文档库 最新最全的文档下载
当前位置:文档库 › 数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序

数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序

数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序
数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序

(Hilbert 矩阵)病态线性方程组的求解

理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组的求解Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ?=,11ij h i j =

+-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系

2. 对不同的n ,取(1,1,,1)n x =∈,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。

3. 结合计算结果,试讨论病态线性方程组的求解。

第1小题:

condition.m %第1小题程序

t1=20;%阶数n=20

x1=1:t1;

y1=1:t1;

for i=1:t1

H=hilb(i);

y1(i)=log(cond(H));

end

plot(x1,y1);

xlabel('阶数n');

ylabel('2-条件数的对数(log(cond(H))');

title('2-条件数的对数(log(cond(H))与阶数n 的关系图');

t2=200;%阶数n=200

x2=1:t2;

y2=1:t2;

for i=1:t2

H=hilb(i);

y2(i)=log(cond(H));

end

plot(x2,y2);

xlabel('阶数n');

ylabel('2-条件数的对数(log(cond(H))');

title('2-条件数的对数(log(cond(H))与阶数n 的关系图');

画出Hilbert 矩阵2-条件数的对数和阶数的关系

n=200时

n=20时

从图中可以看出,

1)在n小于等于13之前,图像近似直线

log(cond(H))~1.519n-1.833

2)在n大于13之后,图像趋于平缓,并在一定范围内上下波动,同时随着n的增加稍有上升的趋势

第2小题:

solve.m%m第2小题主程序

N=4000;

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

MatLab求解线性方程组

MatLab解线性方程组一文通 当齐次线性方程AX=0,rank(A)=r

MATLAB解线性方程组的直接方法

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法. 3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

第06章_MATLAB数值计算_例题源程序汇总

第6章 MATLAB 数值计算 例6.1 求矩阵A 的每行及每列的最大和最小元素,并求整个矩阵的最大和最小元素。 1356 78256323578255631 01-???? -? ?=???? -??A A=[13,-56,78;25,63,-235;78,25,563;1,0,-1]; max(A,[],2) %求每行最大元素 min(A,[],2) %求每行最小元素 max(A) %求每列最大元素 min(A) %求每列最小元素 max(max(A)) %求整个矩阵的最大元素。也可使用命令:max(A(:)) min(min(A)) %求整个矩阵的最小元素。也可使用命令:min(A(:)) 例6.2 求矩阵A 的每行元素的乘积和全部元素的乘积。 A=[1,2,3,4;5,6,7,8;9,10,11,12]; S=prod(A,2) prod(S) %求A 的全部元素的乘积。也可以使用命令prod(A(:)) 例6.3 求向量X =(1!,2!,3!,…,10!)。 X=cumprod(1:10) 例6.4 对二维矩阵x ,从不同维方向求出其标准方差。 x=[4,5,6;1,4,8] %产生一个二维矩阵x y1=std(x,0,1) y2=std(x,1,1) y3=std(x,0,2) y4=std(x,1,2) 例6.5 生成满足正态分布的10000×5随机矩阵,然后求各列元素的均值和标准方差,再求这5列随机数据的相关系数矩阵。 X=randn(10000,5); M=mean(X) D=std(X) R=corrcoef(X)

例6.6 对下列矩阵做各种排序。 185412613713-?? ??=?? ??-?? A A=[1,-8,5;4,12,6;13,7,-13]; sort(A) %对A 的每列按升序排序 -sort(-A,2) %对A 的每行按降序排序 [X,I]=sort(A) %对A 按列排序,并将每个元素所在行号送矩阵I 例6.7 给出概率积分 2 (d x x f x x -? e 的数据表如表6.1所示,用不同的插值方法计算f (0.472)。 x=0.46:0.01:0.49; %给出x ,f(x) f=[0.4846555,0.4937542,0.5027498,0.5116683]; format long interp1(x,f,0.472) %用默认方法,即线性插值方法计算f(x) interp1(x,f,0.472,'nearest') %用最近点插值方法计算f(x) interp1(x,f,0.472,'spline') %用3次样条插值方法计算f(x) interp1(x,f,0.472,'cubic') %用3次多项式插值方法计算f(x) format short 例6.8 某检测参数f 随时间t 的采样结果如表6.2,用数据插值法计算t =2,7,12,17,22,17,32,37,42,47,52,57时的f 值。 T=0:5:65; X=2:5:57;

利用MATLAB求线性方程组

《MATLAB语言》课成论文 利用MATLAB求线性方程组 姓名:郭亚兰 学号:12010245331 专业:通信工程 班级:2010级通信工程一班 指导老师:汤全武 学院:物电学院 完成日期:2011年12月17日

利用MATLAB求解线性方程组 (郭亚兰 12010245331 2010 级通信一班) 【摘要】在高等数学及线性代数中涉及许多的数值问题,未知数的求解,微积分,不定积分,线性方程组的求解等对其手工求解都是比较复杂,而MATLAB语言正是处理线性方程组的求解的很好工具。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 【关键字】线性代数MATLAB语言秩矩阵解 一、基本概念 1、N级行列式A:A等于所有取自不同性不同列的n个元素的积的代数和。 2、矩阵B:矩阵的概念是很直观的,可以说是一张表。 3、线性无关:一向量组(a1,a2,…,an)不线性相关,既没有不全为零的数 k1,k2,………kn使得:k1*a1+k2*a2+………+kn*an=0 4、秩:向量组的极在线性无关组所含向量的个数成为这个向量组的秩。 5、矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。记:R(B)

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

线性方程组求解matlab实现

3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果 请注意:因为RA=RB> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B) 运行后输出结果 请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3 (4)在MATLAB 工作窗口输入程序

matlab数值分析例题

1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组, 1231231234748212515 x x x x x x x x x -+=?? -+=-??-++=? (1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。 (2)若收敛,编程求解该线性方程组。 解(1):A=[4 -1 1;4 -8 1;-2 1 5] %线性方程组系数矩阵 A = 4 -1 1 4 -8 1 -2 1 5 >> D=diag(diag(A)) D = 4 0 0 0 -8 0 0 0 5 >> L=-tril(A,-1) % A 的下三角矩阵 L = 0 0 0 -4 0 0 2 -1 0 >> U=-triu(A,1) % A 的上三角矩阵 U = 0 1 -1 0 0 -1 0 0 0 B=inv(D)*(L+U) % B 为雅可比迭代矩阵 B = 0 0.2500 -0.2500 0.5000 0 0.1250 0.4000 -0.2000 0 >> r=eigs(B,1) %B 的谱半径

r = 0.3347 < 1 Jacobi迭代法收敛。 (2)在matlab上编写程序如下: A=[4 -1 1;4 -8 1;-2 1 5]; >> b=[7 -21 15]'; >> x0=[0 0 0]'; >> [x,k]=jacobi(A,b,x0,1e-7) x = 2.0000 4.0000 3.0000 k = 17 附jacobi迭代法的matlab程序如下: function [x,k]=jacobi(A,b,x0,eps) % 采用Jacobi迭代法求Ax=b的解 % A为系数矩阵 % b为常数向量 % x0为迭代初始向量 % eps为解的精度控制 max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 B=D\(L+U); f=D\b; x=B*x0+f; k=1; %迭代次数 while norm(x-x0)>=eps x0=x; x=B*x0+f; k=k+1; if(k>=max1) disp('迭代超过300次,方程组可能不收敛'); return; end end

数值分析matlab代码

1、%用牛顿法求f(x)=x-sin x 的零点,e=10^(-6) disp('牛顿法'); i=1; n0=180; p0=pi/3; tol=10^(-6); for i=1:n0 p=p0-(p0-sin(p0))/(1-cos(p0)); if abs(p-p0)<=10^(-6) disp('用牛顿法求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次牛顿迭代后无法求出方程的解') end 2、disp('Steffensen加速'); p0=pi/3; for i=1:n0 p1=0.5*p0+0.5*cos(p0); p2=0.5*p1+0.5*cos(p1); p=p0-((p1-p0).^2)./(p2-2.*p1+p0); if abs(p-p0)<=10^(-6) disp('用Steffensen加速求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次Steffensen加速后无法求出方程的解') end 1、%使用二分法找到方程 600 x^4 -550 x^3 +200 x^2 -20 x -1 =0 在区间[0.1,1]上的根, %误差限为 e=10^-4 disp('二分法')

a=0.2;b=0.26; tol=0.0001; n0=10; fa=600*(a.^4)-550*(a.^3)+200*(a.^2)-20*a-1; for i=1:n0 p=(a+b)/2; fp=600*(p.^4)-550*(p.^3)+200*(p.^2)-20*p-1; if fp==0||(abs((b-a)/2)0 a=p; else b=p; end end if i==n0&&~(fp==0||(abs((b-a)/2)

实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组 第一节 线性方程组的求解 一、齐次方程组的求解 rref (A ) %将矩阵A 化为阶梯形的最简式 null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基 础解系 【例1】 求下列齐次线性方程组的一个基础解系,并写出通解: 我们可以通过两种方法来解: 解法1: >> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans= 1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程 ??? ??=+--=+--=-+-0 22004321 43214321x x x x x x x x x x x x

取x2,x4为自由未知量,扩充方程组为 即 提取自由未知量系数形成的列向量为基础解系,记 所以齐次方程组的通解为 解法2: clear A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; B=null(A, 'r') % help null 看看加个‘r’是什么作用, 若去掉r ,是什么结果? 执行后可得结果: B= 1 0 1 0 0 1 0 1 ?? ?=-=-0 04321x x x x ?????? ?====4 4432221x x x x x x x x ??? ??? ??????+????????????=????? ???????1100001142 4321x x x x x x , 00111????? ? ??????=ε, 11002????? ???????=ε2 211εεk k x +=

第3章 MATLAB数值计算-习题 答案

roots([1 -1 -1]) x=linspace(0,2*pi,10); y=sin(x); xi=linspace(0,2*pi,100); y1=interp1(x,y,xi); y2=interp1(x,y,xi,'spline'); y3=interp1(x,y,xi,'cublic'); plot(x,y,'o',xi,y1,xi,y2,xi,y3) x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); yi=1.0332*exp(-(xi+500)/7756); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'o',xi,yi,xi,y1,'*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'o',xi,yi,xi,y2,'*') x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'-o', xi,y1,'-*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'-o',xi,y2,'-*')

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

数值分析幂法与反幂法-matlab程序

数值分析幂法与反幂法 matlab程序 随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。 要求 1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC文件。 3)程序清单,生成M文件。 解答: >> A=rand(5) %随机产生5*5矩阵求随机矩阵 A = 0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A矩阵和A的转置相加,得到随机对称矩阵B B = 1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286

B=?? ????? ???? ?? ???6286.13929.03467.15979.08044 .03929.00944 .12144.18506 .13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613 .09173 .04187.1 编写幂法、反幂法程序: function [m,u,index,k]=pow(A,u,ep,it_max) % 求矩阵最大特征值的幂法,其中 % A 为矩阵; % ep 为精度要求,缺省为1e-5; % it_max 为最大迭代次数,缺省为100; % m 为绝对值最大的特征值; % u 为对应最大特征值的特征向量; % index ,当index=1时,迭代成功,当index=0时,迭代失败 if nargin<4 it_max=100; end if nargin<3 ep=1e-5; end n=length(A); index=0; k=0; m1=0; m0=0.01; % 修改移位参数,原点移位法加速收敛,为0时,即为幂法 I=eye(n) T=A-m0*I while k<=it_max v=T*u; [vmax,i]=max(abs(v)); m=v(i); u=v/m; if abs(m-m1)

Matlab求解线性方程组非线性方程组

求解线性方程组 solve,linsolve 例: A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格 B=[3;1;1;0] X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B) diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式 diff(F); %matlab区分大小写 pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 为待解方程或方程组的文件名;fun其中 x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件fun.m: function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))]; >>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注: ...为续行符 m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。Matlab求解线性方程组 AX=B或XA=B 在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: X=A\B表示求矩阵方程AX=B的解; 的解。XA=B表示矩阵方程B/A=X. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有: m=n 恰定方程,求解精确解; m>n 超定方程,寻求最小二乘解; m

Matlab大数值计算题目

Matlab大数值计算题目 1、统计附件1中的数据,对其中的数据划分区间,从0到50,每 10个单位一个区间,分为5个区间,统计每个区间的数量,画出柱状图。 Matlab程序: clear;clc;close all Data=xlsread('数据.xls'); Q=0:10:50; n=length(Data); m=length(Q); T=zeros(size(Q)); for s=1:n for t=1:m-1 if Data(s)>Q(t)&Data(s)

2、统计附件2中第二列数据中1至100每个数字出现的总次数, 附件2中第三列为每出现第二列数字所对应的次数,最后画出柱状图。 Matlab程序: clear;clc;close all Data=load('WEIBOIDWITHCOMMENTS.txt'); DATA=Data(:,2); t=Data(:,3); % m=max(DATA); m=100; T=zeros(m,1); for i=1:m data=DATA; data(data~=ones(size(data))*i)=0; data(data~=0)=1; n=data.*t; N=sum(n); T(i)=N; end bar(T)

3、 找到矩阵迷宫的通路,矩阵第1行第1列为迷宫的入口,第8行 第8列为迷宫的出口。(0表示路,1表示墙) 000 00000011 11010000 01010010 11010010 11010010 00011010 01000011 11110?????????????????????????? Matlab 程序: 主程序: clear all clc maze=[0,0,0,0,0,0,0,0; 0,1,1,1,1,0,1,0; 0,0,0,0,1,0,1,0; 0,1,0,0,0,0,1,0; 0,1,0,1,1,0,1,0; 0,1,0,0,0,0,1,1; 0,1,0,0,1,0,0,0; 0,1,1,1,1,1,1,0]; total=0; maze(1,1)=3;

数值分析上机题(matlab版)(东南大学)

数值分析上机题(matlab版)(东南大学)

数值分析上机报告

第一章 一、题目 精确值为)1 1 123(21+--N N 。 1) 编制按从大到小的顺序 1 1 131121222-+??+-+-= N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序 1 21 1)1(111222-+??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算6 42 10,10, 10S S S ,并指出有效位 数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 clear N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn using different algorithms (N=%d)\n',N); disp('____________________________________________________') fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2);

相关文档
相关文档 最新文档