路的边去掉。 算法二: 算法三:

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

图论讲义第3章-匹配问题

第三章 匹配理论 §3.1 匹配与最大匹配 定义3.1.1 设G 是一个图, )(G E M ?,满足:对i e ?,M e j ∈,i e 与j e 在G 中不相邻,则称M 是G 的一个匹配。对匹配M 中每条边uv e =,其两端点 u 和 v 称为被匹配M 所匹配,而 u 和 v 都称为是M 饱和的(saturated vertex )。 注:每个顶点要么未被M 饱和, 要么仅被M 中一条边饱和。 定义3.1.2 设M 是G 的一个匹配, 若G 中无匹配M ′, 使得||||M M >′, 则称M 是G 的一个最大匹配;如果G 中每个点都是M 饱和的, 则称M 是G 的完美匹配(Perfect matching ). 显然, 完美匹配必是最大匹配。 例如,在下图G 1中,边集{e 1}、{e 1,e 2}、{e 1,e 2,e 3}都构成匹配,{e 1,e 2,e 3}是G 1的一个最大匹配。在 G 2中,边集{e 1,e 2,e 3,e 4}是一个完美匹配,也是一个最大匹配。 定义3.1.3 设M 是G 的一个匹配, G 的M 交错路是指其边M 和M G E \)(中交替出现的路。如果G 的一条M 交错路(alternating path)的起点和终点都是M 非饱和的,则称其为一条M 可扩展路或M 增广路(augmenting path)。 定理 3.1.1(Berge,1957) 图G 的匹配M 是最大匹配的充要条件是G 中不存在M 可扩展路。 证明:必要性:设M 是G 的一个最大匹配。如果G 中存在一个M 可扩展路P ,则将P 上所有不属于M 的边构成集合M ′。显然M ′也是G 的一个匹配且比M 多一条边。这与M 是最大匹配相矛盾。 充分性:设G 中不存在M 可扩展路。若匹配M 不是最大匹配,则存在另一匹配M ′,使 ||||M M >′. 令 ][M M G H ′⊕=,(M M M M M M ′?′=′⊕∩∪称为对称差)。 则H 中每个顶点的度非1即2(这是因为一个顶点最多只与M 的一条边及M ′的一条边相关联)。故H 的每个连通分支要么是M 的边与M ′的边交替出现的一个偶长度圈,要么是M 的边与M ′的边交替出现的一条路。 由于||||M M >′,H 的边中M ′的边多于M 的边,故必有H 的某个连通分支是一条路,且始于M ′的边又终止于M ′的边。这条路是一条M 可扩展路。这与条件矛盾。 证毕。

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。证明这n 个人中必有3个人互相认识。 注:[n /2]表示不超过n /2的最大整数。 证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。由条件可知,G 是具有n 个顶点的简单图,并且有 (1)对每个顶点x , )(x N G ≥[n /2]; (2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有 两个顶点相邻。 需要证明G 中有三个顶点两两相邻。 反证,若G 中不存在三个两两相邻的顶点。在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。 情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。故k ≠r+1,同理t ≠r+1。所以t=r,k=r 。记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。若x i0y j0?E ,则与x i0相邻的顶点只能是(N G (x 1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G (y 1)-{x j0})∪{w}。但与w 相邻的点至少是3,故N G (x 1)∪N G (y 1)中存在一个不同于x i0和y j0顶点z 与w 相邻,不妨设z ∈N G (x 1),则z ,w ,x i0两两相邻,矛盾。 题1:已知图的结点集V ={a ,b ,c ,d }以及图G 和图D 的边集合分别为: E (G )={(a ,a ), (a ,b ), (b ,c ), (a ,c )} E (D)={, , , , } 试作图G 和图D ,写出各结点的度数,回答图G 、图D 是简单图还是多重图? 解: a d a d b c b c 图G 图D 例2图

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

图论问题

图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。 图论与数学的关系 图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。 图论的起源 图论起源于著名的柯尼斯堡七桥问题。在柯尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来 问题是要从这四块陆地中任何一块开始,通过每一座桥正好一次,再回到起点。然而无数次的尝试都没有成功。欧拉在1736年解决了这个问题,他用抽像分析法将这个问题化为第一个图论问题:即把每一块陆地用一个点来代替,将每一座桥用联接相应的两个点的一条线来代替,从而相当于得到一个“图”(如下图)。 欧拉证明了这个问题没有解,并且推广了这个问题,给出了对于一个给定的图可以某种方式走遍的判定法则。这就是后

来的欧拉路径和欧拉回路。这项工作使欧拉成为图论〔及拓扑学〕的创始人。 汉密尔顿的游戏与图论 1859年,英国数学家汉密尔顿发明了一种游戏:用一个规则的实心十二面体,它的20个顶点标出世界著名的20个城市,要求游戏者找一条沿着各边通过每个顶点刚好一次的闭回路,即“绕行世界”。用图论的语言来说,游戏的目的是在十二面体的图中找出一个生成圈。这个生成圈后来被称为汉密尔顿回路。这个问题后来就叫做汉密尔顿问题。由于运筹学、计算机科学和编码理论中的很多问题都可以化为汉密尔顿问题,从而引起广泛的注意和研究。 四色猜想 在图论的历史中,还有一个最著名的问题--四色猜想。这个猜想说,在一个平面或球面上的任何地图能够只用四种颜色来着色,使得没有两个相邻的国家有相同的颜色。每个国家必须由一个单连通域构成,而两个国家相邻是指它们有一段公共的边界,而不仅仅只有一个公共点。这一问题最早于1852年由Francis Guthrie提出,最早的文字记载则现于德摩根于同一年写给哈密顿的信上。包括凯莱、肯普等在内的许多人都曾给出过错误的证明。泰特(Tait)、希伍德(Heawood)、拉姆齐和哈德维格(Hadwiger)对此问题的研究与推广引发了对嵌入具有不同亏格的曲面的图的着色问题的研究。一百多年后,四色问题仍未解决。1969年,Heinrich Heesch发表了一

2004图论复习题答案

图论复习题答案 一、 判断题,对打√,错打 1.无向完全图是正则图。( √ ) 2.零图是平凡图。( ) 3.连通图的补图是连通图. ( ) 4.非连通图的补图是非连通图。( ) 5.若连通无向简单图G中无圈,则每条边都是割边。( √ ) 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。( ) 7.任何树都至少有2片树叶。( ) 8.任何无向图G都至少有一个生成树。( ) 9.非平凡树是二分图。( √ ) 10.所有树叶的级均相同的二元树是完全二元树。( ) 11.任何一个位置二元树的树叶都对应唯一一个前缀码。( √ ) 12.3,3 K是欧拉图也是哈密顿图。( ) 13.二分图的对偶图是欧拉图。( ) 14.平面图的对偶图是连通图。( √ ) 15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。( )二、填空题 1.无向完全图K6有 15 条边。 2.有三个顶点的所有互不同构的简单无向图有 4 个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有 10 片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集 有 n-1 个,基本圈有 m-n+1 个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要 加k / 2 条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2 个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。(2)求D的可达性矩阵。 (3)求D的强分图。 a b e 图1

解: (1) M=????????????????00010 1000000001 010******* M 2 =?? ?? ??? ? ??? ?????010******* 00010 1000001000 M 3=????????????????1000001000010000001010000 M 4=??????? ?????????0001001000100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4 =????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??? ???? ? ??? ?? ???010000001000010 1000001000 + ????????????????1000001000010000001010000 +??? ?? ???????????0001001000100000100000010 = ??? ???? ? ????????21020 13010111110202011021 D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4 )=??? ???? ? ????? ???110101********* 1101011011 (3)R T =????????????????11111 1111100100 1111100101 R×R T =??? ???? ? ??? ?????11010 11010 001001101000001 由矩阵R×R T 可知,该有向图的强分图有:{a},{ b ,d ,e}, { c} a b e 图1

maab图论程序算法大全

图论算法m a t l a b实现求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 0 11 0 17 0 0 0 0 0 8 0 0 0 0 0]; %弧容量 b=[0 4 1 0 0 0 0 0 6 1 0 2 0 3 0 0 0 0 0 2 0 0 0 0 0]; %弧上单位流量的费用 wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值 for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流 while(1)

for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图 for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路 for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;e nd if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 向赋权图中不会含负权回路, 所以不会出现k=n dvt=Inf;t=n; %进入调整过程, dvt 表示调整量 while(1) %计算调整量 if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量 elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量

图论经典问题

常见问题: 1、图论的历史 图论以图为研究对象的数学分支。图论中的图指的是一些点以及连接这些点的线的总体。通常用点代表事物,用连接两点的线代表事物间的关系。图论则是研究事物对象在上述表示法中具有的特征与性质的学科。 在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。例如,国家用点表示,有外交关系的国家用线连接代表这两个国家的点,于是世界各国之间的外交关系就被一个图形描述出来了。另外我们常用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。 事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。由此经数学抽象产生了图的概念。研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。 图论的产生和发展经历了二百多年的历史,大体上可分为三个阶段: 第一阶段是从1736年到19世纪中叶。当时的图论问题是盛行的迷宫问题和游戏问题。最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。 东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。这就是有名的哥尼斯堡七桥问题。 哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。 瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。这篇论文被公认为是图论历史上的第一篇论文,Euler也因此被誉为图论之父。 欧拉把七桥问题抽象成数学问题---一笔画问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。Euler是这样解决这个问题的:将四块陆地表示成四个点,桥看成是对应结点之间的连线,则哥尼斯堡七桥问题就变成了:从A,B,C,D任一点出发,通过每边一次且仅一次返回原出发点的路线(回路)是否存在?Euler证明这样的回路是不存在的。 第二阶段是从19世纪中叶到1936年。图论主要研究一些游戏问题:迷宫问题、博弈问题、棋盘上马的行走线路问题。一些图论中的著名问题如四色问题(1852年)和Hamilton环游世界问题(1856年)也大量出现。同时出现了以图为工具去解决其它领域中一些问题的成果。1847年德国的克希霍夫(G.R.Kirchoff)将树

图论及其应用 答案电子科大

习题三: ● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对12,u V v V ?∈?∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必含。 必要性:取12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 : 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此得到新图,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈上,于是 中u 与边都位于同一个 圈上。 : 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e ,若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,显然的是阶数大于3的块,则两条边的三个不同点在同一条路上。 : 连通,若不是块,则中存在着割点,划分为不同的子集块,,,无环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。 证明:是单图的割点,则有两个连通分支。现任取, 如果不在的

同一分支中,令是与 处于不同分支的点,那么,与在的补图中连通。若在的同一分支中,则它们在的补图中邻接。所以,若是的割点,则不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给 出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G). 解: 通常. 整个图为,割点左边的图为的的子图, ,则. e H

图论及其算法

《图论及其算法》 --最短路问题 学院:通信学院 姓名:周旋 学号: S110131133 指导老师:陈六新

摘要 图论是数学的一个分支,它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这些图形通常用来描述某些事物之间的特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有的关系。通过对《图论及其应用》中最短路问题的深入学习,本文利用Dijkstra算法来解决日常生活中寻找最短路的问题。同时也是对本学期学习知识的巩固。 关键词:最短路径 Dijkstra算法迭代

Abstract Graph theory is a branch of mathematics, it studies the object of picture. Graph theory graph is given by the number of points and lines connecting the two points of the graphic form. These graphics are often used to describe a specific relationship between certain things. And with the point on behalf of things, with the line connecting the two points that have a corresponding relationship between two things. Through the "Graph Theory and Its Applications," in-depth study of the shortest path problem. In this paper, we use The Dijkstra's algorithm not only to solve everyday life to find the shortest path problem, but also for the consolidation of the semester to learn the knowledge. Keyword: shortest path Dijkstra's algorithm Iteration

数学竞赛中的图论问题

数学竞赛中的图论问题

分类号密级 U D C 编号 本科毕业论文(设计) 题目数学竞赛中的图论问题 所在院系数学与数量经济学院 专业名称数学与应用数学 年级 08级 学生姓名李曼 学号 0850410013 指导教师孙静

二 0一二年三月 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在孙静老师的指导下独立进行研究所取得的研究成果. 除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者:

日期:2012年3月29日 文献综述 一综述 在18世纪30年代,一个非常有趣的问题引起了欧洲数学家的浓厚兴趣,这个问题就是著名的哥尼斯堡七桥问题,即要求遍历哥尼斯堡七桥中的每一座桥恰好一次后回到出发点. 欧拉证明这是不可能完成的. 此后,欧拉发表了著名的论文《依据集合位置的阶梯方法》,这是图论领域的第一篇论文,标志着图论的诞生. 图论的真正发展始于20世纪五六十年代之间,是一门既古老又年轻的学科. 图论极有趣味性,严格来讲,它是组合数学的一个重要分支. 虽然图论只是研究点和线的学科,但是它的应用领域十分广泛,不仅局限于数学和计算机学科,还涵盖了社会学、交通管理等. 总的来说,图论这门科学具有以下特点:(1)图论蕴含了丰富的思想、漂亮的图形和巧妙的证明; (2)涉及的问题多且广泛,问题表明上简单朴素,本质上却十分深刻复杂; (3)解决问题的方法千变万化,非常灵活,常常是一种问题一种解法. 由以上三个特点可以看出,图论与其他的数学分支不同,它不像群论、拓扑等学科那样有一套完整的体系和解决问题的系统. 而且图论所研究的内容非常广泛,如图的连通性、遍历性、图的着色、图的可平面性等等. 二内容 由于图论具有蕴含了丰富的思想、漂亮的图形和巧妙的证明,涉及的问题多且广泛,问题表面上简单朴素,本质上却十分深刻复杂,解决问题的方法千变万化,非常灵活,常常是一种问题一种解法的特点. 随着数学竞赛越来越规范化,并且越来越考察考生的灵活运用知识的能力. 因此近年来,图论问题频繁的出现在数学竞赛中,如典型的一笔画问题、中国邮递员问题、旅游推销员问题、排课表问题等.

电子科技大学研究生试题图论及其应用参考答案

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8 分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k 七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X | v v 1 3 图G

图论讲义2连通性

第二章 图的连通性 连通图:任二顶点间有路相连。 例 可见在连通图中,连通的程度也是有高有低。 本章的目的就是定义一种参数来度量连通图连通程度的高低。 §2.1 割边、割点与连通度 一、割点: 定义2.1.1 设)(G V v ∈,如果)()(G w v G w >?,则称v 为G 的一个割点。(该定义与某些著作有所不同,主要是在有环边的顶点是否算作割点上有区别)。 例 定理2.1.1 如果点v 是图G 的一个割点,则边集E (G)可划分为两个非空子集1E 和2E ,使得 ][1E G 和][2E G 恰好有一个公共顶点v 。 推论2.1.1 对连通图G ,顶点v 是G 的割点当且仅当v G ?不连通。 以上两个结论的证明留作习题。 定理2.1.2 设v 是树T 的顶点,则v 是T 的割点当且仅当1)(>v d 。 证明:必要性:设v 是T 的割点,下面用反证法证明1)(>v d 。 若0)(=v d ,则1K T ?,显然v 不是割点。 若1)(=v d ,则v T ?是有1)(??v T ν条边的无圈图,故是树。从而)(1)(T w v T w ==?。因此v 不是割点。 以上均与条件矛盾。 充分性:设1)(>v d ,则v 至少有两个邻点u ,w 。路uvw 是T 中一条),(w u 路。因T 是树,uvw 是T 中唯一的),(w u 路,从而)(1)(T w v T w =>?。故v 是割点。证毕。 推论2.1.2 每个非平凡无环连通图至少有两个顶点不是割点。 证明:设T 是G 的生成树,则T 至少有两个叶子u ,v ,由上一定理知,u ,v 都不是T 的割点,即1)()(==?T w u T w 。由于u T ?是图u G ?的生成树,故 )(1)()()(G w T w u T w u G w ===?=?,

相关文档