文档库 最新最全的文档下载
当前位置:文档库 › 青岛大学概率论第一章习题

青岛大学概率论第一章习题

青岛大学概率论第一章习题
青岛大学概率论第一章习题

习题课

一、 填空题:

1.已知3.0)(,4.0)(==B P A P ,

(1)当B A 、互不相容时,=)(B A P ,=)(AB P ; (2)当B A 、相互独立时,=)(B A P ,=)(AB P ; (3)当B A ?时,=)(B A P ,=)(AB P .

2. 已知,8.0)(,6.0)(,5.0)(===A B P B P A P 则=)(B A P .

3.一种零件的加工由两道工序组成,第一道工序的废品率为p ,第二道工序的废品率为q ,则该零件加工的成品率为 .

4.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被击中,则它是乙射中的概率是 .

5.设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率为19/27 ,则在一次试验中事件A 出现的概率为 .

.

________)(,

)()()(:B A .6 ===B P p A P B A P AB P 则且两个事件满足条件,已知

.

_________

)C B A (,,,

61)()(,0)(,4

1)()()( . 7 ==

=====P C B A BC P AC P AB P C P B P A P 全不发生的概率为

则已知

==-=)(,30)(0.7,A)( . 8 _____

AB P .B A P P 则已知 .

_____

)(,

4.0)(,6.0)( .9 ===?B P A P B A P A,B 则为两相互独立的事件,设

的概率为

有一台发生故障

,则这三台机器中至少,,障的概率依次为器不发生故

,设第一、二、三台机

三台机器相互独立运转7.08.09.0 .10

二、单项选择题 :

1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为( D )

A .“甲种产品滞销,乙种产品畅销”;

B .“甲、乙两种产品均畅销”;

C .“甲种产品滞销”;

D .“甲种产品滞销或乙种产品畅销”.

2、如果事件A 、B 有B A ? ,则下述结论正确的是( C )

A . A 与

B 必同时发生 B . A 发生,B 必发生;

C . A 不发生,B 必不发生

D .A 不发生,B 必不发生

3.掷两枚均匀硬币,出现“一正一反”的概率是( B )

4.设A 、B 为任意两个事件,且 A B ?,,0)(>B P 则下列选项必然成立的是( B )

)()(B A P A P A <、; )()(B A P A P B ≤、 )()(B A P A P C >、; )()(B A P A P D ≥、

5、已知0)(>B P ,()n i A P i ,,2,10)( =>,如果它们满足条件

( A )时,则能使等式)()(1

i n

i i A B P A P ∑= 成立.

A.n A A A ,,,21 是一个完备事件组;

B.n A A A ,,,21 两两互斥;

C n A A A ,,,21 相互独立; D.n A A A ,,,21 的并集是全集.

).

(.6 中肯定正确的是

列结论

的不相容的事件,则下

是任意两个概率不为零和设B A

;不相容与)(B A A ;相容与)(B A B

);()()(B P A P AB P C =)( ).()(A P B A P D =-)(

,则满足和设事件1)(.7=A B P B A ( )

是必然事件;)(A A ;)(0)(=A B P B ;B A C ?)(.B A D ?)( )

(1)(.8 是,则下列结论正确的

是两个事件,且有,设=AB C P B A

).

()( )( );(( )( ;1)()()( (B) ;1)()()( (A) B A P C P D AB P C P C B P A P C P B P A P C P ?==-+≥-+≤)

)( b)-a(1 )( b;-c (B) b;-a (A) ) ()(,)(,)(,)(.9 a b D C B A P c B A P b B P a A P -==?==则设

10. n 张奖券中含有m 张有奖的,k 个人购买,每人一张,其中

至少有一人中奖的概率是( )

)( ;

)( ; 1 (B) ;

(A)1

1

1∑

=-k

r k n

r

m k n

k n-m

m k n

k

n-m k

n

C

C D C

C C C C

C -

C

m

11.在下列四个条件中,能使)()()(B P A P B A P -=-一定成立是( )

A.)()()(B P A P B A P -=-

B.A 、B 独立

C.A 、B 互不相容

D.)()()(B P A P B A P -=-

12.设在每次试验中,事件A 发生的概率为)10(<

p q -=1,则在n 次独立重复试验中,事件A 至少发生一次的概率是

( )

A. n

p B.n

q C.n p -1 D. n

q -1

三、计算

1、随机的将15名新生平均分配到三个班级中去,这15名学生中三名是优秀生,问

(1)每一个班级各分到一名优秀生的概率是多少? (2)三名优秀生分到同一个班级的概率是多少? 解:(1)设A={每一个班级各分到一名优秀生}

基本事件总数为:!

5!5!5!1555510515=

C C C 三个班级各分配到一名优秀生的分法有3!种,对每一中分法,12名

非优秀生平均分配到三个班级的分法有!

4!4!4!124448412=

C C C 因此 91

25!

5!5!5!

15!4!4!4!

12)(==A P

(2)设B={三名优秀生分到同一个班级}

B 的有利事件数:!

5!5!2!1235551021213???=

C C C C 因此 91

6!

5!5!5!

15!5!5!2!

123)(=???=B P

2、掷二枚骰子,求事件A 为出现的点数之和等于3的概率。 解:基本事件总数为:36

A 的有利事件数:2 {(1,2)(2,1)} 故 18

136

2)(==

A P

3、从五双不同号码的鞋子中任取4只,求4 只鞋子中至少有2只配成一双的概率。

解法一:

设A={4 只鞋子中至少有2只配成一双}={恰有一双}+{恰有两双}

{恰有一双}的有利事件数:2

122415)(C C C 222

基本事件总数为:4

10C

21

13)()(4

10

2

5

2122415=

+=

C C C C C A P

解法二:利用对立事件来计算概率 A={4 只鞋子中至少有2只配成一双}

A ={4 只鞋子中没有成双}

A

的有利事件数为:41245)(C C

(其中45C 表示5双中取4双,1

2C 表示每双中取一只)。

于是21

8)()(410

4

1

24

5=

=

C C C A P

故 21

13)(1)(=-=A P A P

4、甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两袋中各取一球,求两球颜色相同的概率。

解:P{两球颜色相同}=P{两球均白}+P{两球均红}+P{两球均黑}

625

20725

925152562572510253=?+?+?=

5、从n 双不同号码的鞋子中任取2r(2r

解:基本事件总数为:r n

C 22 (1)A 的有利事件数:r r n C C 2122)(,

(先从n 双中取出2r 双,再从每双中取一只)

r

n r

r

n C C C A P 222122)

()(=

(2)B 的有利事件是:先从n 双中取出一双,其两只全取出,再从剩下的n-1双中取2r-2双, 从其每双中取出一只)。

r

n

r r n n C C C C C B P 222

2122

212

21

)

()()(---=

(3)r n

r r n n C C C C C C P 224

2124212222)

()()(---=

(4)r n

r

r n C C C C P 2222)

()(=

6、某班有n 个士兵,每人各有一支枪,这些枪外形完全一样,在一次夜间紧急集合中,若每人随机地取走一支枪。 问至少有一个人拿到自己的枪的概率;

解:记i A ={第i 个战士拿到自己的枪},i=1,2,……,n

所求概率为)A A P(A n 21 ??=P{至少有一个人拿到自己的枪}

n i n

,,2,1 , 1)P(A i ==

项共)(2

n i , )

1(1)P(A C j i n n A j ≠-=

项共)(3

n i , )

2)(1(1

)P(A C k j i n n n A A k j ≠≠--=

……………………

!1

)P(A 21n A A n =

由概率的一般加法公式有

)P(A 21n A A ???

)()

1()()(211

11

n n n

j i j i n

i i A A A P A A P A P -≤<≤=-++-=

∑∑

!

1)

1()

2)(1(1

)

1(111

3

2

n n n n C n n C n n

n

--+---+--=

!

1)

1(!

31!

2111

n n --+-+

-

=

∑=--=

n

k k k 1

1

!

1)

1(

7、从区间(0,1)内任取两个数,求这两个数的乘积小于 1/4 的概率.

A={取出的两个数的乘积小于 1/4} 则A={(x,y)∣(x,y)∈Ω,xy<1/4}

A 对应的区域为右图阴影部分所示,A 的面积为

[]6.02ln 5.025.0ln 4

14

141

4114

/11

4/1≈?+=+

=

+

=

?x dx x

A 故所求概率为

6.0)(≈Ω

=

A

A P

8、某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是多少?

解:设A={活到20岁以上},B={活到25岁以上} 显然)(,A B P A B 求?

4.0)(,8.0)(==B P A P

4.0)()(,,===?B P AB P B AB A B 又

5.08

.04.0)

()()(==

=

A P A

B P A B P

9、某工厂生产过程中出现次品的概率为0.05,每100个产品为一批。检查产品质量时,在每批中任取一半来检查,如果发现次品不多于一个,则这批产品可以认为是合格的,求一批产品被认为是合格的概率。

解:设A={检查的50个产品中次品不多于1个} 0A ={检查的50个产品中没有次品} 1A ={检查的50个产品中有一个次品} 则A=0A +1A 由贝努里公式

0769.095

.0)95.0()05.0()(50

50

500≈==C A P

2025

.095.005.050)

95.0()05.0()(49

49

1

1

501≈??==C A P

所以P(A)=P(0A )+P(1A )≈0.2794

-λλk

鸡蛋能孵化成小鸡的概率为p ,求一个母鸡恰有r 个后代(小鸡)的概率。

解:设 k A ={母鸡生k 个蛋}, k=0,1,2……. B={一个母鸡恰有r 个后代}

!

)(λ

λ

-=

e

k A P k

k k=0,1,2…

0)(=k A B P k=0,1,2… r-1 ,1, ,)

1(p )(r

+=-=-r r k p C A B P r

k r

k k

利用全概率公式有

∑∞

==

r

k k k

A B P A

P B P )()()(r

k r k r

k k

p p C e

k -∞

=--?=

)

1( !

r λ

λ

r

k r k k

p p r k r k e

k -∞

=---?=∑

)

1( )!

(!!!

r λ

λ

)!

(!)

1(r

=----=r

k r

k k

r k r e

p p λ

λ

)!

()

1(!r ∑

=----=

r

k r

k k r k p r e

p λλ

!

)

1(!

)(0r

=-=--=

m m

m

m

r k m p r e

p λλλ

!

)]

1([!)(0r ∑

=--=

m m

m p r e

p λλλ

!

)(

e

!

)(r

p)

-(1r

r e

p r e

p p

λλλ

λλ--==

11、袋中装有2n-1个白球,2n 个黑球,一次取出n 个球,发现都是同一颜色的,这种颜色是黑色的概率。

解法一:

设A={取出的n 个球是同色}={取出的n 个球是白色的}+{取出的n 个球是黑色的}

B={取出的n 个球是黑色的}, AB=B A 的样本点数为:n

n n

C C n 21

2+-

B 的样本点数为: n

n

C 2 样本点总数为:n

n C 1

4-

n

n

n

n

n n C

C C A P 1

4122)(--+=

,n

n

n n C

C B P 1

42)(-=

n

n

n

n

n

C C

C A P AB P A B P n 221

2)

()()(+=

=

-

解法二:压缩样本空间:

Ω={取出的n 个球是白色的}+{取出的n 个球是黑色的} C={取出的n 个球是黑色的} 样本点总数为:n

n n

C C n 21

2+-

C 的样本点数为: n

n C 2

n

n

n

n

n C C

C C P n 221

2)(+

=

-

12、制作n 张彩票,其中只有一张写有“电影票”字样。n 个人依次摸彩,摸到标有“电影票”字样的称为中彩,试求:

(1)已知前k-1(k ≤n)个人都没有中彩的条件下第k 个人中彩的概率。 (2)第k (k ≤n)个人中彩的概率。(用乘法公式) 解:令i A ={第i 个人中彩},i=1,2……,n

则i A ( i=1,2……,n )两两互不相容(因为只能一个人中彩)

(1)前k-1(k ≤n)个人都没有中彩, 第k 个人摸彩时还有n-k+1张彩票,其中有一张标有“电影票”字样,于是(1)种所求条件概率为

11)(1

21+-=

-

--

-

k n A A A A P k k 1

)(121+--=

-

--

-

-

k n k n A A A A P k k

(2)由于k A A A ,,21两两互不相容,因此 1

1

-=?

k i i

k

A A

121-=k k k A A A A A ,重复使用乘法公式

)()(121-

---=k k k A A A A P A P

)()()()(121213121-

---------=k k A A A A P A A A P A A P A P

n

k n k n k n n n n n 1

1121121=+-?+-+-?--?-=

13、在长度为a 的线段内任取两点将其分成三段,求它们可以构成一个三角形的概率。

解:设线段被分成的三段长度分别为x 、y 和a-x-y ,则基本事件为由0

2

1a

S

AOB

=

?.

有利于事件A:(即x 、y 、a-x-y 三段所构成三角形)的基本事件集:

?????????<--<<<<--+>--+-->+20202

0a y x a a y a x x y x a y y y x a x y x a y x ???

??

?

???

<+

<<

<<

y x a

a y a x 2

2020

它们构成三角形CDE

2281)21(21a a S CDE ==

?

4

121

81

)(2

2

=

=a

a A P

14、一个人把6根草紧握在手中,仅露出它们的头和尾,然后请另一个人把6个头两两相接 ,求放开手后6根草恰巧连接一个环的概率,并把上述结果推广到2n 根草的情形。

解:6根草取它的一个头,它可以与其它5个头之一相接,再取一头又可以与其他未接过的3个头之一相接,最后剩下的两个头相接,故对头而言有5?3?1种接法,同样对尾而言,也有种5?3?1接法,所以基本事件总数为(5?3?1)2

设A={6根草恰巧连接一个环},这种连接对头而言,仍有5?3?1

尾连接,再取一尾,它又只能和未与它的头连接的每2根草的尾连接,最后将其余的尾连接成环,故尾的连接法为4?2种。 A 包含的基本事件数为:(5?3?1)((4?2)

所以15

8)

135()24)(135()(2

=?????=A P

2n 根草的情形类似于上面情形

!

)!12(!)!22()(--=

n n A P

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第一章习题参考解答

概论论与数理统计 习题参考解答 习题一 8. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面} 基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件, 则125.0812 1)(3====n n A P A . 9. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门 基本事件总数210C n =, 有利于A 的基本事件数2 7C n A =, 467.0157910212167)(21027==?????==C C A P 因此, 533.0467.01)(1)(=-=-=A P A P . 10. 一部四卷的文集随便放在书架上, 问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少? 解: 设A ={能打开门}, 基本事件总数2412344=???==P n , 有利于A 的基本事件数为2=A n , 因此, 0833.012 1)(===n n A P A . 11. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率. 解: 设A i 为取到i 个次品, i =0,1,2,3, 基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i 则

00006.09833512196979697989910054321)(006.098 3359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(510029733510039723225100 49711510059700=??==???????????====??= ??????????????====???= ????????????????=?===????=????????===C C n n A P C C C n n A P C C n n A P C C n n A P 12. N 个产品中有N 1个次品, 从中任取n 个(1≤n ≤N 1≤N ), 求其中有k (k ≤n )个次品的概率. 解: 设A k 为有k 个次品的概率, k =0,1,2,…,n , 基本事件总数n N C m =, 有利于事件A k 的基本事件数k n N N k N k C C m --=11,k =0,1,2,…,n , 因此, n k C C C m m A P n N k n N N k N k k ,,1,0,)(11 ===-- 13. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率. 解: 设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310 121315==???????===C C C C n n A P A 14. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率. 解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件, 则基本事件总数1644=?=n , 有利于A 的基本事件数422=?=A n , 有利于B 的基本事件数632=?=B n , 则25.04 1164)(====n n A P A 375.083166)(====n n B P B .

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论与数理统计第一章习题解答

《概率论与数量统计》第一章习题解答 1、写出下列随机试验的样本空间: (1)记录一个班一次数学考试的平均分数(设以百分制记分)。(2)生产产品直到有10件正品为止,记录生产产品的总件数。(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解: (1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。 (2)随机试验的样本空间S={10,11,12,……}。 (3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。 (4)随机试验的样本空间S={(x,y)|x2+y2<1}。 2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C中至少有一个发生。

(4)A,B,C都发生。 (5)A,B,C都不发生。 (6)A,B,C中不多于一个发生。 (7)A,B,C中不多于两个发生。 (8)A,B,C中至少有两个发生。 解: (1)A B C(2)AB C(3)A∪B∪C (4)ABC (5)A B C(6)A B C∪A B C∪A B C∪A B C (7)S-ABC (8)ABC∪AB C∪A B C∪A BC 3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P (AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。 (2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。 (3)已知P(A)=1/2,(i)若A,B互不相容,求P(A B),(ii)若P(AB)=1/8,求P(A B)。 解: (1)因为P(AB)=0,所以P(ABC)=0。故P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3/4-1/8=5/8。 (2)P(A∪B)=P(A)+P(B)-P(AB)=1/2+1/3-1/10=11/15, P(A B)=1-P(A∪B)= 4/15, P(A∪B∪C)=P(A)

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

概率论~第一章习题参考答案与提示

第一章 随机事件与概率习题参考答案与提示 1. 设为三个事件,试用表示下列事件,并指出其中哪两个事件是互逆事件: C B A 、、C B A 、、(1)仅有一个事件发生; (2)至少有两个事件发生; (3)三个事件都发生; (4)至多有两个事件发生; (5)三个事件都不发生; (6)恰好两个事件发生。 分析:依题意,即利用事件之间的运算关系,将所给事件通过事件表示出来。 C B A 、、 解:(1)仅有一个事件发生相当于事件C B A C B A C B A 、、有一个发生,即可表示成C B A C B A C B A ∪∪; 类似地其余事件可分别表为 (2)或AC BC AB ∪∪ABC B A BC A C AB ∪∪∪;(3);(4)ABC ABC 或C B A ∪∪;(5)C B A ;(6)B A BC A C AB ∪∪或。 ABC AC BC AB ?∪∪ 由上讨论知,(3)与(4)所表示的事件是互逆的。 2.如果表示一个沿着数轴随机运动的质点位置,试说明下列事件的包含、互不相容等关系: x {}20|≤=x x A {}3|>=x x B {}9|<=x x C {}5|?<=x x D {}9|≥=x x E 解:(1)包含关系: 、 A C D ??B E ? 。 (2)互不相容关系:C 与E (也互逆) 、B 与、D E 与。 D 3.写出下列随机事件的样本空间: (1)将一枚硬币掷三次,观察出现H (正面)和T (反面)的情况; (2)连续掷三颗骰子,直到6点出现时停止, 记录掷骰子的次数; (3)连续掷三颗骰子,记录三颗骰子点数之和; (4)生产产品直到有10件正品时停止,记录生产产品的总数。 提示与答案:(1); {}TTT TTH THT HTT THH HTH HHT HHH ,,,,,,,=?(2); { ,2,1=?}(3); {}18,,4,3 =?(4)。 { } ,11,10=?4.设对于事件有C B A 、、=)(A P 4/1)()(==C P B P , , 8/1)(=AC P

相关文档
相关文档 最新文档