文档库 最新最全的文档下载
当前位置:文档库 › 并联有源电力滤波器交流侧滤波电感的优化设计

并联有源电力滤波器交流侧滤波电感的优化设计

并联有源电力滤波器交流侧滤波电感的优化设计
并联有源电力滤波器交流侧滤波电感的优化设计

并联有源电力滤波器交流侧滤波电感的优化设计摘要:探讨了一种并联有源电力滤波器的交流侧滤波电感优化设计的方法;并应用于一台15kVA并联有源电力滤波器的实验模型中,进行了实验验证。

关键词:谐波;有源电力滤波器;滤波电感设计

0 引言

并联有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,近年来,有源电力滤波器的理论研究和应用均取得了较大的成功。对其主电路(VSI)参数的设计也进行了许多探讨,但是,目前交流侧滤波电感还没有十分有效的设计方法,然而该电感对有源滤波器的补偿性能十分关键。本文通过分析有源电力滤波器的交流侧滤波电感对电流补偿性能的影响,在满足一定效率的条件下,探讨了该电感的优化设计方法,仿真和实验初步表明该方法是有效的。

1 三相四线并联型有源电力滤波器的结构与工作原理

图1为三相四线制并联型有源电力滤波器的结构。主电路采用电容中点式的电压型逆变器。电流跟踪控制方式采用滞环控制。

图1 三相四线制并联型有源滤波器的结构

以图2的单相控制为例,分析滞环控制PWM调制方式实现电流跟踪的原理。在该控制方式中,指令电流计算电路产生的指令信号i c*与实际的补偿电流信号i c进行比较,两者的偏差作为滞环比较器的输入,通过滞环比较器产生控制主电路的PWM的信号,此信号再通过死区和驱动控制电路,用于驱动相应桥臂的上、下两只功率器件,从而实现电流i c 的控制。

图2 滞环控制PWM调制方式实现电流跟踪的原理图

以图3中A相半桥为例分析电路的工作过程。开关器件S1和S4组成A相的半桥变换器,电容C1和C2为储能元件。u c1和u c2为相应电容上的电压。为了能使半桥变换器正常跟踪指令电流,应使其电压u c1和u c2大于输入电压的峰值。

(a)i ca>0,d i ca/d t>0(b)i ca>0,d i ca/d t<0

(c)i ca<0,d i ca/d t<0(d)i ca<0,d i ca/d t>0

图3 电压型逆变器A相工作过程图

当电流i ca>0时,若S1关断,S4导通,则电流流经S4使电容C2放电,如图3(a)所示,同时,由于u c2大于输入电压的峰值,故电流i ca增大(d i ca/d t>0)。对应于图4中的t0~t1时间段。

当电流增大到i ca*+δ时(其中i ca*为指令电流,δ为滞环宽度),在如前所述的滞环控制方式下,使得电路状态转换到图3(b),即S4关断,电流流经S1的反并二极管给电容C1充电,同时电流i ca下降(d i ca/d t<0)。相对应于图4中的t1~t2时间段。

图4 滞环控制PWM调制器的工作状态

同样的道理可以分析i ca<0的情况。通过整个电路工作情况分析,得出在滞环PWM 调制电路的控制下,通过半桥变换器上下桥臂开关管的开通和关断,可使得其产生的电流在一个差带宽度为2δ的范围内跟踪指令电流的变化。

当有源滤波器的主电路采用电容中点式拓扑时,A,B,C三相的滞环控制脉冲是相对独立的。其他两相的工作情况与此相同。

2 滤波电感对补偿精度的影响

非线性负载为三相不控整流桥带电阻负载,非线性负载交流侧电流i L a及其基波分量如图5所示(以下单相分析均以A相为例)。指令电流和实际补偿电流如图6所示。当指令电流变化相对平缓时(如从π/2到5π/6段),电流跟踪效果好,此时,网侧电流波形较好。而当指令电流变化很快时(从π/6开始的一小段),电流跟踪误差很大;这样会造成补偿后网侧电流的尖刺。使网侧电流补偿精度较低。

图5 三相不控整流负载交流侧A相电流及基波分量

图6 指令电流与实际补偿电流波形

假如不考虑指令电流的计算误差,则网侧电流的谐波含量即为补偿电流对指令电流的跟踪误差(即图6中阴影A1,A2,A3,A4部分)。补偿电流

对指令电流的跟踪误差越小(即A1,A2,A3,A4部分面积越小),网侧电流的谐波含量(尖刺)也就越小,当补偿电流完全跟踪指令电流时(即A1,A2,A3,A4部分面积为零时),网侧电流也就完全是基波有功电流。由于滞环的频率较高,不考虑由于滞环造成的跟踪误差,则如图6所示网侧电流的跟踪误差主要为负载电流突变时补偿电流跟踪不上所造成的。

分析三相不控整流桥带电阻负载,设I d为负载电流直流侧平均值。I p为负载电流基

波有功分量的幅值,I0=I d。

下面介绍如何计算A1面积的大小,

在π/6<ωt<π/2区间内

i c*(ωt)=I p sinωt-I d(1)

在π/6<ωt<ωt1一小段区间内,电流i c(ωt)可近似为直线,设a1为直线的截距,表达式为

i c(ωt)=a1-×t(2)

i c(π/6)=i c*(π/6)(3)

i c(t1)=i c*(t1)(4)

由式(1)~式(4)可以求出a1及t1的值。

在π/6<ωt<ωt1(即1/600

A1=(i c-i c*)d t=0.405

同样可以求出A2,A3,A4的面积。

A2=0.405

由对称性,得到A3=A1,A4=A2

因此,在一个工频周期内,电流跟踪误差的面积A为

A=A1+A2+A3+A4=+(5)

这里假定上电容电压U c1等于下电容电压U c2,U sm为电网相电压峰值,L为滤波电感值(假设L a=L b=L c=L),I d为非线性负载直流侧电流。

3 滤波电感对系统损耗的影响

有源滤波器一个重要的指标是效率,系统总的损耗P loss为

P loss=P on+P off+P con+P rc(6)

式中:P on为开关器件的开通损耗;

P off为开关器件的关断损耗;

P con为开关器件的通态损耗;

P rc为吸收电路的损耗。

3.1 IGBT的开通与关断损耗

有源滤波器的A相主电路如图7所示。假设电感电流i c为正时,则在S4开通之前,电流i c通过二极管D1流出,当S4开通后,流过二极管D1的电流逐渐转移为流过S4,只有当D l中电流下降到零后,S4两端的电压才会逐渐下降到零。因此,在S4的开通过程中,存在着电流、电压的重叠时间,引起开通损耗,如图8所示。

图7 A相桥臂原理图

图8 开通损耗模型

由图8可知单个S4开通损耗为

P≈d t(7)

开通损耗为

P on=6×P=6××f s(8)

I av=|i c(t)|d t(9)

式中:i c(t)为IGBT集电极电流;

U c为集射之间电压(忽略二极管压降即为主电路直流侧电压);

t on为开通时间;

T0为一个工频周期;

f s为器件平均开关频率;

I av为主电路电流取绝对值后的平均值。

类似可推得关断损耗为

P off=6××f s(10)

式中:t off为关断时间。

3.2 IGBT的通态损耗

假设t con为开关管导通时间,考虑到上下管占空比互补,可假设占空比为50%,即t con=0.5T s。

则通态损耗为

P con=6∑i c(t)U ces t con/T0=3I av U ces(11)

式中:T s为平均开关周期;

U ces为开关管通态时饱和压降。

3.3 RC 吸收电路的损耗

RC 吸收电路的损耗为

P rc=6×C s U c2f s (12)

式中:C s为吸收电容值。

f s=(13)

通过以上分析,可以得到系统总损耗为

P loss=P on+P off+P con+P rc(14)

4 滤波电感的优化设计

在满足一定效率条件下,寻求交流侧滤波电感L,使补偿电流跟踪误差最小。得到如下的优化算法。

优化目标为min A(U c,L)

约束条件为P loss≤(1-η)S APF (15)

应用于实验模型为15kVA的三相四线制并联有源滤波器,参数如下:

S APF=15kVA,V sm=310V,η=95%,

I d=103A,I av=18A,δ=1A,

C s=4700pF,U ces=3V,t on=50ns,

t off=340ns。

在约束条件下利用Matlab的优化工具箱求目标函数最小时L与U c1的值。可得到优化结果为:跟踪误差A=0.1523,此时交流侧滤波电感L=2.9mH,直流侧电压U c=799V。

5 仿真与实验结果

图10L取 5 mH时

有源滤波器交流侧滤波电感直接影响谐波电流的补偿性能,因此,电感参数的选取十分关键,本研究基于15kVA的电力有源滤波器的实验模型,提出了一种优化设计交流侧滤波电感的方法,仿真和初步实验表明采用本方法选取的电感值,在满足一定效率的条件下,可获得较好的补偿性能,补偿后的网侧电流畸变率小。

并联型混合有源滤波器的研究

并联混合型有源电力滤波器的研究随着电力电子装置的大量使用,电力系统的谐波和不对称问题日益严重,由谐波引起的各种故障和事故也不断发生。因此,需要对电网谐波采取有效的抑制措施。通常使用传统LC无源滤波器来控制电力系统中的谐波,但无源滤波器 有以下几个缺点:(1)电源及线路的阻抗影响补偿特性;(2)电源端的阻抗和无源滤波器会产生谐振,导致某些谐波放大;(3)只能补偿一定频率的谐波。电力有源滤波器可以减少上述缺点,但其初期投资运行费用较高,这主要由于它采用响应较快的PWM变流器。目前,谐波抑制的一个重要趋势是采用有源电力滤波器( Active PowerFilter,APF)。APF 是一种可以动态地抑制谐波和补偿无功的电力电子装置,对大小和频率都变化的谐波和无功进行补偿,其应用可克服LC 滤波器等传统的谐波抑制和无功补偿方法的缺点。 并联混合型有源电力滤波器(APF)由两大部分组成:指令电流运算电路和补偿电流发生电路。指令电流运算电路的核心是检测出补偿对象电流中的谐波电流分量,因此也可称为谐波电流检测电路。而补偿电流发生电路又包括电流跟踪电路、驱动电路和主电路三部分。并联混合型有源电力滤波器(APF)的基本原理是:由无源滤波器滤除负载中大部分的谐波,同时将负载和无源滤波器看成一个补偿对象,使用有源滤波器进行动态补偿,有源滤波器检测补偿对象的电压和电流。经指令电流运算电路计算得出指令电流的补偿信号,该信号经补偿电流发生电路放大,得出补偿电流。补偿电流与负载电流要补偿的谐波电流抵消,最终得到期望的电源电流。APF 系统的原理如图1 所示。ua是电压us中的a 相电压,负载为谐波源,产生谐波并消耗无功,Udc为APF 直流侧电容的电压,iL、is分别为负载侧、网侧的a 相待检测电流,ic为有源滤波器a相的补偿电流。 APF 检测补偿对象的电压和电流,计算出补放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波电流抵消,最终得到期望的电源电流。

有源电力滤波器的研究热点和发展

有源电力滤波器的研究热点和发展 1、引言 近年来,随着电力电子技术的广泛应用,电能得到了更加充分的利用。但电力电子装置自身所具有的非线性也使得电网的电压和电流发生畸变,这些高度非线性设备数量和额定容量的日益增大使得电力系统谐波污染问题日益严重,已成为了影响电能质量的公害,对电力系统的安全、经济运行造成极大的影响;而另一方面供电方及其电力系统设备、用户及其用电器对电能质量的要求越来越高,这一矛盾使得人们对谐波污染问题越来越重视。据《中国电力》报道,我国仅由电能质量问题造成的年电能损失就高达400多亿元,冶金、铁路、矿山等企业的谐波严重超标,因谐波问题导致的开关跳闸、大面积停电甚至电力系统解列等事故也屡见不鲜,因此对电力系统的谐波污染进行综合治理已成为摆在科技工作者面前的一个具有重要现实意义的研究课题。而有源电力滤波器 由于具有高度可控性和快速响应性,能对频率和幅值都变化的谐波进行跟踪补偿,因而受到广泛的重视,成为目前国内外供电系统谐波抑制研究的热点。 2、谐波治理的措施 目前,在电力系统中抑制或减少谐波主要从两个方面进行:第一方面是从产生谐波的谐波源装置本身入手。在这些装置设计时就考虑减小谐波的方法,增加谐波抑制环节,已减少电网的谐波注入量,在谐波源本身采取一些措施能大大减小电网谐波。但由于现代电力系统的复杂性以及电力半导体装置开关工作方式,不可能完全消除电网谐波。所以,谐波治理的第二个重要方面就是研究对系统中的谐波进行有效滤波和补偿的方法和措施。下面分别简要介绍这两方面工作的现状和发展。 2.1治理谐波源 近年来,随着几种电力电子装置的大量应用,可控和不可控整流器在电力系统中的应用越来越普遍。这类型整流器在带大电感 (rl)负载时电流近似为方波。带大电容(rc)负载时电流为尖脉冲,使电力系统中的电流严重畸变,成为目前电力系统中主要谐波源,也是目前治理的重点。针对这一类整流器减少谐波、提高功率因数的方法和措施,概括起来主要有以下几种: (1)多相整 脉宽调制pwmpulsewidthmodulation)整流技术; 2.2谐波滤波与补偿 采用主动治理谐波源的方式,可有效限制谐波的产生,但由于谐波源的多样性,要完全

有源电力滤波器的发展历史和研究现状概述

有源电力滤波器的发展历史和研究现状概述 1969 年,Bird 和Marsh 等人提出通过向电网注入三次谐波电流来减少电流中 的谐波成分,从而改善电流波形的思想,这就是有源电力滤波技术的萌芽 [11]。 1971 年,日本的H.Sasaki 和T.Machida 提出有源电力滤波器技术,首次完整地描述了有源电力滤波器的基本原理:通过产生与负载谐波和无功电流大小相 等方向相反的补偿电流,来抵消负载谐波和无功电流,从而达到净化电网的目 的。但是由于当时电力电子技术的发展水平不高,全控型器件功率小、频率 低,采用线性放大器产生补偿电流, 损耗大、成本高,因而有源电力滤波器仅局限于实验研究,未能在工业中应 用。 1976 年,L.Gyugyi 等人提出用大功率晶体管构成PWM 逆变器控制APF 来抑制谐波,引起了普遍关注,确立了有源电力滤波器的主电路的基本拓扑结构和控 制方法,从原理上阐明了有源电力滤波器是一个理想的电流发生器,并讨论了 实现方法和相应的控制原理,奠定了有源电力滤波器的基础。 80 年代以来,随着大中功率全控型半导体器件的成熟和脉宽调制(Pulse Width Modulation PWM)控制技术的进步,对有源电力滤波器的研究逐渐活跃起来。这 一时期的一个重大突破是,1983 年H.Akagi 等人提出了“三相电路瞬时无功 功率理论”[12],以该理论为基础的谐波和无功电流检测方法在有源电力滤波 器中得到了成功的应用,极大地促进了有源电力滤波器的发展。 随着电力电子技术的发展,特别是高功率大电流的半导体器件及可关断晶闸管(GTO)的发展以及瞬时无功功率理论提出的发展,国内外对谐波问题的研究也不 断有新的进展,近年来,国际上有关有害电流检测和抑制技术的研究更是十分 活跃,每年都有量的论文发表。这一方面说明了这一研究的重要性,另一方面 也预示着这一领域的研究有望取得重大突破。 国外对有源电力滤波装置的开发研究工作始于20 世纪90 年代初期,到现在已进入实用化阶段。有源电力滤波技术作为改善供电质量的一项关键技术,其补 偿范围包括谐波、无功、畸变电压等,补偿对象有工业整流负载、电弧炉以及 电气化铁道等。在日本、美国以及德国等工业发达国家已得到了高度重视和日 益广泛的应用,APF 被公认为是今后改善电力系统电能质量的发展方向,现在 也已出现具有快速响应、稳定性高的有源滤波装置。目前,世界上APF 的主要生产厂家有日本三菱电机公司、美国西屋电气公司、德国西门子公司等。文献 显示,从1981 年以来,仅日本就有500 多台APF 投入运行,容量范围在 50kVA-60MVA;而在欧洲,投入运行的工业用并联APF 最大容量已经达到 610KVA[13]。

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

APF有源电力滤波器

有源电力滤波器 有源电力滤波器(APF:Active power filter)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源LC滤波器,只能被动吸收固定频率与大小的谐波而言,APF可以通过采样负载电流并进行各次谐波和无功的分离,控制并主动输出电流的大小、频率和相位,并且快速响应,抵销负载中相应电流,实现了动态跟踪补偿,而且可以既补谐波又补无功和不平衡。

1、概述 2、理论基础 3、工作原理 4、标准 5、三电平 ?技术优势 ?滤波器 ?基本应用 ?主要应用场合 ?其他 ?优势 6、性能说明 7、配件选型 1、概述 三相电路瞬时无功功率理论是APF发展的主要APF;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。 2、理论基础 有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!实际应用安全系数很低,国际普遍做法是以变压器升压,来保证可靠性,国家相关部

门也要求以变压器升压的形式和有源滤波器结合,治理高压谐波! 3、工作原理 Satons有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的 谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。 这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流

三相四线并联型有源电力滤波器的结构与工作原理

三相四线并联型有源电力滤波器的结构与工作原理 0 引言 并联有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,近年来,有源电力滤波器的理论研究和应用均取得了较大的成功。对其主电路(VSI)参数的设计也进行了许多探讨,但是,目前交流侧滤波电感还没有十分有效的设计方法,然而该电感对有源滤波器的补偿性能十分关键。本文通过分析有源电力滤波器的交流侧滤波电感对电流补偿性能的影响,在满足一定效率的条件下,探讨了该电感的优化设计方法,仿真和实验初步表明该方法是有效的。 1 三相四线并联型有源电力滤波器的结构与工作原理 图1为三相四线制并联型有源电力滤波器的结构。主电路采用电容中点式的电压型逆变器。电流跟踪控制方式采用滞环控制。 图1 三相四线制并联型有源滤波器的结构 以图2的单相控制为例,分析滞环控制PWM调制方式实现电流跟踪的原理。在该控制方式中,指令电流计算电路产生的指令信号ic*与实际的补偿电流信号ic进行比较,两者的偏差作为滞环比较器的输入,通过滞环比较器产生控制主电路的PWM的信号,此信号再通过死区和驱动控制电路,用于驱动相应桥臂的上、下两只功率器件,从而实现电流ic的控制。 图2 滞环控制PWM调制方式实现电流跟踪的原理图 以图3中A相半桥为例分析电路的工作过程。开关器件S1和S4组成A相的半桥变换器,电容C1和C2为储能元件。uc1和uc2为相应电容上的电压。为了能使半桥变换器正常跟踪指令电流,应使其电压uc1和uc2大于输入电压的峰值。 (a)ica>0,dica/dt>0(b)ica>0,dica/dt<0

(c)ica<0,dica/dt<0(d)ica<0,dica/dt>0 图3 电压型逆变器A相工作过程图 当电流ica>0时,若S1关断,S4导通,则电流流经S4使电容C2放电,如图3(a)所示,同时,由于uc2大于输入电压的峰值,故电流ica增大(dica/dt>0)。对应于图4中的t0~t1时间段。 当电流增大到ica*+δ时(其中ica*为指令电流,δ为滞环宽度),在如前所述的滞环控制方式下,使得电路状态转换到图3(b),即S4关断,电流流经S1的反并二极管给电容C1充电,同时电流ica下降(dica/dt<0)。相对应于图4中的t1~t2时间段。 图4 滞环控制PWM调制器的工作状态 同样的道理可以分析ica<0的情况。通过整个电路工作情况分析,得出在滞环PWM 调制电路的控制下,通过半桥变换器上下桥臂开关管的开通和关断,可使得其产生的电流在一个差带宽度为2δ的范围内跟踪指令电流的变化。 当有源滤波器的主电路采用电容中点式拓扑时,A,B,C三相的滞环控制脉冲是相对独立的。其他两相的工作情况与此相同。 2 滤波电感对补偿精度的影响 非线性负载为三相不控整流桥带电阻负载,非线性负载交流侧电流iLa及其基波分量如图5所示(以下单相分析均以A相为例)。指令电流和实际补偿电流如图6所示。当指令电流变化相对平缓时(如从π/2到5π/6段),电流跟踪效果好,此时,网侧电流波形较好。而当指令电流变化很快时(从π/6开始的一小段),电流跟踪误差很大;这样会造成补偿后网侧电流的尖刺。使网侧电流补偿精度较低。

有源电力滤波器装置主要应用于什么场合

有源电力滤波器装置主要应用于什么场合 安科瑞王志彬2019.03 小编给大家分享下有源电力滤波器装置主要应用场合领域: 随着国内外电力电子技术的发展,大量由电力电子开关构成的、具有非线性特性的用电设备广泛应用于冶金、钢铁、交通、化工等工业领域,如电解装置、电气机车、轧制机械、高频炉等,故国内外电网中的谐波污染状况日益严重。电网中的高次谐波会造成旋转电机和变压器过热,使电力电容器组工作不正常,甚至造成热击穿损坏;对电力系统中的发电机、调相机、继电保护自动装置和电能计量等也有很大危害,严重时会引发设备误动作,造成重大事故;谐波污染对通信、计算机系统、高精度加工机械,检测仪表等用电设备也有严重的干扰。因此,必须采取有效的措施来消除电网中的高次谐波。 在低压配电网中这些谐波污染问题显得尤为突出,严重影响到各种类大型厂矿的正常生产,如钢铁、煤矿、化工、纺织等企业,以及IT和大规模微电子集成电路企业,造成产品报废,生产线停产,生产设备的寿命骤减甚至损坏。 目前用户通常采用并联型无源滤波器来抑制谐波,但存在不少缺陷。现在的趋势是采用电力电子装置进行谐波补偿,即有源电力滤波器(APF)与前者相比apf有源滤波器能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网阻抗的影响。有源电力滤波器装置必定是消除谐波的主导产品 安科瑞ANAPF有源电力滤波器 1、概述 1.1谐波的产生 电力系统中理想的电压、电流波形都是频率为50Hz的正弦波,但是非线性电力设备(大功率可控硅、变频器、UPS、开关电源、中频炉等)的广泛应用产生了大量畸变的谐波电流,谐波电流耦合在线路上产生谐波电压。对非正弦的畸变电流作傅立叶级数分解,其中频率与工频相同的分量为基波,频率是基波频率整数倍的分量为谐波。谐波是电能质量的重要指标。 1.2谐波的危害 ●谐波使公用电网中的元件产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,甚至引起火灾。 ●谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等;使变压器局部严重过热;使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏。 ●引起电网谐振,使得谐波电流放大几倍甚至数十倍,会对系统,特别是对电容器和与之串联的电抗器形成很大的威胁,经常使电容器和电抗器烧毁。 ●谐波会导致继电保护,特别是微机综合保护器与自动装置误动作,造成不必要的供电中断和生产损失。谐波还会使电气测量仪表计量不准确,产生计量误差,给用电管理部门或电力用户带来经济损失。 ●临近的谐波源或较高次谐波会对通信及信息处理设备产生干扰,轻则产生噪声、降低通信质量、计算机无法正常工作,重则导致信息丢失,使工控系统崩溃。

串联和并联电力滤波器的基本原理

串联和并联电力滤波器的基本原理 谐波是交流系统中的概念,而纹波是针对直流系统来讲的,二者有区别,更有联系。交流滤波,是希望滤除工频(基波)分量以外的所有谐波分量,保证电源的正弦性。交流系统的电流畸变主要是由非线性负载引起的。而直流滤波,是希望滤除负载中直流分量以外的所有纹(谐)波分量,这些纹(谐)波分量主要是由直流电(压)源中的纹波电压分量在负载中引起的。直流系统中的纹波分量也是由各次谐波分量构成的。交流系统和直流系统中抑制谐波的目的是相同的:抑制不希望在电源或负载中出现的谐波分量。直流有源电力滤波器(DCAPF)与交流有源电力滤波器,都是采用主动的而不是被动的方法或手段去吸收或消除谐(纹)波。因而直流有源电力滤波器和交流有源电力滤波器的工作原理是相同或相近的。但是,由于作用的对象不同,直流有源电力滤波器也有自己的特点。与交流有源电力滤波器相似,按照其与直流负载的联结方式,直流有源电力滤波器也可分为串联直流有源电力滤波器和并联直流有源电力滤波器。串联直流有源电力滤波器的工作原理是:检测整流器经平波电抗器(无源滤波器)后的输出电压,通过低通滤波器将纹波电压分离出来,用此信号控制直流有源电力滤波器的输出电压,并使与的大小相等,相位相反,从而达到显著减小直流负载中纹波电流的目的。直流有源电力滤波器相当于电压控制电压源(VCVS)的逆变器。采用串联直流有源电力滤波器时,可以不必串联平波电抗器。并联直流有源电力滤波器的工作原理是:检测平波电抗器(无源滤波器)的输出电流Id+ih,通过低通

滤波器将纹波电流ih分离出来,用此信号控制直流有源电力滤波器的输出电流iah,使ih与iah的大小相等,相位相同,从而使直流负载上的纹波电流分流,达到减小直流负载中纹波电流的目的。直流有源电力滤波器相当于电流控制电流源(CCCS)的逆变器。也可以检测整流器经平波电抗器后的输出电压,通过低通滤波器将纹波电压分离出来,用此信号控制直流有源电力滤波器的输出电流iah,使直流负载上的纹波电流分流,同样可以达到降低直流负载中纹波电流的目的。虽然直流有源电力滤波器在理论上不能彻底消除负载端的纹波电流,但可以使其大幅度地衰减。这时,直流有源电力滤波器相当于电压控制电流源(VCCS)的逆变器。串联直流有源电力滤波器所抑制的是纹波电压,它通过全额负载电流。当负载电流较大时,直流有源电力滤波器必须采用多个器件并联运行,损耗也比较大,这是它的缺点。串联直流有源电力滤波器比较适合于对纹波电流要求低的电感量较小或纯阻性的直流负载。并联直流有源电力滤波器通过使谐波源产生的谐波电流分流达到抑制直流负载纹波的目的,它承受全额负载电压。而在稳定/脉冲直流电源中,这个电压不会太高,器件完全能够承受。当纹波电流比较低时,用较小的纹波电流来控制直流有源电力滤波器比较困难,可采用检测纹波电压来控制直流有源电力滤波器,使纹波电流分流。并联直流有源电力滤波器比较适合于电感量较大直流负载。

并联型有源电力滤波器的Matlab仿真

并联型有源电力滤波器的Matlab仿真 摘要:并联混合型有源电力滤波器能够很好地实现谐波抑制和无功补偿。给出了有源电力滤波器系统结构,建立了数学模型, 还给出了主电路直流侧电容电压值和交流侧电感值的选取方法,利用Matlab\simulink\PsB构建了仿真模型,得到了仿真结果。 关键词:有源电力滤波器;直流侧电容电压;交流测电感:Matlab/simulink Abstract :Shunt hybrid active power filter can commendably achieve hannonic suppression and reactive power compensation.In this paper,it shows the APF’s architecture and sets up amathematical model.And the way ofchoosing the value ofthe main circuit’s voltage ripple of DC side capacitor and the AC side inductance is proposed.MA TLAB\Simulink\PSB is used to build simulation model and then get the simulation results. Key words:APF;V oltage of DC side capacitor;AC side inductance;Matlab/Simulink 引言: 在谐波含量较高的配电网中,对无功功率补偿有着严格的要求。目前电力系统中无功补偿大都是采用机械开关控制的电容器投切,谐波补偿大多采用无源滤波装置,负序治理的工作尚未大范围开展。另外,无功补偿、负序电流补偿、谐波抑制是分别单独地进行的。由于不是按统一的数学模型综合地进行治理,常出现顾此失彼的情况,且响应速度慢、经济性差、安装维护工作量大,妨碍了电网污染治理工作的顺利进行。 1.有源滤波器的发展历史 有源滤波器的思想最早出现于1969年B.M.Bird和J.F.Marsh的论文中。文中描述了通过向交流电源注入三次谐波电流以减少电源中的谐波,改善电源电流波形的新方法。文中所述的方法认为是有源滤波器思想的诞生。1971年日本的H.Sasaki和T.Machida完整描述了有源电力滤波器的基本原理。1976年美国西屋电气公司的L.Gyugyi和E.C.Strycula提出了采用脉冲宽度调制控制的有源电力滤波器,确定了主电路的基本拓扑结构和控制方法,从原理上阐明了有源电力滤波器是一理想的谐波电流发生器,并讨论了实现方法和相应的控制原理,奠定了有源电力滤波器的基础。然而,在20世纪70年代由于缺少大功率可关断器件,有源电力滤波器除了少数的实验室研究外,几乎没有任何进展。进入20世纪80年代以来,新型半导体器件的出现,PWM技术的发展,尤其是1983年日本的H.Akagi等人提出了“三相电路瞬时无功功率理论”,以该理论为基础的谐波和无功电流检测方法在三相有源电力滤波器中得到了成功的应用,极大促进了有源电力滤波器的发展。 与无源滤波器相比,有源滤波器是一种主动型的补偿装置,具有较好的动态性能。有源电力滤波器是近年来电力电子领域的热门话题。目前,有源滤波技术已在日本、美国等少数工业发达国家得到应用,有工业装置投入运行,其装置容量最高可达60MV.A;国内对有源电力滤波器的研究尚处于起步阶段。 2、APF的基本工作原理 有源电力滤波器是一种用于动态抑制谐波、补偿无功的新型电力电子装置。它能对大小

RC有源低通滤波器

模拟电子技术课程设计报告 课程名称模拟电子技术基础课程设计设计题目RC有源低通滤波器 所学专业名称自动化 班级105班 学号2010210441 学生姓名梅连新 指导教师赵俊梅 2011年12月31 日

通滤波器 1.设计指标及要求 二阶低通,带外衰减速率大于-30dB/10倍频,f H3dB=1kHz,通带增益>=2。2.设计方案 ⑴二阶有源低通滤波电路工作原理:根据电容的通高频阻低频的特点和运放的“虚短”和“虚断”,可以用它们来组成一个带有反馈网络的低通滤波电路!二阶有源低通滤波电路由两节RC滤波电路和同相比例放大电路组成,其特点是输入阻抗高,输出阻抗低。电路原理图由图1所示。

(2)主要参数设定 参考《电子线路设计 实验 测试》第二版,华中科技大学出版社,147-148 页二阶低通滤波器设计表(表5.6.2)。表1是表5.6.2的一部分,主要用来设计参数的值: 表1 电路原器件值 (3)设计步骤 ① 根据设计要求,二阶有源低通滤波电路的电路原理图如图2-1; ② 设计电路参数值,由f H3dB =1kHz 得,取C=0.02uF,对应参数K=5; ③ 从设计表2-1得到Av=2时电容C1=C2=0.02uF,K=1时电阻R1=1.126k Ω,R2=2.250K Ω,R3=R4=6.752K Ω。 ④ 将上述电阻值乘以参数k=5,得:R1=5.63K Ω,R2=11.25K Ω,R3=R4=33.76K Ω。 ⑤ 试验调整、测量滤波器的性能参数及幅频特性。 首先输入信号V i =100mV ,观测滤波器的止频率f H 及电压放大倍数A V ,测得f H =1.028KHz ,A V =2.06V ,滤波器的衰减速率为-38.23dB/10倍频。基本满足设计指标的要求。由于△R/R 、△C/C 对w c 的影响较大,所以实验参数与设计表中的关系式之间存较大的误差。 (4)所涉及的公式 ①这个电路的电压增益就是低通滤波器的通带电压增益,即:A0=A VF=1+R3/R4 ②电路的传递函数: 2 )()3(1)()()(sCR sCR Avf Avf s Vi s Vo s A +-+= = ③对于二阶低通滤波器有Q=0.707,截止频率f H ,选定的电容C 和K 值满足关系式: K=100/Cf H ○4根据以上公式可求得理论值:V Ao 276 .3376 .331=+=

并联型有源电力滤波器(APF)原理简介及仿真验证

并联型有源电力滤波器(APF)原理简介及仿真验证 概述: 有源电力滤波器(APF)是一种用于动态谐波抑制的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源滤波器(L、LC等)只能被动吸收固定频率与大小的谐波而言。APF 可以通过采样负载电流进行各次谐波的分离,控制输出电流的幅值、频率和相位,并且快速响应,抵消系统中的相应谐波电流,从而实现动态谐波治理。 APF的控制原理为采样负载电流(此电流包含基波与谐波),将此电流与锁相环输出的相位信号一起经过坐标变换后生成负载电流的直流分量,直流分量经过低通滤波器将谐波分量滤除成为基波信号,基波信号再与负载电流相减得到真正的谐波信号,再通过电流内环使APF的输出电流跟踪谐波信号,同时通过电压外环使直流侧电压稳定在给定值,进而生成APF所需要注入的谐波电流,该谐波电流与谐波源的电流相互抵消,从而保证电网侧的电流为纯净的基波电流信号,进而完成滤波任务。 正文: 1.电力系统中的谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶

级数分解,其余大于基波频率的电流产生的电量。电力系统中不存在绝对纯净的电流,一般都是基波+谐波,只是谐波的含量不同而已。 2.谐波治理装置一般包含无源滤波器与有源滤波器。无源滤波器指由R,L,C等无源元器件组成的滤波装置,这些滤波装置的优点在于简单易用,缺点在于效果一般,只能用于特定场合,有些无源装置甚至只能针对某一特定电站。有源滤波器一般指并联型有源电力滤波器(APF),这是一种近年来兴起的滤波装置,具备很多优点,例如快速,稳定,可适时补偿。其缺点也是显著的,例如电力电子器件的有限耐压等级与可承受电流等级低导致其容量无法满足大电站需求,另外成本也是制约其发展的一个瓶颈。 3.有源电力滤波器的原理:有源电力滤波器(APF)是一种用于动态抑制谐波的新型电力电子装置,它能对大小和频率都变化的谐波进行抑制,可以克服LC滤波器等传统的谐波抑制设备不能灵活调节的缺点。 基本原理:

有源滤波器的概念原理与设计说明

一、基本概念: 有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源, 顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高! 二、基本原理: 有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号`,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。 三、基本应用: 谐波主要危害: ? 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失; ? 引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行; ? 产生脉动转矩致使电动机振动,影响产品质量和电机寿命; ? 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化; ? 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命; ? 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。 ? 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类 1.有源电力滤波器的基本原理 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 图1 有源滤波器示意图 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。 图2 电压型有源滤波器

图3 电流型有源滤波器 2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4 并联型有源滤波器 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。 图5 串联型有源滤波器 图5所示为串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。 图6 混合型有源滤波器 图6所示为混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些

二阶有源低通滤波器

设计题题目 二阶有源低通滤波器 设计一个有源低通滤波器的截止频率为kHz f 10 。 方案论证 (1):对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 滤波器分为无源滤波器与有源滤波器两种 工作原理: 二阶有源滤波器是一种信号检测及传递系统中常用的基本电路, 也是高阶虑波器的基本组成单元。常用二阶有源低通滤波器的电路型式有压控电压源型、无限增益多路反馈型和双二次型。本次课程设计采用压控电压源型设计课题。 有源二阶滤波器基础电路如图1所示: 图1 二阶有源低通滤波基础电路 它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f0时(f0 为截止频率),电路的每级RC 电路的相移趋于-90o,两级RC 电路的移相到-180o,电路的输出电压与输入电压的相位相反,故此时通过电容c 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。其特点是输入阻抗高,

输出阻抗低。 传输函数为: )()()(i o s V s V s A = 2F F ) ()-(31sCR sCR A A V V ++= 当f=0或者频率很小时,各电容可视为开路 F 0V A A ==1+(A vf\-1)R1/R1 称为通带增益 F 31V A Q -=称为等效品质因数 RC 1c = ω 称为特征角频率 则2c n 22c 0)(ωωω++= s Q s A s A 上式为二节低通滤波电路传递函数的典型表达式 注:当Q =0.707时的3dB 截止角频率,当30≥=VF A A 电路将自激振荡。 当jw s =代入 2220222)(c c c c c c VF w s Q w s w A w s Q w s w A s A ++=++= (式11) 则 2220 )(])(1[1lg 20)(lg 20Q w w w w A jw A c c +-= (式12) 2)(1)(arctan )(c c w Q w w w --=? (式13)

有源电力滤波器的研究综述

想要使项目建设成本控制达到真正的有效控制,就必须严格按照一定的经济责任制要求,贯彻实施责任和权利相匹配的原则类型,只有这样在项目建设过程中完全有效的确定各成本发生中心体系,它们都是有效控制成本的载体。 (四)营房建设项目管理成本控制的方法 随着实践和科学研究的不断进行,到现在为止工程建设项目用来成本控制的基本方法和理论依据不断的增加,但是这些方法适合于不同的情况或者说是背景类型,在不同的建设背景下实施不同的控制方法将会产生不同的效果类型。营房建设项目成本控制的基本方法类型包括以下几种: 1.制度控制 制度控制是从最基本的施工单位角度对项目成本实施过程中的总体进行宏观有效的控制。它规定和约定了项目建设成本控制的有效方法和内容,用来解决项目施工建设过程中和成本控制管理中出现的可以有章可循、有例可根的重要问题的解决方法。 2.额度控制 为了控制建设项目最终成本的核算结果,建设或者承包单位必须及时获取或者调查完整的市场材料等价格信息资料。这些最基本的市场资料类型,对比以往历史资料按照一定比例予以控制和计算,由此用于确定建筑安装工程过程中材料基础定额。 3.合同控制 为了有效的控制建设过程中的成本,除采取上述的办法用来控制成本外,还经常采取与以上方法相配套的合同控制的办法。用合同来控制建设成本是指建设企业实施成本建设控制的重要方向之一。合同管理与其他控制办法的最主要不同之处就在于前面的控制方法大多属于行政控制。然而项目建设合同控制管理是指建设合作双方在合同自愿协商、自愿负责控制的基础上,产生的按照法律程式和方法具有约束力的有效控制办法。 作者简介:毕胜,1979年生,工作于中国人民解放军65139部队,现在长春工业大学攻读硕士研究生,项目管理专业。 摘要:随着电力电子技术的发展,电力电子装置在电力系统中的应用越来越广泛,应运而生的非线性和冲击性负载产生的谐波及无功电流对公共电网的污染也日渐严重。在解决谐波问题的众多方法中,有源电力滤波器(APF)是一种相当具有发展前景的谐波抑制装置。在国外,有远点滤波器早已进入了工业实用化阶段;而在国内,由于起步较晚,虽然在理论上已相当成熟,但在工业上却还没有得到广泛的应用。 关键词:有源电力滤波器串联混合型有源电力滤波器并联混合型有源电力滤波器 一、有源电力滤波器的发展历史及分类 有源电力滤波器最早被提出是在B.M.Bird和J.F.Marsh发表的论文(1969年)中,该论文所描述的方法是将三次谐波电流通入交流电网来减少电源中电流的谐波成分,从而改善电源电流波形。 在此之后,L.Gyugyi等人提出了用PWM变换器构成有源电力滤波器的方法,从而确立了有源电力滤波器的概念包括主电路的拓扑结构和控制方法。但由于技术水平还不高,有源电力滤波器仍然只能处于实验研究阶段。 80年代后,电力电子技术和PWM控制技术得到了长足的发展,在此基础上“三相电路瞬时无功功率理论”也被日本学者赤木泰文等人提出,其衍生出来的无功电流检测方法也成功的在有源电力滤波中得到了应用,直到现在该理论任然是有源电力滤波器研究的主要理论。 20世纪90年代末国外学者在此基础上进一步提出了一种新型的有源电力滤波器—— —统一电能质量调节器(UPQC),这种APF同时具有串、并联APF的功能而且具有较高的性价比,虽然目前任然处于试验阶段,但是这也将成为以后有源电力滤波器的一个重要研究方向。 有源电力滤波器从最早的单独使用的并联型,经过多年发展后,分化为现在的串联混合型和并联混合型。为适应对不同电网的补偿,进一步提出了串联型有源电力滤波器等。其本质是根据有源电力滤波器接入电网的方式的不同,将其分为并联型和串联型两大类。 二、有源电力滤波器的国内外研究现状 目前对有源电力滤波器的研究较为成熟的国家主要是日本及一些欧美国家,然而日本学者对拓扑结构的研究更为深入。 有源电力滤波器的主要生产厂商有三菱公司、西屋电气公司、西门子公司、ABB公司等,对有源滤波器的研究也领先于其他生产公司。其中一些产品已经相当成熟,已进入了实用化生产阶段。据日本电气学会对有源电力滤波器在日本应用情况的调查显示,在工业应用中,有源电力滤波器主要用于补偿谐波,占71.7%。而我国对于谐波问题的研究远远落后于其他国家,直到80年代末才有这方面的文章出现,直到现在国内对有源电力滤波器的研究任然处于理论及实验室阶段,虽然近几年有越来越多的单位在进行有源电力滤波器的研究,但研究方向却集中在并联型和混合型上,其中并联混合型有源电力滤波器的研究最成熟。其中包括了功率理论的定义,谐波的检测方法、有源电力滤波器的稳态和动态特性分析等。进几年来国内对谐波问题重视越来越高,利用有源电力滤波器对电能质量的改进潜藏着巨大的市场应用价值,有源电力滤波器在补偿滤波、不平衡电流、中线电流和无功功率等方面必将得到更为广泛的应用。 三、有源电力滤波器的发展方向 有源电力滤波器的主要使用方法是通过对PWM调制来提高开关器件的效率,通常采用IGBT及PWM技术进行谐波补偿和GTO和多重化技术来对谐波进行补偿。 从经济上考虑,大功率滤波装置可采用有源电力滤波器与LC无源滤波的并联使用来减小有源电力滤波器的容量,从而降低成本、提高效率。目前的主要应用趋势是将一种名为“统一电能质量调节器"的有源电力滤波器安装在供电系统的供电侧。 随着高速数字信号处理器(DSP)的出现,使有源电力滤波器的数字化控制也成为一种发展趋势,采数字方法可对谐波和无功电流进行实时计算,而且通过DSP还可以实现数字控制方,可将开关控制信号直接通过I/O接口和PWM接口发出,解决了模拟方法所不能解决的不少问题,同时使系统的抗干扰能力也得到了极大的提高。 在未来的研究中,我们可以从有源滤波器的拓扑结构,补偿性能,控制系统结构和降低成本等几个方面对有源滤波器进行更深一步的研究。 四、评述总结: 为了适应快速增长的电力需求,我国电力系统目前正沿着高电压、大容量、远距离的方向发展。随着电网的迸一步扩大,电力系统的结构日益复杂,需要补偿的谐波和无功容量急剧增加,电力系统对有源电力滤波器装置的容量、性能的要求也越来越高。因此,如何利用有源电力滤波器解决复杂电力系统和复杂负载中的谐波和无功抑制问题,以及如何提高有源电力滤波器的容量和滤波性能是目前有源电力滤波器需要解决的问题。现如今,对并联混合型有源电力滤波器的研究已相当的成熟,并在国外已得到了广泛的应用,在理论上的进一步研究也受到生产能力的限制。再之,其本身存在不能抑制谐振的缺陷,并联混合型有源电力滤波器的进一步研究的空间已经相当的小了。然而串联混合有源电力滤波器就很好的弥补了这一缺陷,并且其研究起步晚,理论也相当的不成熟,其研究的空间还相当的大。 参考文献: [1]周国梁,石新春.经济型有源电力滤波器的分析[J].电力科学与工程, 2004,6(3):34-36. [2]颜晓庆,王兆安.电力有源滤波器及其新发展[J].电工技术杂志,1998,7:3-5. [3]罗安,付青等.变电站谐波抑制与无功补偿的大功率混合型电力滤波器[J].中国电机工程学报,2004,24(9):l16-123. [4]薛文平,刘国海。基于同步参考坐标变换的改进型谐波检测法[J].电力电子技术,2006,40(1):47-49. [5]周柯,罗安等.一种大功率混合注入式有源电力滤波器的工程应用[J].中国电机工程学报,2007,27(22):80-86. 有源电力滤波器的研究综述 王文凯肖亚李茂罗欣沂杨凡弟谢延义 重庆邮电大学自动化学院 上接第265页 257

相关文档
相关文档 最新文档