文档库 最新最全的文档下载
当前位置:文档库 › 飞行目标的多雷达探测及攻击问题

飞行目标的多雷达探测及攻击问题

飞行目标的多雷达探测及攻击问题
飞行目标的多雷达探测及攻击问题

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

雷达目标检测性能分析

雷达目标检测实例 雷达对Swerling起伏目标检测性能分析 1.雷达截面积(RCS)的涵义 2.目标RCS起伏模型 3.雷达检测概率、虚警概率推导 4.仿真结果与分析

雷达通过发射和接收电磁波来探测目标。雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。其中有一部分向雷达方向散射。雷达截面积就是衡量目标反射电磁波能力的参数。

雷达截面积(Radar Cross Section, RCS)定义:22o 2 4π 4π4π4π()4πo i i P P R m P P R σ=== 返回雷达接收机单位立体角内的回波功率 入射功率密度 在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。 R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回 的总功率和雷达发射总功率

?目标RCS和目标的几何横截面是两个不同的概念?复杂目标在不同照射方向上的RCS不同 ?动目标同一方向不同时刻的RCS不同 飞机舰船 目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。为此,需用统计方法来描述目标RCS。基于此,分析雷达目标检测性能。

Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。Swerling Ⅰ/Ⅱ型: 1 ()exp()p σ σσσ =- 指数分布 Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完 全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。 Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

雷达动态探测目标的仿真建模

雷达动态探测目标的仿真建模 谢卫,陈怀新 (中国电子科技集团公司第十研究所,成都 610036) 摘要:通过对雷达动态探测目标过程分析,提出了雷达探测目标仿真模型的方法,实现了雷达目标检测、多目标滤波跟踪、资源调度管理等数字模型。实际表明这些模型满足数据融合中雷达探测目标数据的需求,并且建模方法对数据融合传感器模型建立具有实际指导意义。关键词:雷达;建模;仿真;数据融合 Radar detection of targets dynamic simulation modeling XIE Wei,CHEN Huai-xin (CETC No.10th Research Institute, Chengdu, China; ) Abstract:With the analysis of the process of radar dynamic detecting targets, a method of the simulation model based on of radar detect targets is presented, some mathematic models (such as target indication by radar, variable number of targets tracking, resource management based on Scheduling algorithm) are realized. An actual experiment that the simulation data provided by radar detecting model can supply for the study of data fusion was made, simultaneity modeling method has a certain actual instructing meaning at the aspect of sensor detecting model of data fusion. Key words: radar; modeling; simulation; data fusion 1 引言 现代战场上各种目标的出现,要求利用多种传感器组网来采集信息并加以融合,充分利用不同目标各个方向、不同频段的反射特性,最大限度地提取信息,满足战场需要。对于数据融合来说真实的战场目标和传感器探测数据,是检验其有效性的最好条件。然而这样的真实数据很少,而且成本也较高,在融合算法的前期研究和实验阶段,就需要我们较真实的模拟多中传感器的探测数据。雷达是战争中至关重要的侦察手段,本文以雷达为列,分析其数据处理流程,并进行仿真建模。 2 雷达探测仿真建模 雷达探测功能仿真是通过仿真目标回波、接收机噪声、干扰、杂波等信号的幅度信息来复现雷达的检测过程。一般采用基于Monte Carlo的方法来实现,其流程如下图所示:

雷达测速与测距

雷达测速与测距标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分辨力取决于信号带宽。对于给定的雷达系统,可达到的 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,B=?f=1/τ,此处,τ为发射脉冲宽度。因此,对于简单的脉冲雷达系统,将有 δr=c 2τ() 在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率分脉冲功率和平均功率。雷达在发射脉冲信号期间内所输出的功率称脉冲功率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值,用Pav表示。它们的关系为 P tτ=P av T r()脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨力,因而能较好地解决作用距离与分辨能力之间的矛盾。 在脉冲压缩系统中,发射波形往往在相位上或频域上进行调制,接收时将回波信号加以压缩,使其等效带宽B满足B=?f?1/τ。令τ0=1/B,则 δr=c 2τ0() ()式中,τ0表示经脉冲压缩后的有效脉宽。因此脉冲压缩雷达可用宽度τ的发射脉冲来获得相当于发射有效宽度为τ0的简单脉冲系统的距离分辨力。发射脉冲宽度τ跟系统有效(经压缩的)脉冲宽度τ0的比值便成为脉冲压缩比,即 D=τ τ0 ()则

基于图像识别与雷达测距技术的开车看手机安全预警系统交通运输范文.doc

基于图像识别与雷达测距技术的开车看手机安全预警系统,交通运输- 摘要:随着交通运输业的发展,交通事故已成为当前世界各国所面临的严重问题,而因开车看手机造成的交通事故正在逐年增加。针这一现象,提出一套基于图像识别与雷达测距技术的开车看手机安全预警系统。本系统采用基于opencv的图像处理技术用于检测驾驶员是否在看手机,利用雷达测距用于对外部障碍物数据的采集,根据相应算法判断其是否存在危险,最后根据两者结果综合判断,建立相应安全等级,辅助驾驶保障驾驶员行车安全。 关键词:开车看手机安全预警图像识别雷达测距系统开发 中图分类号:U471.1文献标识码:A文章编号:1672-3791(2017)11(b)-0016-02 随着智能手机的普及,除了给人们的生活带来许多便利以外,还影响着人们的日常生活。目前,许多司机在开车时都养成了看手机的习惯,然而因为这一坏习惯所引发的交通事故逐年增多。据上海市的不完全统计,2014年1至10月,本市共发生致人死亡交通事故690起,其中由开车接听电话、玩微信等“其他妨碍安全行车的违法行为”引发的死亡事故高达204起,占到了总数的29.6%。

目前有些国家也研发了一些技术来预防因为开车看手机而造成的交通事故,例如英国一家企业开发的一款手机应用能够监测用户的开车速度,当时速达到6km时自动关闭拨出电话、收发短信和电子邮件、社交软件等会分散司机注意力的功能。国外对于开车玩手机主要通过手机应用层面来限制手机的使用,这种做法过于被动不适于我国国情,通过主动辅助安全驾驶在我国是更容易被接受。而国内对于开发车内监测驾驶员开车看手机预警系统并没有太多的研究成果。 1系统的实际构成及工作流程 1.1系统模块 如图1所示,本系统总共分为4个模块,分别是看手机状态监测模块、行驶障碍物雷达测距模块、嵌入式系统模块(包括潜在事故风险综合判断模块和音頻报警模块)、通信供电模块。 1.2工作流程 当汽车在道路上行驶时,周围的环境都是不确定的。本系统是通过检测驾驶员的驾驶状态,并判断他此时是否在玩手机,同时启动RPLIDAR雷达测距仪来检测周围的道路环境。雷达将检测到的数据发送给潜在事故风险综合判断模块,经过所设定的一系列程序处理之后,在综合开车看手机状态监测结果进行综合风险判断。如果判断出处于危险情况下,则将所得的结果发送给音频报警模块进行报警:只检测到驾驶员在看手机为一级警报,

雷达发展史

利用电磁波探测目标的电子设备。它发射电磁波对目标进行照射并接收其回波,由此获得目标至雷达的距离、距离变化率(径向速度)、方位、高度等信息。雷达是英文RADAR(Radio Detection And Ranging)的译音,意为“无线电检测和测距”。雷达的优点是白天黑夜均能检测到远距离的较小目标,不为雾、云和雨所阻挡。雷达是现代战争必不可少的电子装备。它不仅应用于军事,而且也应用于国民经济(如交通运输、气象预报和资源探测等)和科学研究(如航天、大气物理、电离层结构和天体研究等)以及其他一些领域。 发展简史雷达的基本概念形成于20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。 第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。就使用的频段而言,战前的器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。

连续波雷达测速测距原理.doc

连续波雷达测速测距原理 一.设计要求 1、当测速精度达到s,根据芯片指标和设计要求请设计三角调频 波的调制周期和信号采样率; 2、若调频信号带宽为50MHz,载频 24GHz,三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35(m/s),请用 matlab 对算法进行仿真。 二.实验原理和内容 1.多普勒测速原理 x a (t) x(n) FFT P(k ) 峰值f d A/D 谱分析搜索 图频域测速原理 f d max max | f m f d | f s / 2N v r max f d max / 2 f s / 4N/ 4T 依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到 s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz。2.连续波雷达测距基本原理 设天线发射的连续波信号为:①x T f0 (t ) cos(2 f0 t0 ) ] 则接收的信号为:② x R f0 (t ) cos[2 f 0 (t t r ) 0 若目标距离与时间关系为:③R ( t ) R 0 v r t

则延迟时间应满足以下关系 :④ t 2 v t) r ( R c r v r 将④代入②中得到 x R f 0 (t ) cos{ 2 f 0 [ t 2 (R 0 v r t )]0 } c v r cos[2 ( f 0 f d 0 )t 2 f 0 2R 0 ] c f d 0 2 v r f 其中 c 根据上图可以得到,当得到 t ,便可以实现测距,要想得到 t ,就必须测得 fd 。 已知三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35( m/s),则可以通过 :③ R ( t ) R 0 v r t ④ t 2 v t ) r ( R c 0 r v r 分别计算出向三个目标发出去信号,由目标反射回来的信号相对 发射信号的延迟时间。

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

激光雷达在军事中的应用讲解

激光雷达在军事中的应用 作者 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状. 关键词:激光雷达;探测;军事应用 1.引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应 可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在 20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响.由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好. 激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达. 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息.例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64 X 64 元,视场内物体的图像可显示在屏幕上,每秒钟更新4 次,并用不同颜色和灰度显示物体的相对距离.这种激光雷达能对运动的装甲车辆产生实时图像,图像分辨率足以识别车辆型号. 美国雷西昂公司研制的ILR100 型砷化稼激光雷达,可安装在高性能飞机和无人机上,当飞机在120m~460m 高空飞行

激光雷达测距测速原理

激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发 t θ为发r D 通过 定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发 的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测量。回波的延迟产生了相位的延迟,测 出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为c,往返的间隔时间为t,则有: 图2相位法测距原理图 假设f为调制频率,N为光波往返过程的整数周期,??为总的相位差。则间隔时间t还可以 因为L 不能测得 优点:测量距离远,一般大于1000m。系统体积小,抗干扰能力强。 缺点:精度较低,一般大于1m。 激光雷达相位法测距: 优点:测量精度高。

缺点:测量距离较近,一般为一个刻度L内的距离。(300-1000m)。受激光调制相位测试精度和相位调制频率的限制,系统造价成本高。相位法测距存在矛盾:测量距离大会导致精度不高,要想提高精度测量距离又会受限(刻尺L较短)。 3.激光雷达测速基本原理 激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距 它的 f 式中, d v< 反之0 f 移 d

多目标雷达测距与检测Matlab实现课程设计报告

课程设计(论文)任务书 信息工程学院物联网专业2012-1 班 一、课程设计(论文)题目多目标雷达检测与Matlab实现 二、课程设计(论文)工作自2014年12月22 日起至2015 年01 月04 日止。 三、课程设计(论文) 地点: 教4楼410 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)了解雷达系统基本原理,掌握雷达数字信号处理的基本原理 (2)掌握雷达测距信号处理的基本思路和方法; (3)在Matlab环境下数字信号处理算法的编程与调试; (4)培养分析、解决问题的能力; (5)提高科技论文写作能力,科技文献的查阅能力。 2.课程设计的任务及要求 1)基本要求: (1)分析线性调频(LFM)信号的时域特性与频域特性; (2)对多目标回波信号进行仿真,并分析该信号的时域特性与频域特性; (3)Matlab环境下,设计并编程实现多目标雷达测距与检测; (4)对测距与检测结果进行分析。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善算法效率;分析噪声和杂波对算法影响。3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写论文 (2)论文包括目录、绪论、正文、小结、参考文献、谢辞、附录等 (3)毕业论文装订按学校的统一要求完成 4)评分标准: (1)完成原理分析:25分; (2)完成设计过程:30分; (3)完成调试:25分; (4)问题回答:20分; 问题:在雷达数字信号处理中,为什么采用LFM信号?与传统脉冲雷达信号相比,LFM信号的主要优势有哪些?请根据自己的理解回答。 5)参考文献: (1)程佩青,《数字信号处理教程》,第四版,清华大学出版社 (2)Ian G. Cumming 等,著. 洪文等,译《合成孔径雷达成像--算法与实现》电子工业出版社

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

相关文档