文档库 最新最全的文档下载
当前位置:文档库 › 实验五、SSI组合逻辑电路的设计(1)

实验五、SSI组合逻辑电路的设计(1)

实验五、SSI组合逻辑电路的设计(1)

SSI组合逻辑电路的设计(之二)

一、实验目的

加深理解用SSI构成的组合逻辑电路的设计方法。

二、预习要求

根据所给器件设计出设计任务1、2的逻辑电路图。

三、实验仪器

74LS04、74LS00、74LS10、74LS20、74LS08等

四、实验内容

设计任务1、设计一个能判断一位二进制数A与B大小的比较电路。画出逻辑图,用

Y、2Y、3Y分别表示三种状态,即1Y(A>B),2Y(A

1

Y(A=B)。

3

设计任务2、设计一个监视交通信号灯工作状态的逻辑图。分别用R、Y、G表示红、黄、绿三个灯(即一组灯)的状态,当灯亮时为1,不亮时为0。用L表示故障信号,正常工作时L为0,发生故障时L 为1。(提示:R、Y、G出现其中五种状态时,逻辑电路发出故障信号)

五、实验报告要求

详细写出两个设计任务的设计过程(即步骤)。

数电实验报告 实验二 组合逻辑电路的设计

实验二组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路的设计方法及功能测试方法。 2.熟悉组合电路的特点。 二、实验仪器及材料 a) TDS-4数电实验箱、双踪示波器、数字万用表。 b) 参考元件:74LS86、74LS00。 三、预习要求及思考题 1.预习要求: 1)所用中规模集成组件的功能、外部引线排列及使用方法。 2) 组合逻辑电路的功能特点和结构特点. 3) 中规模集成组件一般分析及设计方法. 4)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 在进行组合逻辑电路设计时,什么是最佳设计方案 四、实验原理 1.本实验所用到的集成电路的引脚功能图见附录 2.用集成电路进行组合逻辑电路设计的一般步骤是: 1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表; 2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式; 3)画出逻辑图; 4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。 五、实验内容 1.用四2输入异或门(74LS86)和四2输入与非门(74LS00)设计一个一位全加器。 1)列出真值表,如下表2-1。其中A i、B i、C i分别为一个加数、另一个加数、低位向本位的进位;S i、C i+1分别为本位和、本位向高位的进位。 A i B i C i S i C i+1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 10 1 1 1 00 1 1 1 1 1 1 2)由表2-1全加器真值表写出函数表达式。

组合逻辑电路实验设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 组合逻辑电路实验设计 血型匹配情况判断电路 一、实验题目: 人的血型有A、B、AB、O四种。输血时输血者的血型与受血者血型必须符合图1中用箭头指示的授受关系。判断输血者与受血者的血型是否符合上述规定,要求用八选一数据选择器(74LS151)及与非门(74LS00)实现。(提示:用两个逻辑变量的4种取值表示输血者的血型,例如00代表A、01代表 B、10代表AB、11代表O。) 图1 二、电路设计: 方案一: 解: 1、题目分析

根据题意,确定有4个输入变量,设为X、Y、M、N;输出变量为P。 其中,用两个逻辑变量X、Y的四中取值表示输血者的血型:00代表A型、01代表B型、10代表AB型、11代表O型。 用另外两个逻辑变量M、N的四种取值表示受血者的血型:00代表A型、01代表B型、10代表AB型、11代表O型。 逻辑输出变量P代表输血者与受血者的血型符合情况:1代表血型符合,0代表血型不符合。 题目中要求用八选一数据选择器(74LS151)及与非门(74LS00)实现电路设计。 2、列写输入与输出变量真值表: 真值表如下图所示 3、逻辑表达式: 根据真值表画出卡诺图:

卡诺图如右图所示: 用八选一数据选择器(74LS151),所以输出逻辑表达式写成最小项和的形式:设X 、Y 、M 为选择变量,X 为高位。 逻辑函数P 的与或标注型表达式: P (X ,Y ,M ,N ) X Y M N X Y M N X Y M N X Y M N X Y M N =+++++ 4、比较表达式: 与标准表达式比较得:267P Nm N m(0,1,3,5)m m =+∑++ 所以,数据选择器中EN=0,0135D D D D N ==== D 2=N ,D 4=0, D 6=D 7=1, 5、逻辑电路图:

实验六 组合逻辑电路的设计与测试

实验六组合逻辑电路的设计与测试 1.实验目的 (1)掌握组合逻辑电路的设计方法; (2)熟悉基本门电路的使用方法。 (3)通过实验,论证所设计的组合逻辑电路的正确性。 2.实验设备与器材 1)数字逻辑电路实验箱,2)万用表,3)集成芯片74LS00二片。 3.预习要求 (1)熟悉组合逻辑电路的设计方法; (2)根据具体实验任务,进行实验电路的设计,写出设计过程,并根据给定的标准器件画出逻辑电路图,准备实验; (3)使用器件的各管脚排列及使用方法。 4.实验原理 数字电路中,就其结构和工作原理而言可分为两大类,即组合逻辑电路和时序逻辑电路。组合逻辑电路输出状态只决定于同一时刻的各输入状态的组合,与先前状态无关,它的基本单元一般是逻辑门;时序逻辑电路输出状态不仅与输入变量的状态有关,而且还与系统原先的状态有关,它的基本单元一般是触发器。 (1)组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他功能的门电路。设计组合逻辑电路的一般步骤是: 1)根据逻辑要求,列出真值表; 2)从真值表中写出逻辑表达式; 3)化简逻辑表达式至最简,并选用适当的器件; 4)根据选用的器件,画出逻辑电路图。 逻辑化简是组合逻辑设计的关键步骤之一。为了使电路结构简单和使用器件较少,往往要求逻辑表达式尽可能化简。由于实际使用时要考虑电路的工作速度和稳定可靠等因素,在较复杂的电路中,还要求逻辑清晰易懂,所以最简设计不一定是最佳的。但一般来说,在保证速度、稳定可靠与逻辑清楚的前提下,尽量使用最少的器件,以降低成本。 (2)与非门74LS00芯片介绍 与非门74LS00一块芯片内含有4个互相独立的与非门,每个与非门有二个输入端。其逻辑表达式为Y=AB,逻辑符号及引脚排列如图6-1(a)、(b)所示。 (a)逻辑符号(b)引脚排列 图6-1 74LS20逻辑符号及引脚排列 (3)异或运算的逻辑功能 当某种逻辑关系满足:输入相同输出为“0”,输入相异输出为“1”,这种逻辑关系称为“异或”逻辑关系。 (4)半加器的逻辑功能 在加法运算中,只考虑两个加数本身相加,不考虑由低位来的进位,这种加法器称为半加器。 5.实验内容 (1)用1片74LS00与非门芯片设计实现两输入变量异或运算的异或门电路 要求:设计逻辑电路,按设计电路连接后,接通电源,验证运算逻辑。输入端接逻辑开关输出插口,以提供“0”与“1”电平信号,开关向上,输出逻辑“1”,向下为逻辑“0”;电路的输出端接由LED发光二极管组成的0-1指示器的显示插口,LED亮红色为逻辑“1”,亮绿色为逻辑“0”。接线后检查无误,通电,用万用表直流电压20V档测量输入、输出的对地电压,并观察输出的LED颜色,填入表6-1。

数电实验 组合逻辑电路

实验报告 课程名称: 数字电子技术实验 指导老师: 成绩:__________________ 实验名称: 组合逻辑电路 实验类型: 设计型实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一.实验目的和要求 1. 加深理解典型组合逻辑电路的工作原理。 2. 熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。 3. 掌握组合集成电路元件的功能检查方法。 4. 掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。 5. 熟悉全加器和奇偶位判断电路的工作原理。 二.实验内容和原理 组合逻辑电路设计的一般步骤如下: 1.根据给定的功能要求,列出真值表; 2. 求各个输出逻辑函数的最简“与-或”表达式; 3. 将逻辑函数形式变换为设计所要求选用逻辑门的形式; 4. 根据所要求的逻辑门,画出逻辑电路图。 实验内容: 1. 测试与非门74LS00和与或非门74LS55的逻辑功能。 2. 用与非门74LS00和与或非门74LS55设计一个全加器电路,并进行功能测试。 专业: 电子信息工程 姓名: 学号: 日期: 装 订 线

3. 用与非门74LS00和与或非门74LS55设计四位数奇偶位判断电路,并进行功能测试。 三. 主要仪器设备 与非门74LS00,与或非门74LS55,导线,开关,电源、实验箱 四.实验设计与实验结果 1、一位全加器 全加器实现一位二进制数的加法,他由被加数、加数和来自相邻低位的进数相加,输出有全加和与向高位的进位。输入:被加数Ai,加数Bi,低位进位Ci-1输出:和Si,进位Ci 实验名称:组合逻辑电路 姓名:学号: 列真值表如下:画出卡诺图: 根据卡诺图得出全加器的逻辑函数:S= A⊕B⊕C; C= AB+(A⊕B)C 为使得能在现有元件(两个74LS00 与非门[共8片]、三个74LS55 与或非门)的基础上实现该逻辑函数。所以令S i-1=!(AB+!A!B),Si=!(SC+!S!C), Ci=!(!A!B+!C i-1S i-1)。 仿真电路图如下(经验证,电路功能与真值表相同):

实验一组合逻辑电路设计

实验一 组合逻辑电路的设计 一、实验目的: 1、 掌握组合逻辑电路的设计方法。 2、 掌握组合逻辑电路的静态测试方法。 3、 加深FPGA 设计的过程,并比较原理图输入和文本输入的优劣。 4、 理解“毛刺”产生的原因及如何消除其影响。 5、 理解组合逻辑电路的特点。 二、实验的硬件要求: 1、 EDA/SOPC 实验箱。 2、 计算机。 三、实验原理 1、组合逻辑电路的定义 数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。 通常组合逻辑电路可以用图1.1所示结构来描述。其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。输入和输出之间的逻辑函数关系可用式1.1表示: 2、组合逻辑电路的设计方法 组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。 在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。组合电路的基本设计步骤可用图1.2来表示。 3、组合逻辑电路的特点及设计时的注意事项 ①组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。(实际电路中 图 1.1 组合逻辑电路框图 L0=F0(X0,X1,···Xn) · · · Lm=F0(X0,X1,···Xn) (1.1) 图 1.2 组合电路设计步骤示意图图

组合逻辑电路实验

实验一基本门电路的功能和特性及组合逻辑电路实验(2学时) 实验目的及要求:掌握常用的集成门电路的逻辑功能与特性;掌握各种门电路的逻辑符号;了解集成电路的外引线排列及其使用方法;学习组合逻辑电路的设计及测试方法。 实验题目:部分TTL门电路逻辑功能验证及组合逻辑电路设计之全加器或全减器。 实验二数值比较器、数据选择器(3学时) 实验目的及要求:掌握数值比较器和数据选择器的逻辑功能;学习组合逻辑电路的设计及测试方法。用7486和7400、7404搭出一位数值比较器,画出其设计逻辑电路图,并验证它的运算;用74153选择器实现多数据表决器,要求3个输入中有2个或3个为1时,输出Y为高电平,否则Y为低电平。画出电路图并简述实现原理。用7400、7404、7432实现该多数表决器。 实验题目:组合逻辑电路设计之数值比较器和数据选择器 实验三计数器的应用(3学时) 实验目的及要求:掌握集成二进制同步计数器74161的逻辑功能;掌握任意进制计数器的构成方法;学习时序逻辑电路的设计及测试方法。用74161搭建一个60进制计数器电路,并将结果输出到7段数码管显示出来,画出其设计逻辑电路图并验证它的功能。 实验题目:时序逻辑电路设计之计数器的应用 74LS00: QUAD 2-INPUT NAND GATE

74LS04: HEX INVERTER 74LS32:Quad 2-Input OR Gates

74LS74: Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs 74LS153: Dual 4-Input Multiplexer with common select inputs and individual enable inputs 74LS161: Synchronous 4-Bit Binary Counters

实验三 组合逻辑电路

实验三组合逻辑电路

实验三 组合逻辑电路 一、实验目的 1. 通过简单的组合逻辑电路设计与调试,掌握采用小规模(SSI )集成电路设计组合逻辑电路的方法。 2. 用实验验证所设计电路的逻辑功能。 3. 熟悉、掌握各种逻辑门的应用。 二、实验原理 组合逻辑电路是最常见的逻辑电路之一,可以用一些常用的门电路来组合成具有其他功能的门电路。组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,而与电路过去的状态无关。在电路结构上的特点是只包含门电路,而没有存储(记忆)单元。在使用中、小规模集成电路来设计组合电路时,一般步骤如图3-1所示: 1. 进行逻辑抽象,首先根据设计任务的要求建立输入、输出变量,列出其真 设计要求 真值表 逻辑抽象逻辑表达式 卡诺图 最简逻辑表达式 逻辑电路图 代数法化减 卡诺图法化减

值表。 2. 用卡诺图或代数法化简,求出最简逻辑表达式。 3. 根据简化后的逻辑表达式,画出逻辑电路图。 若已知逻辑电路,欲分析组合电路的逻辑功能,则分析步骤为: 1. 由逻辑电路图写出各输出端的逻辑表达式。 2. 由逻辑表达式列出真值表。 3. 根据真值表进行分析,从而确定电路功能。 组合电路的设计过程是在理想情况下进行的, 即假设一切器件均没有延迟效应。图3-1 组合逻辑电路设计流程图 三、实验仪器及器件 1. EL-ELL-Ⅳ型数字电路实验系统 2. 集成电路芯片:74LS00 1

2 74LS04 74LS86等 四、实验内容及步骤 1. 测试用异或门和与非门组成的半加器的逻辑功能 如果不考虑来自低位的进位而能够实现将两个1位二进制数相加的电路,称为半加器,半加器的符号如图3-2所示。 半加器的逻辑表达式为: AB CO B A B A B A S =⊕=+= 根据半加器的逻辑表达式可知,半加和S 是输入A 、B 的异或,而进位CO 则为输入A 、B 相与,故半加器可用一个集成异或门和二个与非门组成,电路如图3-3所示。 &=1 1 CO S ΣCO A B S CO 图3-2 半加器符号 图3-3 异或门和与非门组成的半加器逻辑电路 在实验仪上用74LS00及74LS86按图3-3 接线,当输入端A 、B 为表3-1所列状态时,测

组合逻辑电路设计实验报告

组合逻辑电路设计实验报告 1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下:

卡诺图: 1 010100D D D D D D G ⊕=+= 2 121211D D D D D D G ⊕=+=

3232322D D D D D D G ⊕=+= 33D G = 电路原理图如下: 七段码显示: 真值表如下: 卡诺图:

2031020231a D D D D D D D D D D S ⊕++=+++= 10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++= 2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=

2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++= 01213g D D D D D S +⊕+= 电路原理图如下:

4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形:

组合逻辑电路实验报告

组合逻辑电路实验报告

图6-1:O型静态险象 如图6-1所示电路 其输出函数Z=A+A,在电路达到稳定时,即静态时,输出F 总是1。然而在输入A变化时(动态时)从图6-1(b)可见,在输出Z的某些瞬间会出现O,即当A经历1→0的变化时,Z出现窄脉冲,即电路存在静态O型险象。 进一步研究得知,对于任何复杂的按“与或”或“或与”函数式构成的组合电路中,只要能成为A+A或AA的形式,必然存在险象。为了消除此险象,可以增加校正项,前者的校正项为被赋值各变量的“乘积项”,后者的校正项为被赋值各变量的“和项”。 还可以用卡诺图的方法来判断组合电路是否存在静态险象,以及找出校正项来消除静态险象。 实验设备与器件 1.+5V直流电源 2.双踪示波器 3.连续脉冲源 4.逻辑电平开关 5.0-1指示器

(3)根据真值表画出逻辑函数Si、Ci的卡诺图 (4)按图6-5要求,选择与非门并接线,进行测试,将测试结果填入下表,并与上面真值表进行比较逻辑功能是否一致。 4.分析、测试用异或门、或非门和非门组成的全加器逻辑电路。 根据全加器的逻辑表达式

全加和Di =(Ai⊕Bi)⊕Di-1 进位Gi =(Ai⊕Bi)·Di-1+Ai·Bi 可知一位全加器可以用两个异或门和两个与门一个或门组成。(1)画出用上述门电路实现的全加器逻辑电路。 (2)按所画的原理图,选择器件,并在实验箱上接线。(3)进行逻辑功能测试,将结果填入自拟表格中,判断测试是否正确。 5.观察冒险现象 按图6-6接线,当B=1,C=1时,A输入矩形波(f=1MHZ 以上),用示波器观察Z输出波形。并用添加校正项方法消除险象。

实验二--组合逻辑电路的设计与测试

实验二组合逻辑电路的设计与测试 一、实验目的 1、掌握组合逻辑电路的分析与设计方法。 2、加深对基本门电路使用的理解。 二、实验原理 1、组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他 功能的门电路。例如,根据与门的逻辑表达式Z= AB =得知,可以用两 个非门和一个或非门组合成一个与门,还可以组合成更复杂的逻辑关系。 2、分析组合逻辑电路的一般步骤是: 1)由逻辑图写出各输出端的逻辑表达式; 2)化简和变换各逻辑表达式; 3)列出真值表; 4) 根据真值表和逻辑表达式对逻辑电路进行分析,最后确定其功能。 3、设计组合逻辑电路的一般步骤与上面相反,是: 1)根据任务的要求,列出真值表; 2)用卡诺图或代数化简法求出最简的逻辑表达式; 3)根据表达式,画出逻辑电路图,用标准器件构成电路; 4)最后,用实验来验证设计的正确性。 4、组合逻辑电路的设计举例 1)用“与非门”设计一个表决电路。当四个输入端中有三个或四个“1”时, 输出端才为“1”。 设计步骤: 根据题意,列出真值表如表2-1所示,再添入卡诺图表2-2中。 表2-1 表决电路的真值表 表2-2 表决电路的卡诺图 然后,由卡诺图得出逻辑表达式,并演化成“与非”的形式: ABD CDA BCD ABC Z+ + + = B A+

? = ? ABC? ACD BCD ABC 最后,画出用“与非门”构成的逻辑电路如图2-1所示: 图2-1 表决电路原理图 输入端接至逻辑开关(拨位开关)输出插口,输出端接逻辑电平显示端口,自拟真值表,逐次改变输入变量,验证逻辑功能。 三、实验设备与器材 1.数字逻辑电路实验箱。 2.数字逻辑电路实验箱扩展板。 3.数字万用表。 4.芯片74LS00、74LS02、74LS04、74LS10、74LS20。 四、实验内容实验步骤 1、完成组合逻辑电路的设计中的两个例子。 2、设计一个四人无弃权表决电路(多数赞成则提议通过),要求用四2输入与非门 来实现。 3、用与非门74LS00和异或门74LS86设计一可逆的4位码变换器。 要求: 1)当控制信号C=1时,它将8421码转换成为格雷码;当控制信号C=0时,它 将格雷码转换成为8421码; 2)写出设计步骤,列出码变换关系真值表并画出逻辑电路图; 3)安装电路并测试逻辑电路的功能。 五、实验预习要求 1、复习各种基本门电路的使用方法。 2、实验前,画好实验用的电路图和表格。 3、自己参考有关资料画出实验内容2、3、4中的原理图,找出实验将要使用的芯 片,以备实验时用。 六、实验报告要求 1、将实验结果填入自制的表格中,验证设计是否正确。 2、总结组合逻辑电路的分析与设计方法。

数电实验组合逻辑电路

实验二组合逻辑电路 一、实验目的 1.掌握组合逻辑电路的分析方法 2.掌握组合逻辑电路的设计方法 二、实验仪器 数字电路实验台、数字万用表、74ls00,74ls20 三、实验原理 1.组合逻辑电路的分析方法 组合逻辑电路时最常见的逻辑电路,可以用一些常用的门电路组合成具有其他功能的门电路。其分析方法是根据所给的逻辑电路,写出其输入和输出之间的逻辑函数表达式或真值表,从而确定该电路的逻辑功能。 2.组合逻辑电路的设计方法 组合逻辑电路是使用中、小规模集成电路来设计组合电路是最常见的逻辑电路,其分析方法是根据所给的组合逻辑电路,写出其输入与输出之间的逻辑函数表达式或者真值表,从而确定该电路的逻辑功能。组合电路设计的一般步骤如图所示: 根据设计任务的要求建立输入、输出变量,并列出真值表。然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。并按实际选用逻辑门的类型修改逻辑表达式。根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。最后,用实验来验证设计的正确性。 2、组合逻辑电路设计举例 用“与非”门设计一个表决电路。当四个输入端中有三个或四个为“1”时,输出端才为“1”。 (1)设计步骤:根据题意列出真值表如表所示,再填入卡诺图表中。

(2)根据真值表,画卡诺图 (3)由卡诺图得出逻辑表达式,并演化成“与非”的形式 Z =ABC +BCD +ACD +ABD =ABC ACD BCD ABC ??? 根据逻辑表达式画出用“与非门”构成的逻辑电路如图所示。 多数表决电路 74LS20引脚图 3.用实验验证逻辑功能 在实验装置适当位置选定三个14P 插座,按照集成块定位标记插好集成块。 按图接线,输入端A 、B 、C 、D 接至逻辑开关输出插口,输出端Z 接逻辑电平显示输入插口,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与其进行比较,验证所设计的逻辑电路是否符合要求。 三、实验内容 1.设计两个2位二进制码比较器,试用最少的与非门实现改功能,要求A=B 时输出为1。 2.一火灾报警系统,设有烟感、温感和紫外光感三种类型的火灾探测器。为了防止误报警,

实验一组合逻辑电路设计

电子信息工程晓旭 2011117147 实验一组合逻辑电路设计(含门电路功能测试) 一.实验目的 1掌握常用门电路的逻辑功能。 2掌握用小规模集成电路设计组合逻辑电路的方法。 3掌握组合逻辑电路的功能测试方法。 二.实验设备与器材 数字电路实验箱一个 双踪示波器一部 稳压电源一部 数字多用表一个 74LS20 二4 输入与非门一片 74LS00 四2 输入与非门一片 74LS10 三3 输入与非门一片 三 .实验任务 1对74LS00,74LS20逻辑门进行功能测试。静态测试列出真值表,动态测试画出波形图,并说明测试的门电路功能是否正常。 2分析测试1.7中各个电路逻辑功能并根据测试结果写出它们的逻辑表达式。 3设计控制楼梯电灯的开关控制器。设楼上,楼下各装一个开关,要求两个开关均可以控制楼梯电灯。 4某公司设计一个优先级区分器。该公司收到有A,B,C,三类,A,类的优先级最高,B 类次之,C类最低。到达时,其对应的指示灯亮起,提醒工作人员及时处理。当不同类的同时到达时,对优先级最高的先做处理,其对应的指示灯亮,优先级低的暂不理会。按组合逻辑电路的一般设计步骤设计电路完成此功能,输入输出高低电平代表到

实验一: (1)74LS00的静态逻辑功能测试 实验器材:直流电压源,电阻,发光二极管,74LS00,与非门,开关,三极管 实验目的:静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否 实验过程:将74LS00中的一个与非门的输入端A,B分别作为输入逻辑变量,加高低电平,观测输出电平是否符合真值表描述功能。 电路如图1: 图1 真值表1.1: 实验问题:与非门的引脚要连接正确,注意接地线及直流电源 实验结果:由二极管的发光情况可判断出74LS00 实现二输入与非门的功能 (2)71LS00的动态逻辑功能测试 实验器材:函数发生器,示波器,74LS00,与非门,开关,直流电压源 实验目的:测试74LS00与非门的逻辑功能 实验容:动态测试适合用于数字系统中逻辑功能的检查,测试时,电路输入串行数字

数字电路组合逻辑电路设计实验报告

实验三组合逻辑电路设计(含门电路功能测试)

一、实验目的 1.掌握常用门电路的逻辑功能 2.掌握小规模集成电路设计组合逻辑电路的方法 3.掌握组合逻辑电路的功能测试方法 二、实验设备与器材 Multisim 、74LS00 四输入2与非门、示波器、导线 三、实验原理 TTL集成逻辑电路种类繁多,使用时应对选用的器件做简单逻辑功能检查,保证实验的顺利进行。 测试门电路逻辑功能有静态测试和动态测试两种方法。静态测试时,门电路输入端加固定的高(H)、低电平,用示波器、万用表、或发光二极管(LED)测出门电路的输出响应。动

态测试时,门电路的输入端加脉冲信号,用示波器观测输入波形与输出波形的同步关系。 下面以74LS00为例,简述集成逻辑门功能测试的方法。74LS00为四输入2与非门,电路图如3-1所示。74LS00是将四个二输入与非门封装在一个集成电路芯片中,共有14条外引线。使用时必须保证在第14脚上加+5V电压,第7脚与底线接好。 整个测试过程包括静态、动态和主要参数测试三部分。 表3-1 74LS00与非门真值表 1.门电路的静态逻辑功能测试 静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否。实验时,可将74LS00中的一个与非门的输入端A、B分别作为输入逻辑变量,加高、低电平,观测输出电平是否符合74LS00的真值表(表3-1)描述功能。 测试电路如图3-2所示。试验中A、B输入高、低电平,由数字电路实验箱中逻辑电平产生电路产生,输入F可直接插至逻辑电平只是电路的某一路进行显示。

仿真示意 2.门电路的动态逻辑功能测试 动态测试用于数字系统运行中逻辑功能的检查,测试时,电路输入串行数字信号,用示波器比较输入与输出信号波形,以此来确定电路的功能。实验时,与非门输入端A加一频率为

数电实验 组合逻辑电路

实验报告 课程名称: 数字电子技术实验 指导老师: 成绩:__________________ 实验名称: 组合逻辑电路 实验类型: 设计型实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一.实验目的和要求 1. 加深理解典型组合逻辑电路的工作原理。 2. 熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。 3. 掌握组合集成电路元件的功能检查方法。 4. 掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。 5. 熟悉全加器和奇偶位判断电路的工作原理。 二.实验内容和原理 组合逻辑电路设计的一般步骤如下: 1.根据给定的功能要求,列出真值表; 2. 求各个输出逻辑函数的最简“与-或”表达式; 3. 将逻辑函数形式变换为设计所要求选用逻辑门的形式; 4. 根据所要求的逻辑门,画出逻辑电路图。 实验内容: 1. 测试与非门74LS00和与或非门74LS55的逻辑功能。 2. 用与非门74LS00和与或非门74LS55设计一个全加器电路,并进行功能测试。 3. 用与非门74LS00和与或非门74LS55设计四位数奇偶位判断电路,并进行功能测试。 三. 主要仪器设备 与非门74LS00,与或非门74LS55,导线,开关,电源、实验箱 四.实验设计与实验结果 1、一位全加器 全加器实现一位二进制数的加法,他由被加数、加数和来自相邻低位的进数相加,输出有全加和与向高位的进位。输入:被加数Ai ,加数Bi ,低位进位Ci-1输出:和Si ,进位Ci

实验三组合逻辑电路

实验三组合逻辑电路(常用门电路、译码器和数据选择器) 一、实验目的 1.掌握组合逻辑电路的设计方法 2.了解组合逻辑电路的冒险现象与消除方法 3.熟悉常用门电路逻辑器件的使用方法 4.熟悉用门电路、74LS138和74LS151进行综合性设计的方法 二、实验原理及实验资料 (一)组合电路的一般设计方法 1.设计步骤 根据给出的实际逻辑问题,求出实现这一逻辑功能的最简单逻辑电路,这就是设计组合逻辑电路时要完成的工作。组合逻辑电路的一般设计步骤如图所示。 图组合逻辑电路的一般设计步骤 设计组合逻辑电路时,通常先将实际问题进行逻辑抽象,然后根据具体的设计任务要求列出真值表,再根据器件的类型将函数式进行化简或变换,最后画出逻辑电路图。 2. 组合电路的竞争与冒险(旧实验指导书P17~20) (二)常用组合逻辑器件 1.四二输入与非门74LS00 74LS00为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图所示。它共有四个独立的二输入“与非”门,每个门的构造和逻辑功能相同。 图 74LS00引脚排列及内部逻辑结构 2.二四输入与非门74LS20

74LS20为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图所示。它共有两个独立的四输入“与非”门,每个门的构造和逻辑功能相同。 图 74LS20引脚排列及内部逻辑结构 3.四二输入异或门74LS86 74LS86为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图所示。它共有四个独立的二输入“异或”门,每个门的构造和逻辑功能相同。 图 74LS86引脚排列及内部逻辑结构 3.3线-8线译码器74LS138 74LS138是集成3线-8线译码器,其功能表见表。它的输出表达式为 i A B i Y G G G m 122(i =0,1,…7;m i 是最小项),与基本门电路配合使用,它能够实现任何三变量的逻辑函数。74LS138为双列直插16脚塑料封装,外部引脚排列如图所示。

组合逻辑电路的设计实验报告

中国石油大学现代远程教育 电工电子学课程实验报告 所属教学站:青岛直属学习中心 姓名:杜广志学号: 年级专业层次:网络16秋专升本学期: 实验时间:2016-11-05实验名称:组合逻辑电路的设计 小组合作:是○否●小组成员:杜广志 1、实验目的: 学习用门电路实现组合逻辑电路的设计和调试方法。 2、实验设备及材料: 仪器:实验箱 元件:74LS00 74LS10 3、实验原理: 1.概述 组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路过去状态无关。因此,组合电路的特点是无“记忆性”。在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。所以各种功能的门电路就是简单的组合逻辑电路。 组合逻辑电路的输入信号和输出信号往往不止一个,其功能描述方法通常有函数表达式、真值表、卡诺图和逻辑图等几种。 组合逻辑电路的分析与设计方法,是立足于小规模集成电路分析和设计的基本方法之一。 2.组合逻辑电路的分析方法 分析的任务是:对给定的电路求解其逻辑功能,即求出该电路的输出与输入之间的逻辑关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。 分析的步骤: (1)逐级写出逻辑表达式,最后得到输出逻辑变量与输入逻辑变量之间的逻辑函数式。 (2)化简。 (3)列出真值表。 (4)文字说明 上述四个步骤不是一成不变的。除第一步外,其它三步根据实际情况的要求而采用。 3.组合逻辑电路的设计方法 设计的任务是:由给定的功能要求,设计出相应的逻辑电路。 设计的步骤; (1)通过对给定问题的分析,获得真值表。 在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量之间的逻辑关系问题,其输出变量之间是否存在约束关系,从而获得真值表或简化

组合逻辑电路设计实验报告

组合逻辑电路设计实验 报告 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

组合逻辑电路设计实验报告1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下: 卡诺图: 电路原理图如下: 七段码显示: 真值表如下: 卡诺图: 电路原理图如下: 4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形: 七段数码管显示:

5.实验总结与心得 相关知识: 异步二进制加法计数器 满足二进制加法原则:逢二进一(1+1=10,即Q由1→0时有进位。) 组成二进制加法计数器时,各触发器应当满足: ①每输入一个计数脉冲,触发器应当翻转一次; ②当低位触发器由1变为0时,应输出一个进位信号加到相邻 高位触发器的计数输入端。 集成4位二进制异步加法计数器:74LS197 MR是异步清零端;PL是计数和置数控制端;CLK1和CLK2是两组时钟脉冲输入端。D0~D3是并行输入数据端;Q0~Q3是计数器状态输出 端。本实验中,把CP加在CLK1处,将CLK2与Q0连接起来, 实现了内部两个计数器的级联构成4位二进制即十六进制异步加法计数 器。 74LS197具有以下功能: (1)清零功能 当MR=0时,计数器异步清零。 本实验中将Q1、Q3的输出连接与非门后到MR,就是为了当计数器输出10时(即1010),使得MR=0,实现清零,使得计 数器重新从零开始。 (2)置数功能 当MR=1,PL=0,计数器异步置数。 (3)二进制异步加法计数功能

组合逻辑电路设计心得体会

组合逻辑电路设计心得体会 篇一:实验一_组合逻辑电路分析与设计 实验1 组合逻辑电路分析与设计 20XX/10/2 姓名:学号: 班级:15自动化2班 实验内容................................................. .. (3) 二.设计过程及讨论 (4) 1.真值表................................................. .................4 2.表达式的推导................................................. .....5 3.电路图................................................. .................7 4.实验步骤................................................. .............7 5. PROTEUS软件仿真 (9)

三测试过程及结果讨论.....................................11 1.测试数据................................................. ...........11 2.分析与讨论................................................. . (13) 四思考题................................................. (16) 实验内容: 题目: 设计一个代码转换电路,输入为4位8421码输出为4位循环码(格雷码)。 实验仪器及器件: 1.数字电路实验箱,示波器 2.器件:74LS00(简化后,无需使用,见后面) 74LS86(异或门),74LS197 实验目的: ①基本熟悉数字电路实验箱和示波器的使用 ②掌握逻辑电路的设计方法,并且掌握推导逻辑表达式的方法 ③会根据逻辑表达式来设计电路 1.真值表:

实验五组合逻辑电路的设计与测试

学生实验报告 系别电子工程学院课程名称电子技术实验 班级11通信1班实验名称组合逻辑电路 姓名钟伟纯实验时间2012年11月27日 学号201141302114指导教师张宗念 报 告 内 容 一、实验目的和任务 掌握组合逻辑电路的设计与测试方法 二,实验原理 1、 使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。设 计组合电路的一般步骤如图1所示。 图1 组合逻辑电路设计流程图 根据设计任务的要求建立输入、输出变量,并列出真值表。然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。并按实际选用逻辑门的类型修改逻辑表达式。 根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。最后,用实验来验证设计的正确性。 2、 组合逻辑电路设计举例 用“与非”门设计一个表决电路。当四个输入端中有三个或四个

为“1”时,输出端才为“1”。 设计步骤:根据题意列出真值表如表1所示,再填入卡诺图表2中。 表1 D0000000011111111 A0000111100001111 B0011001100110011 C0101010101010101 Z0000000100010111 表2 DA 00011110 BC 00 011 11111 101 由卡诺图得出逻辑表达式,并演化成“与非”的形式 Z=ABC+BCD+ACD+ABD = 根据逻辑表达式画出用“与非门”构成的逻辑电路如图2所示。

图2 表决电路逻辑图 用实验验证逻辑功能 在实验装置适当位置选定三个14P插座,按照集成块定位标记插好集成块CC4012。 按图2接线,输入端A、B、C、D接至逻辑开关输出插口,输出端Z接逻辑电平显示输入插口,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表1进行比较,验证所设计的逻辑电路是否符合要求。 三、实验设备与器件 1、 +5V直流电源 2、 逻辑电平开关 3、 逻辑电平显示器 4、 直流数字电压表 3、 CC4011×2(74LS00) CC4012×3(74LS20) CC4030×1(74LS86) CC4081×1(74LS08) 74LS10×1(CC4023) CC4001×1 (74LS02) 四、实验内容 1、设计一个路灯控制电路。要求在4个不同的地方都能独立控制路灯的亮和灭。当一个开关动作后灯亮,则另一个开关动作后灯灭。要求用异或门实现。 增值表1. 输 入输出 A B C D Y 00000 00011 00101

实验二+组合逻辑电路设计1

实验五组合逻辑电路设计 (此项实验为设计性实验) 设计性综合实验要求: 1.根据设计任务要求,从单元电路的设计开始选择设计方案。根据设计要求和已知条件,计算出元件参数,并选择合适的元件,最后画出总电路图。 2.通过安装调试,实现设计中要求的全部功能。 3.写出完整的设计性综合实验报告,包括调试中出现异常现象的分析和讨论。 一、实验目的 1. 掌握组合逻辑电路的设计方法。 2. 能够熟练的、合理的选用集成电路器件。 3.提高电路布局、布线及检查和排除故障的能力。 4.培养书写设计性综合实验报告的能力。 二、设计任务与要求 1.设计一个一位半加器和全加器。 2.设计一个对两个两位无符号的二进制数M、N比较大小的电路(只要求设计出M>N的电路)。 3.对所设计电路进行连接、验证,并写出结果。 三、实验原理及参考电路 组合逻辑电路是最常见的逻辑电路,其特点是在任何时刻电路的输出信号仅取决于该时刻的输入信号,而与信号作用前电路原来所处的状态无关。组合逻辑电路设计的一般步骤如图5-1所示。 图5-1 组合逻辑电路设计流程图 根据设计任务的要求建立输入、输出变量,并列出真值表,然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式,并按实际选用逻辑门的类型修改逻辑表达式。根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。最后用实验来验证设计的正确性。 - 19 -

- 20 - 1.组合逻辑电路的设计过程 用“与非”门设计一个表决电路。当四个输入端中有三个或四个为“1”时,输出端才为“1”。 设计步骤: a.根据题意列出真值表如表5-1所示,再填入卡诺图表5-2中。 b.由卡诺图得出逻辑表达式,并简化成“与非”的形式 Y =ABC +BCD +ACD +ABD =)′)′()′()′()′((ABC ACD BCD ABC c.根据逻辑表达式画出用“与非门”构成的逻辑电路如图5-2所示。 表5-1 D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Y 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 表5-2 d.用实验验证逻辑功能 在实验装置适当位置选定三个14P 插座,按照集成块定位标记插好所选集成块。 按图5-2接线,输入端A 、B 、C 、D 接至逻辑电平输出插孔,输出端Y 接逻辑电平显示输入插 孔,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表5-1进行比较,验证所设计的逻辑电路是否符合要求。 3.一位半加器和全加器 如果不考虑来自低位的进位,将两个二进制数相加,称为半加。实现半加运算的电路叫做半加器。A 、B 是两个加数,S 是相加的和,CO 是向高位的进位。两个多位二进制数相加时,除了最低位以外,每一位都应该考虑来自低位的进位。将两个对应位的加数和来自低位的进位3个数相加,这种运算称为全加,所用的电路称为全加器。即每一位全加器有3个输入端:A 、B 、CI (低位向本位的进位),2个输出端:S 和CO (向高位的进位)。 4.比较器 比较两个多位数的大小时,可分两步进行:①比较高位,大者则大;②高位相等时,比较低位, DA BC 00 01 11 10 00 01 1 11 1 1 1 10 1 A B C D Y B C A C D A B C 图5-2 表决电路逻辑图

相关文档
相关文档 最新文档